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ABSTRACT 

     Quantum computing is a promising approach of computation that is based on equations from Quantum Mechanics. A 
simulator for quantum algorithms must be capable of performing heavy mathematical matrix transforms. The design of 
the simulator itself takes one of three forms: Quantum Turing Machine, Network Model or circuit model of connected 
gates or, Quantum Programming Language, yet, some simulators are hybrid. 
 
     We studied previous simulators and then we adopt features from three simulators of different implementation 
languages, different paradigms, and for different platforms. They are Quantum Computing Language (QCL), QUASI, 
and Quantum Optics Toolbox for Matlab 5.  Our simulator for quantum algorithms takes the form of a package or a 
programming library for Quantum computing, with a case study showing the ability of using it in the circuit model.  
 
     The .NET is a promising platform for computing. VB.NET is an easy, high productive programming language with 
the full power and functionality provided by the .NET framework. It is highly readable, writeable, and flexible 
language, compared to another language such as C#.NET in many aspects. We adopted VB.NET although its shortage 
in built-in mathematical complex and matrix operations, compared to Matlab.  
 
    For implementation,  we first built a mathematical core of matrix operations. Then, we built a quantum core which 
contains: basic qubits and register operations,  basic 1D, 2D, and 3D quantum gates, and multi-view visualization of  the 
quantum state, then a window for demos to show you how to use and get the most of the package. 
 
Keywords: Quantum Computing, quantum simulator, Quantum Programming Language, Q# , a quantum computation 
package , .NET platform,  Turing Machine, Quantum circuit model, Quantum gates. 
 
1. Introducing Quantum Computing 
      Quantum computing is a promising approach of computation that is based on equations from Quantum Mechanics. 
A Bit is the basic computational unit of computing. It encodes a 0 or a 1.  A register of n bits can store ANY n-bit 
number. A qubit (quantum bit) exists in a superposition of states, and encodes the values 1 and 0 simultaneously.  A 
quantum register of n qubits stores ALL n-bit numbers, i.e. 2n values[1]. 
 
Quantum State 
      The quantum state |ψ〉 represents a qubit if there are α, β ∈ C, where C is the set of Complex numbers, such that  

|ψ〉 = α|0〉 + β|1〉             or            |ψ〉 = sin θ |0〉 + cos θ |1〉 
      With |α|2 + |β|2 =1. |0〉 and |1〉 are the computational basis states. Measuring the state |ψ〉 with respect to {|0〉, |1〉} 
basis will give |0〉 with probability |α|2 and |1〉 with probability |β|2 . The states |+〉 and |–〉 defined as 
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Matrix notation  
A 2-level quantum system can store a single qubit state .We will have  

              
Also, we can say that:  |0〉 = 01      and |1〉 = 10.   That is |x〉 = binary (x + 1). 
The symbol |.〉 is called a ket, while the symbol 〈.| is called a bra. 〈ψ| represents the conjugate transpose of |ψ〉 
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where z1,…, zn ∈ Complex. 

Writing |1〉 〈0| + |0〉 〈1| means mapping |1〉 to 〈0| and |0〉 to 〈1|.  Note that |ψ〉 〈ψ| = 1 . 
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Combing Qubits  
Let A and B be quantum systems with state spaces HA and HB , the state space of the joint quantum system is  

 
For two qubits,  

  

  
 
This is made by tensor product 

 
This means that : 

• An operation on a single qubit will in general affect all coefficients of the joint state vector. 
• A single qubit operation is highly parallel operation.   
• Adding a single quantum bit doubles the memory 

 
A note about operations on a Quantum Computer is that apart from measurements (Input/Output Operations) any 
quantum operation U is Linear, Length-preserving (i.e. input vectors and output vectors have the same number of 
components), Unitary (i.e. UU t = I , where I is the identity matrix), Reversible, and Deterministic . 
 
