
OpenStack: The
essential guide

a special report from ComputerWeekly
IV
C
A
N
D
Y
/I
S
TO

C
K

http://www.computerweekly.com

a special report from ComputerWeekly

-2-

The OpenStack platform is an open-source collaboration to develop a private
cloud ecosystem, delivering IT services at web scale. OpenStack is divided
into a number of discrete projects, each with a code name with parallels to
the purpose of the project itself. Virtual machines – or compute – are delivered
through a project called Nova. In early OpenStack implementations, Nova virtual
machines were stateless, that is they were not kept on persistent storage, and a
Nova virtual machine would lose its contents when it was shut down.

As Nova developed, a feature called nova-volume was introduced to store virtual
machines on persistent media, similar to the way Amazon Web Services Elastic
Cloud Compute (EC2) stores instances on persistent media known as Elastic
Block Store (EBS). The nova-volume feature was eventually superceded by a
separate project called Cinder that delivers persistent block-level storage to
OpenStack environments.

How Cinder works

Cinder performs a number of operations in OpenStack environments. In the first
instance, it acts as a piece of middleware, providing application programming
interfaces (APIs) that allow Cinder volumes to be created through use of the
Cinder client software. A single Cinder volume is associated with a single Nova
compute instance or virtual machine. Cinder keeps track of the volumes in use
within OpenStack using a MySQL database created on the Cinder services
controller. Through the use of a common interface and APIs, Cinder abstracts
the process of creating and attaching volumes to Nova compute instances.
This means storage can be provided to OpenStack environments through a
variety of methods.

By default, Cinder volumes are created on a standard Linux server that runs
Logical Volume Manager (LVM). This allows physical disks to be combined to
implement redundant array of independent disks (RAID) data protection and to
carve out logical volumes from a physical pool of space, called a volume group.
Cinder volumes are created from a volume group called cinder-volumes, with
the OpenStack administrator assigned the task of deciding exactly how this LVM
group is mapped onto physical disk.

Cinder and external storage

Cinder can also manage external storage resources, either from a physical
external storage array or from software-based storage implementations. This is
achieved through the use of a Cinder driver that maps Cinder requests to the
commands required on the external storage platform – in fact, the default LVM
implementation is simply another Cinder driver. Support is available for iSCSI
and Fibre Channel protocols, with specific support based on the capabilities of
the supplier’s storage hardware (see the support matrix described later).

Storage suppliers have been quick to provide Cinder support, enabling a wide
range of storage hardware to be used in OpenStack deployments. Depending
on the implementation, the driver allows OpenStack to automate the process of
creating volumes and assigning them to Nova virtual machines.

OpenStack Cinder: Block storage on
the open-source cloud platform
OpenStack Cinder 101: The fundamentals of Cinder, how it is implemented, how to provision it,
how it works with third-party storage arrays, its features and more

Cinder keeps
track of the
volumes in use
within OpenStack
using a MySQL
database created
on the Cinder
services controller

http://www.computerweekly.com
http://whatis.techtarget.com/definition/OpenStack
http://searchenterpriselinux.techtarget.com/definition/MySQL
http://searchstorage.techtarget.com/definition/Fibre-Channel

a special report from ComputerWeekly

-3-

Some hardware platforms require storage administrators to create a pool – or
pools – of storage for OpenStack to use – traditional arrays that use pools of
RAID groups, for example. A list of supported platforms is available but this isn’t
exhaustive and many suppliers are not mentioned. You should check with your
storage supplier for specific information on Cinder support and the features their
drivers offer.

The use of external storage for OpenStack provides the ability to take advantage
of native features on the storage platform where available, such as data
deduplication, compression, thin provisioning and quality of service.

External storage isn’t limited to physical hardware appliances; block storage
can be assigned to OpenStack from a variety of software-based systems,
both commercial and open-source. This includes Ceph and GlusterFS. Ceph,
for example, is implemented through the use of Rados Block Device (RBD), a
device driver in the Linux kernel that talks natively with a Ceph storage cluster.

OpenStack Cinder features

With each successive release of OpenStack (the most recent being Kilo –
versions are named after successive letters of the alphabet), new features
have been added to Cinder. Some of these have been implemented through
a second version of the Cinder API, as version one didn’t have support for the
newer features.

