we |[BM Cloudant®

Why NoSQL?

Your database options in the new non-relational world

© 2015 IBM Cloudant

we |[BM Cloudant®

Table of Contents

New types of apps are generating new types of data........ccccceeeiiiiiiinneiiiinininenninnnnne. 3
A brief history on NOSQLL........ccceiiiieiiiiiiirticerreeeereeeeeerrneseerenassesenssessennssssensssssennssssensssssennns 3
NOSQL’S FOOtS iN OPEN SOUICE ..civveuuueiiiiriiiiermnnssssseesiieerssnsssssssssssessssssssssssssssssssssssssssssssssssnssssssssssssssnns 3
Types of NOSQL databases.......ccccceiiiiirinuiiiiiiiiinniiiiiiiiiniiiiiemem 4
KEY-VAlIUE STOIESiiiiieeuneiiiiiiiiiiienuiiieiiiiitriansssseestieetssssssssssssssessssssssssssssssssssssssssssssssssssnssssssssssssennns 4
GraPR STOMES...ciiieeeeeiiiiiiiiiiiiieiiieiiiiireeseesieitttttresssssssssssssneesnsssssssssssstsessnssssssssssssessnsssssssssssssssnnnnsssss 4
COlUMN SEOTES iieeeeeiiiiiiiiiiiienneeiiiiiiitieeasssssssisiitiessssssssssssssmsesssssssssssssssssssssssssssssssssssnsssssssssssssssnnnnsssss 4
[T Yol ¥ 4 L= o) o = 4
Why Consider NOSQL?cccuiiiieiiiiieiiitieeerteesierteeseetennssessnssessensssssenssassennssssenssssssnnssssensssssennes 5
=] oY1 1 0 PPN 5
R o= T o1 11 4V PPT 5
7T 11 o111 PP RPPPPRPPPPRt 5
Lower OPerational COSE.....ccciiiiiiiimmiiiiiiiiiiiiniieetiiitteansssseestteesssssssssssssssesssssssssssssssssssnsssssssssssssnnns 5
Specialized capabilities.......cccceeiiiiiiiiiiiiiiiiii e s s ss e s s s s s s s s s s nnanssses 5
SUMMIAIY «oiiiiiieiiiiiiireit et ittt ree st rs et raes s raessrasssaassteassteessrasssrsesstasssrassssnsssenssrenssrasssrnes 6
Getting started with IBM Cloudantccccciiiiiiinnniiiiiininniiiiinessesses 6
FOr more informationottt e s reesee s eea e s reasseseenssessensseseenssessanssesaennnnns 6

© 2015 IBM Cloudant 2

—

IBM Cloudant®

New types of apps are generating new types of data

The continual increase in Web, mobile, and loT applications, alongside emerging trends shifting online consumer
behavior and new classes of data are causing developers to reevaluate how their data is stored and managed.
Today’s needs require a database that is capable of providing a scalable, flexible solution to efficiently and safely
manage the massive flow of data to and from a global user base.

Developers and IT alike are finding it difficult, and sometimes even impossible, to quickly incorporate all of this
data into the relational model while dynamically scaling to maintain the performance levels users demand. This is
causing many to look at NoSQL databases for the flexibility they offer, and is a big reason why the global NoSQL
market is forecast to nearly double and reach $3.4 Billion in 2020

A brief history on NoSQL

NoSQL, aka ‘Not only SQL’, aka ‘Non-relational’ was specifically introduced to handle the rise in data types, data
access, and data availability needs brought on the dot-com boom.

Going back 20 years or so, when application architects and developers needed a data store for their applications,
they were choosing among various relational databases. In fact, relational databases have been the defacto choice
since the 1970s, as they have been the sole options available for both developers (taught in Computer Science
programs everywhere) and infrastructure teams (well-understood tooling and predictable operational
characteristics). Some of the most popular are Oracle, MySQL, SQL Server, and DB2.