For detailed discussions on quantum computing and information, you can selectively refer to ([2], [3], [4]). 
 
2. Previous Work on Designing a Simulator for Quantum Algorithms. 
      Any simulator for quantum algorithms must be capable of performing heavy mathematical matrix transforms. The 
design of the simulator itself takes one of three forms:  

• Quantum Turing Machine 
• Network Model or circuit model of connected gates 
• Quantum Programming Language 

yet, some simulators are hybrid. 
 
Turing machine 
     A Turing machine M is a finite device, which performs operations on a paper tape ([3], [5]). This tape is infinite in 
both directions, and is divided into same-sized squares. At any given time each square of the tape is either blank (B) or 
contains a single symbol from a fixed finite list of symbols s1, s2 …, sn that form the alphabet of M.  
M has a reading head which at any given time scans or reads a single square of the tape.  
 

 
(Figure 1: Turing Machine) 

Current state 
display window 

M
qi

Reading Head 

 
M is capable of three kinds of simple operations: Replacing the symbol in the square being scanned ay another symbol 
from the alphabet of M, Moving the reading head one square to right, or Moving the reading head one square to left. 

Square being scanned 

s1... s2Tape s1 s3 ... 
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The action that M takes at any instant depends on the current state of M and the symbol currently being scanned. This 
dependence is described in M’s specification which consists of a finite set Q of quadruples, each of which takes one of 
the following forms: 

qi sj sk ql
qi sj R ql
qi sj L ql
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A quadruple qi sj α ql in Q specifies the action to be taken when the state is qi and scanning the symbol sj , as follows: 

1- Operate on the tape thus: 
a) if α = sk erase sj, and write sk n the square being scanned; 
b) if α = R move the reading head one square to the right: 
c) if α = L move the reading dean one square to the left: 

2- Change into state ql. 
 
Circuit model of computation 
      The circuit model of computation is equivalent to Turing machine model but is nearer to real computers ([2]).       
The building blocks that can build any circuit are called logic gates. The functionality of logic gates is described in 
terms of truth table, which specifies all possible configurations of input and the corresponding output. The elementary 
logic gates with their truth tables are given below, where A and B denote inputs and F denotes output. 

 

                 

                     
(Figure 2: elementary classical logic gates) 

 
      A set of connected gates accomplishing a certain computation is called a circuit. A gate called XOR (exclusive OR) 
and its inverse are given below. Actually, XOR is a common used circuit, so we handle it as if it is an elementary gate. 
 

                      
(Figure 3: another two elementary logic gates) 

 
Note that: the NOT gate is reversible (as you can guess the input for any given output), while the AND gate is 
irreversible , so we can say that the AND gate erases information. 
 
Quantum gates are the same as the classical ones, but with maintaining the Reversibility and Length-preserving by 
usually outputting extra bits (ancilla bits) which usually correspond to a sufficient number of the inputs. For example, 
the quantum XOR gate takes two inputs, x and y say , and outputs x and the main output that is x ⊕y. 

|x, y〉  |x, x ⊕ y〉 
Hence, any classical gate can be modified to be used as a quantum gate.  
 
When studying quantum gates we usually classify them according to the number of qubits the gate operates on into 1D 
(1 dimensional), 2D, and 3D. The common 1D quantum gates are: 
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The common 2D quantum gates are CNOT and SWAP. The CNOT (Controlled-Not) is quantum version of the XOR 
operation and it indicates the interaction between two qubits. This gate has many representations besides        

|x, y〉  |x, x ⊕ y〉 
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Input/Output transform Gate  Matrix  Block diagram and function 

 

first input is the 
control (black) 

 
If first qubit is set then, apply NOT on the 
second qubit, else do nothing 

(Figure 4: Different representations of CNOT gate) 
 
The SWAP gate can be derived from successive CNOT gates. 