Version one and two APIs provide commands to create, update, delete and
extend volumes, as well as attach and detach them to instances – Nova
virtual machines. Volumes can be assigned volume types, allowing them to
be matched to a specific storage provider, where an OpenStack deployment
takes storage from multiple providers. Alternatively, volume types can be used
to differentiate between different classes of storage, based on, for example,
physical characteristics such as RAID protection or performance.

Cinder provides the ability to take snapshots of Nova instances. For external
storage platforms, this is achieved by using the native snapshot process of
the underlying storage platform. The Juno release of OpenStack introduced
the ability to group Cinder volumes into a consistency group, allowing all the
volumes to be taken as a single snapshot. To date, only a few suppliers support
this functionality.

Cinder supports the ability to take Nova instance backups. Unfortunately, this
process is limited to using an object store as the backup target, with restores
that require restoration of the entire volume. This may prove limiting in many
circumstances and is one reason why Manila – the OpenStack file services
project – could provide a more appropriate way to manage application data.

Cinder in OpenStack distributions

OpenStack distributions are available from a wide range of suppliers – well
over 20 at last count. Each supplier provides support for a specific release of
OpenStack and for each of the core OpenStack components. Cinder is a core
component and ships with each distribution. The OpenStack marketplace
provides a list of suppliers and their offerings. This also lists each of the projects
and their supported levels as well as the supported level of the APIs. Today
almost all suppliers support the version two API for Cinder.

Cinder provides great flexibility to add storage to OpenStack environments,
through native LVM support or via an external appliance or software. However,
as with all components of OpenStack, Cinder requires time and effort to
understand and configure correctly. n

With each
successive release
of OpenStack, new
features have been
added to Cinder

The Juno release
of OpenStack
introduced the
ability to group
Cinder volumes into
a consistency group

http://www.computerweekly.com
http://searchstorage.techtarget.com/definition/data-deduplication
http://searchstorage.techtarget.com/definition/data-deduplication
http://www.computerweekly.com/feature/Backup-vs-replication-snapshots-CDP-in-data-protection-strategy
https://www.openstack.org/marketplace/distros/

a special report from ComputerWeekly

-4-

OpenStack is a collection of projects that deliver the components required to
deploy a service-based private cloud. Code is delivered through twice-yearly
alphabetically codenamed releases that introduce new projects, features and
enhancements, typically in April and October.

The basic elements of OpenStack include compute (Nova, which delivers
virtual machines), networking (Neutron) and storage (handled by Cinder,
Swift and Manila). Cinder delivers support for block-based storage, allowing
virtual machine states to be maintained across the creation and destruction of
instances. It is an evolution of what were originally called “Nova volumes”.

Block-based storage is great for storing a virtual machine image but less flexible
for storing application data. Cinder volumes can’t be shared between running
Nova instances, making it difficult to distribute access to data in an environment
designed around the transient nature of an individual virtual machine or instance.

Swift object storage

To meet the needs for application data storage in OpenStack, the Swift
project delivers a reliable, scalable and multi-user accessible object store.
The OpenStack project has also recently introduced Manila, a scale-out file
storage system. Swift is implemented as an object store, distributed across
multiple nodes in an OpenStack infrastructure, using commodity disk storage
components such as hard-disk drives and solid-state disks.

The term ‘object store’ implies no specific data format and content is effectively
stored as binary objects with associated metadata. Data is stored in and
retrieved from a Swift cluster using ReST-based API calls that are based on
standard HTTP/S web protocols.

The use of ReST (Representational State Transfer) means that each object within
the Swift object store can be accessed through a unique URL, which includes a
reference to the object (the object ID) and its location. The open-source version
of Swift distributed with OpenStack allows user-generated object IDs to be used
when referencing objects in the store.

As OpenStack is by nature a multi-tenant environment, objects can be stored
within Swift with some degree of hierarchy. A Swift object store is divided into
accounts (also known as tenants or projects) and containers.

