previous up next index search
Previous: 10.19 Символьный набор HTML. Unicode    UP: 10 Приложения
    Next: 10.21 Элементы теории графов

10.20 Справочные данные по математике

Семенов Ю.А. (ИТЭФ-МФТИ)
Yu. Semenov (ITEP-MIPT)

  Прекрасна благодушная язвительность,
С которой в завихрениях истории
Хохочет бесноватая действительность
Над мудрым разумением теории

  И. Губерман


Условная вероятность
Множества
Гауссовы случайные процессы
Марковские случайные процессы
Цепи Маркова
Коэффициент эргодичности
Переходная функция
Стационарные случайные процессы
Закон больших чисел
Распределение Эрланга

Приводимые в данном разделе определения вляются "шпаргалкой" на случай, когда вы знаете предмет, но что-то забыли. Для первичного изучения математических основ рекомендую обратиться к серьезным монографиям и учебникам.

Условная вероятность

В теории вероятностей характеристикой связи событий А и B служит условная вероятность P(А|B) события А при условии B, определяемая как P(А|B) = ,

где N(B) - число всех элементарных исходов w, возможных при условии наступления события B, а N(АB) - число тех из них, которые приводят к осуществлению события А.

Если событие B ведет к обязательному осуществлению А: b, то P(A|B)=1, если же наступление B исключает возможность события А: A*B=0, то P(A|B)=0. Если событие А представляет собой объединение непересекающихся событий A1, A2,…: A = , то P(A|B) = .

Если имеется полная система несовместимых событий B =B1, B2,… т.е. такая система непересекающихся событий, одно из которых обязательно осуществляется, то вероятность события A (P(A)) выражается через условные вероятности P(A|B) следующим образом:


(формула полной вероятности).

Множества.

Множество - это совокупность некоторых элементов. Если элемент х входит в множество А, это записывается как x О A. Соотношения A1 Н A2 или A2 К A1 означает, что A1 содержится во множестве A2 (каждый элемент х множества A1 входит в множество A2; A1 является подмножеством A2).
Суммой или объединением множеств А1 и А2 называется множество, обозначаемое A1 И A2, которое состоит из всех точек х, входящих хотя бы в одно из множеств A1 или A2.
Пересечением или произведением множеств А1 и А2 называется множество, обозначаемое A1З A2, A1*A2 или A1A2, которое состоит из всех точек х, одновременно входящих и в A1 и в A2; пересечение произвольного числа множеств Аa состоит из всех точек х, которые одновременно входят во все множества Аa.
Пустые множества обозначаются 0.
Множества, дополнительные к открытым множествам топологического пространства Х, называются замкнутыми.
Нормированное пространство Х называется гильбертовым, если определена числовая функция двух переменных х1 и х2, обозначаемая (x1,x2) и называемая скалярным произведением, обладающим следующими свойствами:

  1. (x,x)і 0;
  2. (x,x)=0 тогда и только тогда, когда х=0;
  3. (l 1x1+l2 x2, x) = l 1(x1,x) + l 2(x2,x);
  4. (x, l 1x1+l2 x2) = l1(x,x1) + l 2(x,x2)

при любых l1, l2 и x1, x2ОX. Норма ||x|| элемента гильбертова пространства Х определяется как ||x||=.

Счетно-гильбертово пространство Х называется ядерным, если для любого р найдется такое q и такой ядерный оператор А в гильбертовом пространстве Х со скалярным произведением (х1,x2)=(х12)q, что (х1,x2)p=(Ax1,x2)q.

Действительное число M является верхней границей или нижней границей множества Sy действительных чисел y, если для всех y О Sy соответственно y Ј M или yі M. Множество действительных или комплексных чисел ограничено (имеет абсолютную границу), если верхнюю границу имеет множество абсолютных величин этих чисел; в противном случае множество не ограничено. Каждое непустое множество Sy действительных чисел y, имеющее верхнюю границу, имеет точную верхнюю границу (наименьшую верхнюю границу) sup y, а каждое непустое множество действительных чисел y, имеющее нижнюю границу, имеет точную нижнюю границу (наибольшую нижнюю границу) inf y. Если множество Sy конечно, то его точная верхняя граница sup y необходимо равна наибольшему значению (максимуму) max y, фактически принимаемому числом y в Sy, а точная нижняя граница inf y равна минимуму min y.
Множество называется открытым, если оно состоит только из внутренних точек. Точка P множества называется внутренней для множества S, если P имеет окрестность, целиком содержащуюся в S.