    
 
The common 3D quantum gates are Toffoli and Fredkin which may be considered as the controlled 3D versions of   
CNOT and SWAP, respectively. For more about classical and quantum circuit models, you can refer to ([6], [7]) and 
([1], [3]) respectively. 
 
Quantum Programming Language 
     Quantum Programming Language is a programming language used to write programs for quantum computers. 
However, since – at least in the current times – any implementation of a quantum machine has to be controlled by 
classical device, existing quantum programming languages incorporate classical control structures such as loops (for, 
while, …) and conditional branching (if, if-else, … ) and allow to operate on classical and quantum data([8], [9]).  
 
     The quantum programming language can be either Imperative or functional. For the imperative quantum 
programming, we find that the quantum pseudo-code proposed by E. Knill is the first formalized language for 
description of quantum algorithms([10]). This language was tightly connected with model of quantum machine called 
Quantum Random Access Machine (QRAM), which is an extension of the classical random access machine but with 
exploiting quantum resources. Examples for the imperative quantum programming include QCL (Quantum Computer 
Language), Q Language , and qGCL (Quantum Guarded Command Language). 
 
     For the functional quantum programming, we find that during the last few years many quantum programming 
languages based on functional programming paradigm where proposed, exploiting the advantages of functional 
programming languages which allow to express algorithms clearly. Examples for the functional quantum programming 
include Quantum Lambda Calculus, QPL and cQPL.  The first attempt to define quantum lambda calculus was made by 
Philip Maymin in 1996([11]). In 2003 André van Tonder has defined extension of lambda calculus suitable to prove 
correctness of quantum programs, with an implementation in Scheme programming language ([12]). 
 
Well-known Quantum Computing simulators 
     Nowadays,  there are many well-known quantum computing simulation implemented in many programming 
languages such as Matlab/Octave/Mathematica, Perl/PHP, and C/C++/Java. Some of them are just an editor or a 
parser and the other may have graphical user interface (GUI). Some of them are standalone and some are just a package 
or a toolkit to be used in later projects as an extension to the implementing language.   
 
     The most known simulators implemented in Matlab/Octave/Mathematica are Quack, M-fun for QC Progs, 
Qubit4matlab , Quantum Octave, QuCalc , QDENSITY, qmatrix , and the Quantum Optics Toolbox for Matlab 5. 
However the last one is mainly for optic physics, we find it the most comprehensive package in the field and we 
adopted – besides others – its philosophy and many of  its notations. A remarkable note is that implementing the 
simulator as a package or a toolkit is common in Matlab/Octave/Mathematica because of their high extensibility.  
 
     The most known simulators implemented in Perl/PHP are Quantum::Superpositions, and Quantum::Entanglement.       
However, the majority of the community prefers C/C++/Java especially for applications associated with a master or a 
doctoral thesis. The most known simulators are Quantum Computer Language (QCL), Open Qubit (library), 
libquantum, Qubiter(compiler), QCSim , QDD (library), qsims , QGAME(Quantum Gate And Measurement Emulator), 
QuIDD Pro (Quantum Information Decision Diagram data structure), QuaSi (Graphical algorithm construction), 
Quantum Algorithm Designer, Quantum Fog(simulator and graphic programming language), Virtual quantum 
mechanics, jQuantum ( Quantum Computer Simulator ), Quantum Qudit Simulator ,Quantum Computer Emulator 
(solving Schrodinger equation ), Qdns (GUI, Quantum Designer and Network Simulator), Optical Simulator , 
Fraunhofer Quantum Computing Simulator (up to 31 qubit)  
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Our recommendations and adoptions 
     We adopt features from three simulators of different implementation languages, different paradigms, and for 
different platforms. They are Quantum Computing Language (QCL), QUASI, and Quantum Optics Toolbox for Matlab 
5 (let us give it QOTM5 acronym). 
  