The use of containers provides the ability to apply storage policies to object
data – for example, to set the number of replicas kept of each object. Policies
are established at the container level. Note that containers in this context are
not related to those being popularised by companies such as CoreOS and
Docker; they are analogous to buckets used in public object stores such as
Amazon Web Services.

Swift is implemented through a number of separate service components that
deliver the scale-out and resiliency capabilities expected of object stores. These

OpenStack Swift 101: The object
store for OpenStack apps

Block-based
storage is great
for storing a
virtual machine
image but less
flexible for storing
application data

We run the rule over the OpenStack Swift object storage architecture, its key components,
how it achieves resiliency, and the data protection methods in use and development

http://www.computerweekly.com
http://www.computerweekly.com/feature/OpenStack-Cinder-Block-storage-on-the-open-source-cloud-platform
http://searchcloudstorage.techtarget.com/definition/RESTful-API
http://whatis.techtarget.com/definition/multi-tenancy

a special report from ComputerWeekly

-5-

include container servers, account servers, proxy servers and object servers,
which are combined into an entity known as a “ring”.

Actual object data is stored on object servers, with other services used to
implement features such as metadata management and distributed data access
and protection. A service doesn’t imply a separate server. Some services can
be run on the same hardware infrastructure, but high levels of resiliency are
achieved by running multiple services across separate hardware appliances.

Separating data access services from data storage services allows a Swift
instance to scale out in both capacity and performance. Data resiliency is
implemented through the use of zones. A zone describes the sub-component of
a Swift ring used to store one copy of data.

Resiliency is achieved by creating multiple redundant copies of data (called
replicas) and distributing replicas across redundant components (zones) in the
infrastructure. This can mean either a single disk drive or separate server, which
provides the ability to create high availability through the geographic dispersal of
data between datacentres. Requests to read data objects are delivered by the
nearest, most consistent copy of that object.

Data consistency in Swift

In common with many object stores, Swift implements the concept of eventual
consistency for data that is replicated between zones. Block-based storage
is focused on the idea of either synchronous (immediate) or asynchronous
replication (time-delayed) consistency.

Eventual consistency is similar to asynchronous replication in that the
consistency of data is managed in the background, separate from the writing
and reading of objects.

Object replicas are created as background tasks and replication completed as
system resources (including network bandwidth) allow. This kind of replication is
more suited to the scale-out Swift model, where individual servers may be offline
or inaccessible as part of normal operations.

Most commercial object store systems now support the protection of data using
erasure coding. Data protection using replicas is expensive in terms of storage
capacity (especially with flash storage) whereas erasure coding provides data
protection with only a fractional overhead in capacity. The trade-off comes in
performance, as erasure coding uses algorithms in both the reading and writing
of data that transform an object into a set of shards that are distributed across
the infrastructure.

Erasure coding is currently only supported in beta mode within Swift, so end
users should be careful about deploying it in production environments. However,
we can expect erasure coding to be a future standard in Swift deployments,
especially those at scale where the space/cost savings are the most beneficial.

This is not to say that improvements are not being made to existing data
protection features. The Grizzly release of OpenStack, for example, introduced
more granular controls to manage replica counts.

Commercial alternatives to Swift

Swift is an open-source platform, with a large amount of the support and
coding coming from SwiftStack, which provides commercial support for Swift
deployments. Other platforms are available that support the Swift API and can
be used to replace or emulate the use of an open-source Swift deployment.

Separating data
access services
from data storage
services allows
a Swift instance
to scale out in
both capacity
and performance

http://www.computerweekly.com
http://whatis.techtarget.com/definition/metadata
http://www.computerweekly.com/feature/Backup-vs-replication-snapshots-CDP-in-data-protection-strategy
http://www.computerweekly.com/feature/Erasure-coding-versus-RAID-as-a-data-protection-method

a special report from ComputerWeekly

-6-

Implementations of the Swift ReST API are supported in object store platforms
from Scality (since the Juno OpenStack release), Cleversafe, Cloudian, EMC
Isilon, Hitachi HCP and others.

The benefits of using a commercial storage provider are obvious. Data is
protected by hardware and operational processes with which the customer
is already familiar. And hardware can be shared with OpenStack and non-
OpenStack environments to allow data to be exchanged or moved in and out of
a Swift-supported environment while providing data access through traditional
protocols such as NFS and SMB.