Компакт. Система множеств G называется центрированной, если пересечение конечного числа любых множеств из G не пусто. Замкнутое множество A Н X называется компактом, если всякая центрированная система G его замкнутых подмножеств F имеет непустое пересечение: Множество А называется компактным в Х, если его замыкание F=[A] является компактом.

Гауссовы случайные процессы

Действительная случайная величина x называется гауссовой, если ее характеристическая функция j =j (u) имеет вид

;
фигурирующие здесь параметры a и s2 имеют простой вероятностный смысл: a=Mx (среднее значение), s2 = Dx (средне-квадратичное отклонение). Соответствующее распределение вероятностей также называется гауссовым, его плотность имеет вид

Марковские случайные процессы.

Случайный процесс x =x(t) на множестве T действительной прямой в фазовом пространстве (E,B) называется марковским, если условные вероятности P(A|U(-Ґ,s) событий AО U(t,Ґ ) относительно s-алгебры U(-Ґ,s) таковы, что при s Јt с вероятностью 1
,
здесь U(u,v) означает s-алгебру порождаемую всевозможными событиями вида { x(t) О B}, t О[u,v]З T, BО B. Если параметр t интерпретировать как время, то описанное марковское свойство случайного процесса x =x (t) состоит в том, что поведение процесса после момента t при фиксированном состоянии x=x (t) не зависит от поведения процесса до момента t. Для любых событий А ОU (-Ґ,t1) и A2О U(t1, Ґ) и при любом t О T t1 ЈtЈ t2 с вероятностью 1

P(A1A2|x (t)) = P(A1|x (t)) P(A2|x(t)).

Цепи Маркова

Пусть x (t) - состояние системы в момент времени t, и пусть соблюдается следующая закономерность: если в данный момент времени s система находится в фазовом состоянии i, то в последующий момент времени t система будет находиться в состоянии j с некоторой вероятностью pij(s,t) независимо от поведения системы до указанного момента s. Описывающий поведение системы процесс x (t) называется цепью Маркова. Вероятности pij(s,t) = p{x (t)=j|x (s)=i} (i,j = 1, 2, …) называются переходными вероятностями марковской цепи x (t).

Марковская цепь x (t) называется однородной, если переходные вероятности pij(s,t) зависят лишь от разности t-s: pij(s,t) = pij(s-t) (i,j=1,2,…)

Финальные вероятности. Пусть состояния однородной марковской цепи x (t) образует один замкнутый положительный непериодический класс. Тогда для любого состояния j существует предел  (j=1, 2,…), один и тот же при всех исходных состояниях i=1,2,…. Предельные значения P1, P2,… представляют собой распределение вероятностей: pj есть финальная вероятность находиться в состоянии j; при этом
Pj=  (j=1,2,...),
где Qj - среднее время возвращения в состояние j в дискретные моменты t = 0, 1, 2, … .

Коэффициент эргодичности

Пусть x =x (t) - случайный марковский процесс в фазовом пространстве (E,B) с переходной функцией P(s,x,t,B). С вероятностью 1 имеет место равенство

b (s,t) = |P(A| U (-¥, s))- P(A| =

Величина k(s,t) = 1 -

называется коэффициентом эргодичности марковского процесса x =x (t).

Переходная функция.

Функция P(s,x,t,B) переменных s, tО T, s Ј t и xО E, bО b называется переходной функцией марковского случайного процесса x =x (t) на множестве T в фазовом пространстве (E,B), если эта функция при фиксированных s, tО T и xО E представляет собой распределение вероятностей на s -алгебре b и при фиксированных s, tО T и BО b является измеримой функцией от x О E.

Стационарные случайные процессы

Стационарный действительный или комплексный случайный процесс x =x (t), рассматриваемый как функция параметра t со значениями в гильбертовом пространстве L2(W) всех действительных или комплексных случайных величин h =h (w), M|h |2<Ґ (со скалярным произведением
(h 1, h2)= M h1 h2),
может быть представлен в виде

Белый шум. Простейшим по структуре стационарным процессом с дискретным временем является процесс z =z (t) с некоррелированными значениями:

Mz(t)=0, M|z(t)|2=1,
Mz(t1) при t1 ≠ t2

В случае непрерывного времени t аналогом такого процесса является так называемый "белый шум" - обобщенный стационарный процесс z = б u, z с вида


(параметр u=u(t) есть бесконечно дифференцируемая функция), где стохастическая мера z = z (d ) такова, что

Mz (D )=0, M|z (D )|2 =t-s при D =(s,t), Mz (D1) z (D2)=0 для любых непересекающихся D1 и D2.