     QCL is the most advanced implemented quantum programming language([13]). It was implemented in C, as a 
standalone full integrated compiler. Its syntax and data types are similar to those in C. The basic built-in quantum data 
type is qreg (quantum register), which can be interpreted as an array of qubits. And here is a code snippet in QCL: 

   qureg x1[2];      // 2-qubit quantum register x1 
   qureg x2[2];      // 2-qubit quantum register x2 
   H(x1);               // Hadamard operation on x1 
   H(x2[1]);          // Hadamard operation on the first qubit of the register x1 
 

  QCL standard library provides standard quantum operators used in quantum algorithms, with the ability to define and 
use user-defined operators and functions([14]). For example, the following code defines inverse_about_the_mean 
operator used in Grover's algorithm:  

   operator diffuse(qureg q)  
   { 

     H(q);                  // Hadamard Transform 
     Not(q);               // Invert q 
     CPhase(pi,q);     // Rotate if q=1111.. 
     ! Not(q);              // undo inversion 
     ! H(q);                 // undo Hadamard Transform 

   } 
 
   Within QOTM5, the basic data type is a “quantum array” which is a collection of one or more simple “quantum 
objects”([15]). Each quantum object may represent a vector, operator over some Hilbert space. In the computer, the 
members of a quantum array object are represented as complex-valued vectors or matrices.  
 
    In Matlab, a column vector with n components is written as [c1; c2; ...; cn] where the semicolons separate the rows. 
In order to create a state within QOTM5 and assign it to a variable psi, we would write a command such as 

>> psi = qo([0.8;0;0;0.6]); 
 
    The function qo constructs a quantum object from a column vector. If then we type psi at the prompt, the response is 

>> psi 
psi = Quantum object, Hilbert space dimensions [ 4 ] by [ 1 ] 
0.8000 
0 
0 
0.6000 

 
    An object of type qo contains the following fields:  

dims Hilbert space dimensions of each object in the array 
size Size of the array, specifying the number of members 
shape Shape of each object in the array as a 2D matrix 
data Data for the quantum object stored as a “flattened” 2D matrix 

    In order to examine these fields, one may enter, for example,  
>> psi.dims 
[4] [1] 
>> psi.shape 
4 1 
>> psi.data 
(1,1) 0.8000 
(4,1) 0.6000 

 
    In order to produce a unit ket in an N dimensional Hilbert space, the toolbox function basis(N, indx) creates a 
quantum object with a single one in the component specified by indx. Thus we have, for example, 

>> basis(4,2) 
ans = Quantum object, Hilbert space dimensions [ 4 ] by [ 1 ] 
0 
1 
0 
0 
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QOTM5 defines many basic quantum gates. It also defines many quantum operations such as tensor products. 
>> psi1 = qo([0.6; 0.8]); 
>> psi2 = qo([0.8; 0.4; 0.2; 0.4]); 
>> psi = tensor(psi1,psi2) 
psi = Quantum object, Hilbert space dimensions [ 2 4 ] by [ 1 1 ] 
0.4800 
0.2400 
0.1200 
0.2400 
0.6400 
0.3200 
0.1600 
0.3200 

 
    QuaSi is a general purpose quantum circuit simulator written at the University of Karlsruhe([16]). It is available on 
the web as a java-applet. The user is able to build and simulate quantum circuits in a graphical user interface. Key 
features are that it can simulate up to 20 qubits. It can also realize arbitrarily controlled one-qubit operations. It supports 
permutation-matrices and can evaluate functions.  
 
    The graphical user interface consists of four main windows. The upper left window "Circuit" displays the quantum 
circuit you want to simulate. The upper right window displays the current system state expressed in the standard basis 
(|00..0〉, |00..1〉, ...|11..1〉). The lower windows display these amplitudes graphically from left to right. The left window 
shows the absolute value (length) and the relative phase (direction) of the amplitudes of the basis states, where the 
phase is indicated by the color and the absolute value by the length of each line. The right window splits the amplitudes 
into real (blue) and imaginary parts (red) and draws each of them. 
 