Using external storage also gives the ability to make use of features such
as backup, encryption and mature role-based access controls that are still
somewhat scarce in the open-source implementation of Swift.

One thing to bear in mind when using external storage is that there is no
requirement to use Swift. It is perfectly possible to use other object-based APIs
such as the S3 API from Amazon Web Services. Although the APIs are not
directly interoperable, code changes to use either standard are minor in nature.

Simplivity adds ROBO hyper-converged box and OS enhancements
DataCore teams up with Curvature to offer recycled storage hardware
X-IO’s Iglu Blaze adds replication to ISE HDD, flash and hybrid arrays
Panasas boosts scale-out NAS offerings with flash and disk AS18. n

Data is protected
by hardware and
operational
processes with
which the customer
is already familiar

http://www.computerweekly.com
http://searchenterprisedesktop.techtarget.com/definition/Network-File-System

a special report from ComputerWeekly

-7-

Manila bridges the
gap between block
and object by
providing the ability
to map external
storage systems

OpenStack Manila: File access
storage for the open-source cloud
OpenStack Manila is the file level access method in development by the open-source
cloud platform. What is it, how does it work and when will it be ready?

April 2015 saw the latest release of the OpenStack cloud computing platform,
codenamed Kilo. This release introduced Manila, which brings support for
shared file systems into OpenStack to complement its existing storage
offerings, extending and improving its ability to consume external shared
storage resources.

The Manila project introduces the concept of shared file systems into
OpenStack. Until now, the two main storage projects were Cinder and Swift.
Cinder provides application programming interface (API) support to manage
block storage, specifically systems using block-based protocols, such as Fibre
Channel and iSCSI.

Block storage provides high-performance access for virtual machines (VMs) and
data, but a Cinder volume/LUN is limited to access by only a single Nova guest
(virtual machine). This restriction exists because there is no inherent locking or
synchronisation process built into block-level protocols. Block devices also have
restrictions on capacity, making them difficult to increase and almost impossible
to decrease in size.

Swift provides object storage support, making it suitable for storing large binary
objects at scale. However, Swift storage isn’t suitable for transactional data or
to store VMs, as objects are typically immutable and updated in their entirety.
Object stores are also not usually suitable for small objects due to overheads for
data protection methods, such as erasure coding, and are relatively inefficient
when using simple protection approaches, such as replicas.

Manila bridges the gap between block and object by providing the ability to map
external storage systems using file-based NAS (NFS/SMB) protocols to Nova
hosts and guests. File shares can be distributed between hosts and guests, as
NAS protocol manages locking and data integrity processes required to provide
multiple concurrent access to data.

Evolution of Manila

The Manila project was started in 2012 and developed as a fork of the Cinder
project, as many of the concepts and API calls were anticipated to share much
in common between file shares and LUNs/volumes. Since then the project has
evolved, and in August 2014 it was classed as “incubated”, effectively achieving
final development status before becoming a full core project of the OpenStack
platform. Although Manila is available in the Kilo release, it hasn’t reached full
core status, but that should happen later this year.

The main function of Manila is to provide Nova compute instances with access
to shared file-based storage. The architecture is designed to use external
storage resources, such as commercial hardware from the likes of NetApp and
EMC, or to use software-based implementations such as Ceph and GlusterFS.

OpenStack, and its Swift and Cinder object and block storage lead the way, but
are not the only options for building open-source cloud platforms.

http://www.computerweekly.com
http://searchcloudstorage.techtarget.com/definition/OpenStack-Swift
http://www.computerweekly.com/feature/Big-players-target-object-storage-at-cloud-and-archive
http://searchstorage.techtarget.com/definition/Ceph
http://searchstorage.techtarget.com/definition/GlusterFS-Gluster-File-System

a special report from ComputerWeekly

-8-

Manila effectively provides the orchestration components that manage the
creation of file shares and the mapping of shares to Nova compute instances
and does not sit within the data path. This functionality is implemented as a
set of APIs, a command line interface (CLI) and integration into the OpenStack
Horizon dashboard. Manila uses concepts and terms familiar to anyone
implementing NAS, such as share (an instance of a file system), share access
rule (an ACL) and security service (eg, LDAP or Microsoft Active Directory).