Стационарный процесс x= x(t), Mx(t)=0, называется линейно-регулярным, если
,
где H(s,t) - замкнутая линейная оболочка в пространстве L2(W) значений x(u), s Ј u Ј t. Стационарный процесс x =x(t) со спектральной мерой F является линейно-регулярным тогда и только тогда, когда F=F( D) абсолютно непрерывна:
F(D) =
а спектральная плотность f=f(l) удовлетворяет условию

(для дискретного t)


(для непрерывного t)

Стационарный процесс x =x(t) линейно-регулярен тогда и только тогда, когда он получается некоторым физически осуществимым линейным преобразованием из процесса z = z(t) с некоррелированными значениями - в случае дискретного t:

x(t) =

и из процесса z =б u, z с "белого шума" - в случае непрерывного t:

x(t) =

Регулярность. Реальные стационарные процессы часто возникают в результате некоторого случайного стационарного возмущения Z = z (t) типа "белого шума". Процесс z = z(t) подвергается некоторому линейному преобразованию и превращается в стационарный процесс x =x(t). Спектральная плотность f= f(l) такого процесса в диапазоне -p Ј l Ј p для целочисленного времени и -Ґ <l <Ґ для непрерывного времени t не может обращаться тождественно в нуль ни на каком интервале: в противном случае стационарный процесс x (t) будет сингулярным, что означает возможность его восстановления лишь на полуоси -Ґ ,t0. Процессы, спектр которых практически сосредоточен в полосе частот -W< l <W, не обладают свойствами сингулярных процессов. С энергетической точки зрения эти процессы имеют ограниченный спектр. Составляющие их гармонические колебания вида Ф(dl )eilt с частотами вне интервала (-W,W) имеют весьма малые энергии, но они существенно влияют на линейный прогноз значений x (t+t) на основе x (s) на временной полуоси sЈt.

Линейные устройства, используемые при решении конкретных задач, должны иметь вполне определенную постоянную времени T (определяет длительность переходных процессов). Это означает, что весовая функция h=h(t) рассматриваемого линейного устройства, связанная с соответствующей передаточной функцией Y =Y(p) равенством

должна удовлетворять требованию h(t)=0 при t>T.
Рассмотрим задачу линейной фильтрации при наличии на входе процесса x =x(t). Тогда x (t)= z (t) +h(t), где h =h(t) - полезный сигнал, а z(t) - независимый от него стационарный случайный процесс (шум). Линейное устройство должно быть выбрано так, чтобы процесс на входе

был по возможности близок к входному полезному сигналу h = h(t), так что в стационарном режиме работы

Линейное устройство, отвечающее поставленным требованиям, должно иметь такую передаточную функцию Y=Y(p), чтобы соответствующая спектральная характеристика

являлась решением интегрального уравнения

Где

- спектральная плотность входного процесса x (t), а Bh h(t) - корреляционная функция полезного сигнала h (t).

Закон больших чисел

Пусть x1,…, xn - независимые случайные величины, имеющие одно и то же распределение вероятностей, в частности одни и те же математические ожидания a = M xk и дисперсии
s2=Dxk, k=1,…,n. Каковы бы ни были e >0 и d >0, при достаточно большом n арифметическое среднее
(таким образом )
с вероятностью, не меньшей 1-d, будет отличаться от математического ожидания a лишь не более чем на

Распределение Эрланга

Рассмотрим систему, которая способна обслуживать m запросов одновременно. Предположим, что имеется m линий и очередной запрос поступает на одну из них, если хотя бы одна из них свободна. В противном случае поступивший запрос будет отвергнут. Поток запросов считается пуассоновским с параметром l0, а время обслуживания запроса (в каждом из каналов) распределено по показательному закону с параметром l, причем запросы обслуживаются независимо друг от друга. Рассмотрим состояния E0, E1,…,Em, где Ek означает, что занято k линий. В частности E0 означает, что система свободна, а Em - система полностью занята. Переход из одного состояния в другое представляет собой марковский процесс, для которого плотности перехода можно описать как:

При t ® Ґ переходные вероятности pij(t) экспоненциально стремятся к своим окончательным значениям Pj, j=0,…,m. Окончательные вероятности Pj могут быть найдены из системы:

-l0P0+lP1=0

l0Pk-1 - (l0+kl)Pk + (k+1)lPk+1 =0 (1Ј k<m)

l0pm-1+ml Pm=0

решение которой имеет вид:

Эти выражения для вероятностей называются формулами (распределением) Эрланга.


Previous: 10.19 Символьный набор HTML. Unicode    UP: 10 Приложения
    Next: 10.21 Элементы теории графов