 
(figure 5: The upper left window "Circuit") 

 
3. Microsoft .NET platform 
     In order to establish the .NET platform, we need to first install the .NET Framework which is Microsoft’s latest 
offering in the world of cross development (developing both desktop and Web applications), interoperability, and, 
cross-platform development([17]). Recently, Microsoft distributes the framework with Windows operating system. 
.NET contains functionality that a developer can easily access. This same functionality operates within the confines of 
standardized data types and naming conventions. The .NET Framework consists of three parts: the Common Language 
Runtime, the Framework classes, and ASP.NET for web applications.  
 
    Now, instead of compiling directly to hardware-specific machine code, the compilation is performed to MSIL 
(Microsoft Intermediate Language).The syntax of MSIL is similar to machine code, but any MSIL will need to be 
reinterpreted after it is deployed to the destination machine. This enables a degree of language interoperability: 
Software components from different languages can interact as if they were written in one language. The new Integrated 
Development Environment (IDE) incorporates some of the best ideas of VB 6.0 and InterDev to make it easier and 
more intuitive to quickly create applications using a wider variety of development resources. Among the .NET 
languages there are C#.NET, J#.NET, VB.NET, F#.NET, and many more, all are using and accessing the same 
resources in the .NET framework. 
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     VB.NET is an easy, high productive programming language with the full power and functionality provided by the 
.NET framework. Besides its English–like syntax which increases the readability, the editor provides many magical 
auto–completion for all programming constructs which increases the writability. Also, VB.NET is a very flexible 
language, compared to another language such as C#.NET in many aspects:   

• VB.NET  is case-insensitive. That is the capital and small cases of a letter are treated the same. 
• VB.NET provides both programming styles of object-oriented or structured programming.  
• VB.NET is customizable. For example, you can tell the editor to check for variable declarations or not. 

    For these mentioned reasons and others, we preferred and adopted VB.NET to be the implementation language of the 
proposed package, although its shortage in built-in mathematical complex and matrix operations, compared to Matlab.  
 
4. The proposed Q#  
     Initially, we studied previous simulations (esp. QCL, QUASI, and QOTM5) and specified the implementation 
language to be VB.NET, then we were ready for implementation. First of all, we built a mathematical core of matrix 
operations. Secondly, we built a quantum core upon the mathematical core. The quantum core contains: basic qubits 
and register operations,  basic 1D, 2D, and 3D quantum gates, and multi-view visualization of  the quantum state. A 
case study utilizing the functionality provided by the package is then implemented. Figure 6 shows the main window for 
demos to show you how to use and get the most of the package. 
 

 
(figure 6: the main window for demos ) 

 
Defining a row vector 
     Defining a row vector can be accomplished in many ways. For example, to define the row r =[0.8, 0, 0, 0.6], you can 
write one of the following lines: 

Dim r As RowVector = row(0.8, 0, 0, 0.6) 
Dim r As New RowVector(0.8, 0, 0, 0.6) 
Dim r = row(0.8, 0, 0, 0.6) 
r = row(0.8, 0, 0, 0.6) 

where the last way assumes either you already declared a variable named r, or you state Option Explicit Off at the 
beginning of the file to tell the editor to turn of checking for variable declarations. 
 
     It was programmed to make the row takes any number of components as you wish. You can count the number of 
components in a row r by r.Width .You can access the component at index x by r(x), with x starts from 0. For example:  

r = row(0.8, 0, 0, 0.6) 0.8, 0, 0, 0.6 
r.Width 4 
r(3) 0.6  

 
Defining a column vector 
     Defining a column vector can be accomplished in many ways, with the ease to make the column takes any number of 
rows. Counting rows of a column c is by c.Height. Using tr on a column performs matrix transpose. For example: 

c = col(row(0.8, 0, 0, 0.6), row(1, 0, 1, 0)) 1, 0, 1, 0 
0.8, 0, 0, 0.6 

c.Height 2 
c(1) 0.8, 0, 0, 0.6 
tr(c) 
 
 

1, 0.8 
0, 0 
1, 0 
0, 0.6  
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Defining qubits and registers 
     A qubit can be defined in three different ways: As a column vector, Using the basis function, or Specifying the 
quantum state,  as shown below. 