In addition, share network is used to describe the networking implementation
associated with a share, and is used as one way to implement multi-tenancy
support. Networking multi-tenancy is implemented using standard features such
as VLANs and VXLAN.

Manila provides automated provisioning of file shares to Nova hosts (the
servers running virtual machines). At this stage of project development,
mapping file shares to Nova guests (virtual machines) is a manual process,
although a number of proposals have been made on how the mapping could
be automated.

Using Manila

The use of Manila makes it easier for developers to implement systems that
scale at the virtual machine layer, but still need access to shared storage
resources to deliver resiliency and availability. These features can be delivered
using Manila without having to implement complex application-based replication
and redundancy processes.

Manila also provides opportunities for hardware suppliers to make their products
valid in OpenStack deployments and, as a result, we have seen a significant
amount of development time provided by NetApp (on Clustered ONTAP), EMC
(VNX) and IBM (Spectrum Scale), as well as OpenStack community members,
such as Mirantis. In fact, the project lead for Manila is a NetApp employee.
Meanwhile, NetApp and Mirantis have provided 29% and 35% of the source
code of the project respectively.

Manila is not restricted to deployment in traditional storage arrays, and there is
currently supplier development activity on the Ceph and GlusterFS open-source
storage platforms. This includes support for protocols outside of traditional NAS
(NFS/SMB), for example using device drivers built into the KVM hypervisor that
use the native Ceph protocol.

The open-source project NFS-Ganesha that implements an NFS server in user
space can also be used to abstract underlying NFS server hardware, although
this introduces latency and more complexity in the data path. It is also possible
to implement Manila support without an external storage array, using the generic
driver provided with Manila. This driver creates a file share using a Nova VM and
external block-based storage, with each file share creating a new VM.

Early days for Manila

Manila is available in the OpenStack Kilo distribution, but as discussed earlier it
is not fully adopted as a core project. Users can try out features and see how
they fit into their environment (assuming there is driver support), although there
are still issues to resolve around networking multi-tenancy and provision of
shares to Nova guests.

There is also a lot of thought required about how external NAS storage should
be integrated into OpenStack deployments. Manila provides only the conduit
for provisioning and mapping new shares. It does not provide (at this stage) any
integration with backup, or data protection, other than support for snapshots. n

Manila also
provides
opportunities for
hardware suppliers
to make their
products valid
in OpenStack
deployments

Users can try out
features and see
how they fit into
their environment

http://www.computerweekly.com
http://searchwindowsserver.techtarget.com/definition/command-line-interface-CLI
http://searchnetworking.techtarget.com/definition/virtual-LAN
http://searchsdn.techtarget.com/definition/VXLAN-gateway-Virtual-Extensible-VLAN-gateway
http://whatis.techtarget.com/definition/KVM-hypervisor

a special report from ComputerWeekly

-9-

The software-defined datacentre represents the current phase in the evolution
of IT delivery to the business. It is an approach largely driven by virtualisation
and the rise of VMware – and to a lesser extent, Microsoft Hyper-V – in the
datacentre. Those platforms, VMware in particular, have attained an air of
unassailability as virtualisation has swept the world’s datacentres. But there is
another virtualisation environment beginning to gain significant attention – the
open-source, modular cloud platform OpenStack.

VMware’s vSphere and OpenStack form extensive ecosystems, built up to
deliver, operate and manage virtualised compute, storage and networking, as
well as the systems management tools that deliver resource management,
monitoring and alerting. And while OpenStack feels like it is hardly out of the
blocks compared with the incumbent virtualisation platforms, the question is
begged: to what extent is OpenStack a potential replacement for VMware?

The relevance of that question is reinforced by the example of PayPal, which
has – in part – replaced vSphere with OpenStack. It is a question that has to be
answered by looking at the opportunities and challenges for IT organisations
inherent in the two platforms. A key aspect of this is how they implement
and manage storage in the two environments. Here, we look at VMware vs
OpenStack, and assess their keys strengths and weaknesses in storage.