However, when Internet applications and companies started exploding during the late 90s to early 2000s,
applications went from serving thousands of internal employees within companies to having millions of users on
the public Internet. For these applications, performance and availability were paramount. The new problem of
high availability at large scale drove companies like Google, Facebook, and Amazon to create new technologies.
Thankfully, they documented their efforts, released white papers, and open sourced their technology for the
Internet community to continue building upon. By the late 2000s, several new non-relational database
technologies had emerged, and NoSQL was the name that stuck to describe them all.

NoSQL’s roots in open source

Many NoSQL databases have roots in the open source community. This heritage has been fundamental for their
ever-increasing popularity and usage. You will often see companies who provide a commercial version of a
database with services and support for the technology, while at the same time participating in the communities of
their open source counterparts. Examples of these relationships include Datastax for Apache Cassandra™, IBM
Cloudant for Apache CouchDB™, and even MongoDB with an open source version of their MongoDB software.

1
http://www.marketresearchmedia.com/?p=568

© 2015 IBM Cloudant 3

o)

IBM Cloudant®

Types of NoSQL databases

NoSQL is simply the term used to describe a family of databases that are all non-relational. While the technologies,

data types, and use cases vary wildly

among them, it is generally agreed that TYPE OF OPEN SOURCE COMMUNITY

there are four types of NoSQL NOSDL FAMILY TREE it oo

d ata ba ses. Understanding the Architecture that Runs Tomorrow's Web

MANTCUOITA PDUTONRL CANNG et e
WD ORUSINE

Key-value stores

These databases pair keys to values, Apache Hadoop
D ol DB
like a hash table in computer Cloudera HortonWorks ; o
programming. A good analogy for a
Memcache
/Membase

key-value store is a file system. The
Apache HBase File System MapReduce

path acts as the key and the contents

act as the file. There are often no €1 €1

"fields" to update; rather, the entire sigeeste)\ Dymame

value other than the key must be

updated if changes are to be made. Apache Cassandra

This simplicity scales well; however, it Datastax
e . . (wws |BM Cloudant®

can limit the complexity of queries and

other advanced features available in key-value stores. Examples of pure key-value stores include: MemcacheD,
REDIS, and Riak

Graph stores

Graph data stores excel at dealing with interconnected data. Graph databases consist of connections (called
“edges” in graph DB terms) between nodes. Both nodes and their edges can store additional properties, such as
key-value pairs. The strength of a graph database is in traversing the connections between nodes. Graph
databases, however, generally require all data to fit on one machine, limiting their scalability. Examples of graph
stores include: Neodj and Sesame

Column stores

Relational databases store all of the data in particular table’s row together on-disk, which makes retrieval of a
particular row fast. Column-family databases generally serialize all the values of a particular column together on-
disk, which makes retrieval of a large amount of a specific attribute fast. This approach lends itself well to
aggregate queries and analytics scenarios where you might run range queries over a specific field. Examples of

column stores include: Hbase, Cassandra

Document stores

Document databases store records as “documents,” where a document can generally be thought of as a grouping
of key-value pairs. Keys are always strings and values can be stored as strings, numerics, booleans, arrays, and
other nested, key-value pairs. Values can be nested to arbitrary depths. Popular syntax for document DBs include
XML and JavaScript Object Notation (JSON). Examples of document stores include: MongoDB, CouchDB, Cloudant,
and MarkLogic

© 2015 IBM Cloudant 4

e

IBM Cloudant®

Why Consider NoSQL?

The various NoSQL databases available today differ quite a bit, but there are common threads uniting them:

flexibility, scalability, availability, lower costs, and special capabilities.

Flexibility

Schema flexibility and intuitive data structures are key features that
attract developers working in agile development cycles, and most NoSQL
databases accommodate these qualities. Schema updates and their
associated downtime are generally not required, as in a relational
database. NoSQL'’s flexibility is popular for supporting agile development
practices by eliminating the complexity of database schema changes to
support changing codebases.