As a column vector 
 
psi1 = qBit(row(0.8, 0, 0, 0.6), row(0.5, 0.3, 0.2, 0.1)) 

Hilbert space dimensions [ 2 ] by [ 4 ] 
0.8, 0, 0, 0.6 
0.5, 0.3, 0.2, 0.1 

Using the basis function 
 
psi2 = basis(2, 1) 

Hilbert space dimensions [ 2 ] by [ 1 ] 
1 
0 

Specifying the quantum state, where  
d = down 
u = up  

 
psi3 = qState("ddu") 
 

Hilbert space dimensions [ 8 ] by [ 1 ] 
0 
1 
0 
0 
0 
0 
0 
0 

 
     Once you defined qubits, you can use many provided operations such as scalar product, tensor product, summing. 
For example:   tensor(psi1, psi2)   results in:  

Hilbert space dimensions [ 4 ] by [ 4 ] 
0.8, 0.0, 0.0, 0.6 
0.0, 0.0, 0.0, 0.0 
0.5, 0.3, 0.2, 0.1 
0.0, 0.0, 0.0, 0.0 

 
Also you can define a quantum register with any number of qubits, of the same size. For example:  

psi1 = basis(2, 1) 
psi2 = basis(2, 2) 
r = qReg(psi1, psi2) 

result in 
Register containing 2 qubits, Hilbert space dimensions [ 4 ] by [ 1 ] 
0 
1 
0 
0 

with ability to access any qubit in such a register. For example: q = r(0)  yields 
Hilbert space dimensions [ 2 ] by [ 1 ] 
1 
0  

 
Defined quantum gates 

1D: IDENTITY, PHASEFLIP, NOTGate (NOT), SNOT ("Square Root of NOT"), HADAMARD 
2D: CNOT= XORGate 
3D: FREDKIN, TOFFOLI 

 
For example, calling the IDENTITY gate, results in 

Hilbert space dimensions [ 2 ] by [ 2 ] 
1, 0 
0, 1 

A worth-saying note is that : when programming those gates we did not define them as stored matrices. However, we 
gave them their quantum operational definition. For example, the HADAMARD gate is defined as :  

            Dim u = qState("u"),   d As = qState("d") 
 
            Dim result = sum( tensor(sum(d, minus(u)), tr(u)),  tensor(sum(d, u), tr(d))) 
            Return divide(result, Math.Sqrt(2)) 

 
Displaying state diagram             
     You can display a colorful, highly customizable diagram of one or more quantum state. The default color of the real 
and imaginary amplitudes are red and yellow, respectively, with the ability to manually change this sitting. The scales 
are automatic fixed with the range of displayed data and the size of the window. The state diagram is provided with the 
ability to change the view into 2D and 3D visualizations such as lines, charts, areas,…etc as preferred. 
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(figure 7: state diagram) 

 
5. Case study: Grover Database search  
    Classically, searching a database of N elements for a certain element to specify its index requires O(N) comparisons, 
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NO  on average. Grover's algorithm achieves the same in ( )NO  ([18]). Figure 8 shows a sample database. 

index value 
1 Chicago 
2 Cairo 
3 Mansoura 
M  M  

(figure 8: sample search database) 
 

     Grover's algorithm operates an N-element database, which sometimes is called Quantum Auto-associative Memory 
(QuAM). The basic idea of Grover's algorithm is to perform a check on all the elements several times and gradually 
increase the amplitude of the required state. After ( )NO  iterations, a measurement operation will give the correct 
answer with probability close to 1. 
  