VMware vSphere

In a vSphere configuration, storage is mapped to the VMware hypervisor ESXi
using a number of standard protocols. Today, these include Fibre Channel,
iSCSI, Fibre Channel over Ethernet (FCoE) and Network File Sytem (NFS).
Fibre Channel connectivity follows a pretty standard configuration, with each
ESXi host accessing storage through a logical unit number (LUN) or volume,
which are then mapped to datastores, the storage container for a VMware
virtual machine (VM).

Although vSphere provides a rich range of connectivity options, historically
it has taken a fairly traditional approach to storage management. At first
in the vSphere platform, storage was managed externally to the vSphere
environment, typically by storage administrators who provided LUNs
preconfigured to application performance and availability requirements.
This configuration work was manual in nature, with a significant amount of
pre-planning required.

In successive releases, vSphere evolved to provide a degree of automation to
the functions of storage management. VMs could be rebalanced for capacity
and input/output (I/O) load across a vSphere cluster using policies within
Storage DRS. Meanwhile, Storage I/O Control allowed the prioritisation of
application I/O that implements a basic quality of service.

But VMware has been on a journey to provide more intelligence between
the storage and the hypervisor, and has incorporated a series of application
programming interfaces (APIs) against which storage suppliers can develop their

VMware vs OpenStack:
How they handle storage
The opportunities and challenges presented by the two virtualisation
environments when it comes to storage, backup and disaster recovery

In a vSphere
configuration,
storage is mapped
to the VMware
hypervisor ESXi
using a number of
standard protocols

http://www.computerweekly.com
http://searchdatacenter.techtarget.com/guide/Guide-to-software-defined-everything-in-the-data-center
http://searchsdn.techtarget.com/tip/OpenStack-Heat-jumpstarts-SDN-learning-but-still-needs-work
http://www.computerweekly.com/news/1349805/LUN-storage-and-its-role-in-SAN-management
http://searchvirtualstorage.techtarget.com/definition/Storage-Distributed-Resource-Scheduler-DRS

a special report from ComputerWeekly

-10-

platforms. These include vStorage APIs for Array Integration (VAAI), vStorage
APIs for Storage Awareness (VASA) and vStorage API for Data Protection
(VADP). These APIs allow the hypervisor to direct storage to manage virtual
machines more effectively. VAAI provides I/O offload capabilities; VASA provides
the hypervisor with information on the capabilities of the storage platform; and
VADP provides the ability to take application consistent backups and snapshots.
Probably the least developed area in the vSphere storage ecosystem is that of
storage provisioning.

Pretty much every storage array supplier implements the layout and provisioning
of its storage in a different way. There is little or no consistency available, outside
of what can be achieved with the Storage Management Initiative Specification
(SMI-S) standard. This makes it difficult for VMware to develop a standard API
within the platform for storage provisioning. Solutions up to now have been to
implement plugins in the vSphere management interface that allow a call-out to
the storage array for provisioning, which is a manual process.

However, in vSphere 6 we have seen the release of Virtual Volumes (VVOLs), a
technology that will vastly simplify the provisioning process. A VVOL is a logical
representation of part of a virtual machine. A minimum of three VVOLs are
needed to represent a single VM, each one mapping to the configuration data,
VM swap space and at least one virtual machine disk. VMware has worked with
storage array suppliers to enable the creation and deletion of VVOLs from within
the vSphere ecosystem, removing the need for a significant amount of storage
administrator work and laying the foundation for implementing policy-based VM
management at the storage layer.

OpenStack

The OpenStack project is focused on developing an ecosystem that allows
customers to deploy applications in a software-defined datacentre. The
platform is divided into a number of projects, each of which delivers part of
the infrastructure.

Compute is delivered through Nova, networking through Neutron, with
OpenStack storage delivered by two components called Swift (object) and
Cinder (block). Cinder provides persistent block storage to OpenStack
environments. The persistent feature is important because vanilla OpenStack
virtual machines are transient and are destroyed on shutdown, but Cinder allows
local server storage to be used for persistent VMs.

External storage suppliers can provide block storage to Cinder through the use
of a Cinder driver. This is typically implemented as a piece of middleware that
translates Cinder API calls into commands on the underlying storage platform.