Scalability

Scale refers to both the size of the data as well as the concurrent users
acting on that data. NoSQL databases are typically more specialized to
various use cases involving scale and can be much simpler to develop
related application functions than relational databases.

Many NoSQL databases are built to scale horizontally and spread their
data across (shard) a cluster of servers more easily than their relational
counterparts. Relational database performance suffers when queries
execute JOINs across shards, whereas a NoSQL database can avoid JOINs
altogether and remain highly performant.

Availability

The Appeal of NoSQL

JSON document Stores

© JSON schema can be evolved rapidly
without the need for intervention

© It only contains 6 kinds of values so it is
easy to implement and use

o JSON is self-describing and easy to
understand

O The performance and scalability gains it
helps enable

Example: NoSQL JSON document

store versus a RDBMS
Records in a NoSQL document store may be fully
denormalized into individual JSON documents
(store a record and all its related data together)
versus the RDBMS approach of decomposing
relations into separate tables (separate records
into logical tables to better enforce consistency).

The benefit here is that by using NoSQL, you can
get and put objects at once without JOINing data
from separate tables. The JOINs of a relational
database are absolute scalability killers for
clustered databases.

Downtime results in lost revenue, lost customers, and frustrated users. Thankfully, some NoSQL databases offer

new or different replication architectures that can make different types of NoSQL databases more highly available

for writes in addition to reads. This means that if one or more database servers, or "nodes” goes down, the other

nodes in the system are able to continue operations without data loss.

Lower operational cost

The open source roots of NoSQL make its entry point an obvious incentive, and it is common to hear of NoSQL

adopters cutting significant costs versus their existing databases while still receiving the same or better

performance and functionality. Historically, large relational databases have run on expensive machines and

mainframes. The distributed nature of NoSQL databases means that they can be deployed and operated on

clusters of servers in cloud architectures.

Specialized capabilities

Not all NoSQL databases are created equal. To offer incentives and added integration to their users, many NoSQL

providers include various specialized capabilities. Examples include specific indexing and querying capabilities for

geospatial data or integrated full-text indexing for search, automatic data replication and synchronization features,

and application-friendly RESTful web APIs.

© 2015 IBM Cloudant

o)

IBM Cloudant®

Summary

The database you pick for your next application matters now more than ever. Thankfully, you don’t have to pick
just one. Today’s applications are expected to run non-stop and must efficiently manage the continuously growing
amounts of multi-structured data in order to do so. This has caused NoSQL to grow from a buzzword to a serious
consideration for every database, from small shops to the enterprise.

While NoSQL databases share some common qualities, such as being non-relational and generally easy to scale,
there are many unique differentiators to consider when deciding upon the correct NoSQL solution for your unique
data needs. The right NoSQL database can act a viable alternative to relational databases or can be utilized in a
complementary fashion along with existing systems.

The requirement for efficient data delivery is our future, and you should consider NoSQL technology when
planning any application development project that involves scale, different varieties of data, or large amounts of
potential users.

Getting started with IBM Cloudant

IBM Cloudant is available as a fully managed NoSQL database as a service (DBaaS) for fast, turnkey provisioning,
and worry-free data management. It is also available as Cloudant Local, which puts the power of the Cloudant
platform in the privacy of your data centers. You can even connect Cloudant Local and Cloudant Managed DBaa$S
databases together to form hybrid cloud databases for the greatest balance of cloud cost, reach, performance, and
compliance control. Simply sign up for a no charge account and get started at https://cloudant.com.

For more information

For more information, please contact your IBM representative or IBM Business Partner, or visit: cloudant.com or
ibm.com/cloudant

The Apache Software Foundation, "Apache Cassandra"”, "CouchDB", and "Apache CouchDB" are trademarks or registered trademarks of The

Apache Software Foundation. All other brands and trademarks are the property of their respective owners.

© 2015 IBM Cloudant 6