In the sample database,  |x〉 and |I(x)〉 correspond to indices and values respectively. Unitary operators applied are:  

U1= I – 2 |w〉 〈w| 
U2= 2 | p0〉 〈 p0| – I 

where | p0〉 is the initial state of the database and |w〉 , a target state. When a target state |w〉 is 0, then  
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U2 is a reverse transformation on the average, and is called a Diffusion operator. U1 is a transformation of selective 
rotation on a target state, and is called an Oracle operator, with the following effect:  

( ) xxO xf )(1−=  

If  x  is the required element then the state |x〉 is rotated through π. Where f(x) =1 if x is the target, and f(x) =0 otherwise. 
 

Tracing Grover's Algorithm 
    When it was the time to implement a case study utilizing the package, we decided to re-implement the most of  the 
package, initially in VB.NET, into a web Flash object with ActionScript, and then embed it into a form as if it is built in 
VB.NET. This weird implementation is for many reasons: 

• Challenging our programming skills. 
• Better visuality, compared to command-line textual outputs  
• Increasing the ability of spreading the package over other platforms other than .NET. 
• Execution speed, compared to other web objects such as java applets. 

 
      The window for Grover's algorithm is shown in figure 9. At the first sight, the overall design of the window looks 
similar to that found in adopted Quasi. The window consists of two sky-blue panels with three buttons in between. The 
upper panel shows the circuit, with a blue indicator to track progress of execution which can be controlled using the 
forward and backward buttons. Each step is called a stage. The lower panel is for states.  
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indicator 

a stage 

(figure 9: Grover windows) 
 
    The algorithm is restricted to the case of searching for an item out of four. We then need 2 (= log2 4) qubits and a 
third on for control. To specify the index of the desired item, use restart button which shows the following window: 

 
(figure 10: specifying the index) 

 
   The initial state is ( |000> 1.0 + 0.0i), and here are some steps of execution:  

 

State after stage 1: 
|000> 0.7071067811865475 + 0.0i 
|100> 0.7071067811865475 + 0.0i 

 

State after stage 2: 
|000> 0.4999999999999999 + 0.0i 
|010> 0.4999999999999999 + 0.0i 
|100> 0.4999999999999999 + 0.0i 
|110> 0.4999999999999999 + 0.0i 

 10



 

State after stage 3: 
|001> 0.4999999999999999 + 0.0i 
|011> 0.4999999999999999 + 0.0i 
|101> 0.4999999999999999 + 0.0i 
|111> 0.4999999999999999 + 0.0i 

 

State after stage 4: 
|000> 0.3535533905932737 + 0.0i 
|001> -0.3535533905932737 + 0.0i 
|010> 0.3535533905932737 + 0.0i 
|011> -0.3535533905932737 + 0.0i 
|100> 0.3535533905932737 + 0.0i 
|101> -0.3535533905932737 + 0.0i 
|110> 0.3535533905932737 + 0.0i 
|111> -0.3535533905932737 + 0.0i 

(figure 11: first steps of execution of Grover's algorithm) 
 
we have 16 stages and a final measure (M). A better look shows that we are applying one circuit twice each of 7 stages. 
We think that gate symbols are self describing as H for hadamard and ⊕ for phase flip. Stage 5 is the oracle. At the end, 
we will find the system in the required state.  
 
6. Conclusions 
    Our simulator for quantum algorithms is capable of performing heavy mathematical matrix transforms, and takes the 
form of a package for a Quantum Programming Language, with a case study showing the ability of using it in the form 
of Network Model or circuit model of connected gates. We adopt features from three simulators of different 
implementation languages, different paradigms, and for different platforms. They are Quantum Computing Language 
(QCL), QUASI, and Quantum Optics Toolbox for Matlab 5. 
 