Pretty much every
storage array
supplier chooses
to implement the
layout and
provisioning of
its storage in a
different way

http://www.computerweekly.com
http://searchvirtualstorage.techtarget.com/definition/vStorage-APIs-for-Array-Integration-VAAI
http://searchvirtualstorage.techtarget.com/definition/vStorage-APIs-for-Storage-Awareness-VASA
http://searchvirtualstorage.techtarget.com/definition/vStorage-APIs-for-Storage-Awareness-VASA
http://searchvirtualstorage.techtarget.com/definition/VMware-VADP-VMware-vStorage-API-for-Data-Protection
http://searchvirtualstorage.techtarget.com/definition/VMware-VADP-VMware-vStorage-API-for-Data-Protection
http://searchvmware.techtarget.com/feature/How-to-get-the-most-out-of-VMware-vSphere-60
http://www.computerweekly.com/feature/OpenStack-storage-Cinder-and-Swift-explained

a special report from ComputerWeekly

-11-

Over time, successive releases of OpenStack have introduced new functionality
and suppliers support this in specific releases. Protocol support is also supplier
and release-specific, and includes iSCSI, Fibre Channel, FCoE, NFS, plus a
range of bespoke implementations such as Rados Block Device for Ceph and
GlusterFS. Object storage support is provided through the Swift component.
Like Cinder, Swift can be deployed natively in the platform using commodity
servers and storage, or it can be delivered by external storage suppliers.

Other OpenStack components are still in early development. Backup support
is being developed through Raksha and a shared-file system through Manila.
These will complement the existing Cinder and Swift components by providing
the ability to share data between virtual machines and to integrate a VM-
consistent backup function. So, if an organisation contemplated replacing
an existing vSphere platform with OpenStack, how would that impact upon
storage? From a persistent storage perspective, external arrays already
deployed could be repurposed for use with OpenStack, subject to the
availability of a Cinder driver.

But at this stage in the evolution the two platforms, vSphere offers more
mature features and is pushing towards a higher degree of integration with
external storage platforms through the use of features such as VASA and VAAI.
This means OpenStack deployments could require additional management
overhead compared with vSphere. But of course, many organisations may look
at OpenStack as a way to reduce hardware costs and eliminate the need for
external storage altogether.

VMware’s vSphere has no direct object storage support, but within the
infrastructure there is not necessarily any need for an object platform,
unless demanded by individual VMs and applications. If it was, this could be
implemented quite easily through the deployment of SwiftStack or another
object store compatible with Amazon Simple Storage Service.

Differences in data protection

Today, the major difference in the two infrastructures is in the area of data
protection. While vSphere provides native capabilities to manage virtual machine
backups with application consistency, OpenStack at this stage in development
pretty much leaves backup to the customer. There is a good reason for this
– vSphere is still focused on the monolithic deployment of a single VM for a
single application, compared with OpenStack, where a virtual machine is simply
one of potentially many servers in a scale-out application. These OpenStack
deployments assume that data is stored separately from the VM and more
readily backed up outside the virtual machine.

Disaster recovery is another area in data protection that customers will have
to implement themselves. There is no equivalent in OpenStack of vSphere Site
Recovery Manager – the VMware component that manages the failover of
storage at the array level. Again, the assumption is that disaster recovery can
be provided by the application.

In summary, IT organisations looking to move to OpenStack will find a very
different operational model, with potential savings in infrastructure costs
replaced by an increased amount of operational management and application
redesign. This means that for most, rip-and-replace is not a viable option.
Companies such as PayPal have the developer resources in place to manage
a transition to OpenStack and the latest news indicates this is the case.

PayPal developed its own OpenStack deployment and started a transition away
from VMware, in part because of the benefits of being able to customise its own
platform – something that is out of reach for the majority of IT organisations. n

OpenStack
deployments could
require additional
management
overhead compared
with vSphere

IT organisations
looking to move to
OpenStack will find
a very different
operational model

http://www.computerweekly.com
http://searchaws.techtarget.com/definition/Amazon-Simple-Storage-Service-Amazon-S3
http://searchstorage.techtarget.co.uk/guides/Setting-IT-disaster-recovery-policy-and-developing-plans