    The .NET is a promising platform for computing. VB.NET is an easy, high productive programming language with 
the full power and functionality provided by the .NET framework. Besides its English–like syntax which increases the 
readability, the editor provides many magical auto–completion for all programming constructs which increases the 
writability. Also, VB.NET is a very flexible language, compared to another language such as C#.NET in many aspects:   

• VB.NET  is case-insensitive. That is the capital and small cases of a letter are treated the same. 
• VB.NET provides both programming styles of object-oriented or structured programming.  
• VB.NET is customizable. For example, you can tell the editor to check for variable declarations or not. 

    For these mentioned reasons and others, we preferred and adopted VB.NET to be the implementation language of the 
proposed package, although its shortage in built-in mathematical complex and matrix operations, compared to Matlab.  
 
    The implementation of the package has many phases. First, we built a mathematical core of matrix operations. 
Secondly, we built a quantum core upon the mathematical core. The quantum core contains: basic qubits and register 
operations,  basic 1D, 2D, and 3D quantum gates, and multi-view visualization of  the quantum state, then a window for 
demos to show you how to use and get the most of the package. 
 
7. Future Work 
     We should not forget that we have just made a package or a programming library. Although this "steals" the full 
power of VB.NET, but for the long run it would be better to make it a standalone programming language for sake of 
independency. 
 
   The future will be discussed in three dimensions. The first  is extending the functionality of the package, a suggestion 
is to adopt the symbolic representation together with the current numerical.  The second dimension is applying the 
package in some possible fields as in image  processing. Finally, trying to make it a standalone full programming 
language for sake of independency 
 

 11



8. References 
[1] Andreas Klappenecker, “The Quantum Circuit Model”, Quantum computing seminar, Departments of Computer 
Science, Texas A&M University , 2001. 
[2] Rob Pike, “An Introduction to Quantum Computation and Quantum Communication”, Bell Labs, 2000 
[3] G. Benenti, G. Casati, and G. Strini, “Principles of Quantum Computation and Information, Volume 1: Basic 
Concepts”, World Scientific, 2004. 
[4] M. Brocks, “Quantum Computing and Communications”, Springer, 1999. 
[5] N.J. Cutland, Computability: an introduction to recursive function theory, Cambridge University Press, 1980. 
[6] M.M. Mano, Computer System Architecture, Prentice-Hall International, 3rd ed., 1993. 
[7] M.M. Mano, Digital Design, Prentice-Hall International, 3rd ed, 2001. 
[8] S. Gay, Quantum Programming Languages: Survey and Bibliography, Bulletin of the European Association for 
Theoretical Computer, June 2005.  
[9] S. Bettelli, Toward an architecture for quantum programming PhD Thesis, Universita di Trento, 2002  
[10] E. Knill, Conventions for quantum pseudocode, Los Alamos National Laboratory technical report, LAUR-96-2724, 
1996.  
[11] P. Maymin, The lambda-q calculus can efficiently simulate quantum computers, 1997. quant-ph/9702057  
[12] A. van Tonder, A Lambda Calculus for Quantum Computation, SIAM J. Comput. 33, 1109-1135, 2004. quant-
ph/0307150  
[13] B. Ömer, Quantum Programming in QCL, Master thesis (technical physics), Technical University of Vienna, 2001.  
[14] I. Glendinning, B. Ömer, Parallelization of the QC-lib Quantum Computer Simulator Library, Springer LNCS 
3019, 2004.  
[15] Sze Meng Tan, A Quantum Optics Toolbox for Matlab 5, University of Auckland, Private Bag 92019, Auckland 
[16] QuaSi - Quantum Circuit Simulator, online version as java applet, at the site of  the University of Karlsruhe  
[17] Cameron Wakefield and Henk-Evert Sonder,VB.NET Developer’s Guide, Syngress Publishing, 2001. 
[18] Qcs - Quantum computer Simulator, online tutorial, at the site of www.senko-corp.co.jp 

 12


