
CMSC 33001: Novel Computing Architectures and Technologies

Lecturer: Fred Chong Scribe: Yongshan Ding

Lecture 01: Introduction

October 2, 2018

1 Why Quantum Computing

Why focus on quantum computing? Perhaps the largest potential impact of quantum com-
putation is to fundamentally change what is efficiently computable. Quantum computing
is the only method by which we can potentially scale computation exponentially with the
number of devices. This scaling may allow us to soon solve currently intractable problems
in chemistry, simulation, and optimization. As Moore’s Law slows, quantum scaling may
become an important technique for some key applications, fueling the next generation of
computing. Remarkably, research in quantum computing has not only provided insights in
other sciences, notably simulations in chemistry, precise control over complex systems in
physics, and classical cryptography, but also led to a healthy competition between classical
algorithms and quantum algorithms. Progress in quantum algorithms challenges classical
algorithms to to better.

Recent progress in quantum hardware has been impressive. IBM is testing a machine with
50 quantum bits (qubits) using superconducting technology, Google has announced their 72-
qubit superconducting machine, and Innsbruck has 20-qubit machine based on trapped-ion
technology, as of October 2018. Many others in both industry and academia are building
similar scale machines in the near future. Machines up to 100 qubits are around the corner,
and even 1,000 qubits appears to no longer be a distant dream. John Preskill, a long-
time leader in quantum computing at Caltech, notes that we are at a “priviledged time in
the history of science and technology” [Pre18]. Specifically, classical supercomputers are
not believed to be able to simulate quantum machines larger than 50-100 quantum bits.
Emerging physical machines will bring us into unexplored territory and will allow us to learn
how real computations scale in practice.

The key to quantum computation is that every additional qubit doubles the potential
computing power of a quantum machine. That doubling, however, is not perfect as these
machines will have high error rates for some time come. Preskill has a good term to these
exciting, but noisy machines: NISQ (Noisy Intermediate-Scale Quantum computers). Ideally,
we would use quantum error correction codes to support error-free quantum computations.
These codes, however, require many physical qubits to create a single, fault-tolerant qubit;
transforming a 100 qubit machine into 3-5 usable logical qubits. Until qubit resources are
much larger, a practical approach would be to explore error-tolerant algorithms and use
lightweight error-mitigation techniques. So NISQ machines imply living with errors and
exploring the effects of noise on the performance and correctness of quantum algorithms.



CMSC 33001 (Autumn 2018) Lecture 01

Figure 1: The gap between algorithms and realistic machines.

Additionally, despite technology advances, there remains a wide gap between the ma-
chines we expect and the algorithms necessary to make full use of their power. In the Figure
1, we can see the size of physical machines (in this case trapped ion machines) over time.
Ground-breaking theoretical work produced Shor’s algorithm [Sho99] for the factorization
of the product of two primes and Grover’s algorithm [Gro96] for quantum search, but both
would require machines many orders of magnitude larger than currently practical. This gap
has led to a recent focus on smaller-scale, heuristic quantum algorithms in areas such as
quantum simulation, quantum chemistry, and quantum approximate optimization (QAOA)
[FGG14]. Even these smaller-scale algorithms, however, suffer from a gap of two to three
orders of magnitude from recent machines. Relying on solely technology improvements may
require 10-20 years to close even this smaller gap.

2 Closing the Gap with Hardware-Software Co-Design

A promising way to close this gap sooner is to create a bridge from algorithms to physical ma-
chines with a software-architecture stack that can increase qubit and gate efficiency through
automated optimizations and co-design. For example, recent work on quantum circuit com-
pilation tools has shown that automated optimization produces significantly more efficient
results than hand-optimized circuits, even when only a handful of qubits are involved. The
advantages of automated tools will be even greater as the scale and complexity of quan-
tum programs grows. Other important targets for optimization are mapping and scheduling
computations to physical qubit topologies and constraints, specializing reliability and error
mitigation for each quantum application, and exploiting machine-specific functionality such
as multi-qubit or analog operators.

Although the progress of quantum machines is often measured in terms of qubits, an
equally important metric is that of the number of gates (operations) that a machine supports.
In fact, the product of qubits times gates would be a more accurate measure of the capabilities

2



CMSC 33001 (Autumn 2018) Lecture 01

Figure 2: Space-time (quantum volume) constraints on machines due to gate errors.

of a machine, as shown in Figure 2. For example, if we have gate error of 1 in 1024, that
means that we can have a 1-qubit machine that can perform 1024 gates on that qubit before
expecting an error. Similarly, we could have 1024 qubits and only perform a single gate.
Finally, we could have a more balanced system with 32 qubits, each of which could undergo
32 gate operations. Other details include that 2-qubit gates are more difficult than 1-qubit
gates, and that the interconnect between each physical qubit limits the effectiveness of a
machine. IBM refers to the effective scaling a quantum machine as its quantum volume
[BBC+17]. Optimistically, we might hope to see a machine with a quantum volume of
100 qubits times 1,000 gates in the next couple years. So more precisely, the gap between
algorithms and machines can be measured in terms of this space-time product and increasing
the efficiency of algorithms on machines involves reducing both the number of qubits and
gates needed.

2.1 Algorithm Design

So what makes a good quantum algorithm o a good problem to solve? Firstly, problems
that quantum computers are good at solving in general have very compact input-output
representations. This is because data encoded in qubits can only be accessed via measure-
ment - a process that results in a probabilistic readout and is relatively error-prone. For
instance, Shor’s algorithm solves the prime factorization problem whose input is simply the
number we are factoring and the output is its prime factors, which have compact bit rep-
resentations. Similarly, many molecule simulations and graph optimization algorithms have
relatively small input-output representations but large amount of computation in between.

3



CMSC 33001 (Autumn 2018) Lecture 01

Therefore, quantum big data is probably not going to be realistic very soon (not until new
ways of efficiently solving the I/O problem are invented), due to the significant work that
one has to put into encoding and decoding classical data to and from the quantum process.

Secondly, the results of the problems should ideally be easily verifiable. As mentioned,
information extracted from a quantum algorithm via measurements are probabilistic and
error-prone. So, we typically need multiple trial-and-error style executions so as to amplify
the desired outcome. Therefore, efficient ways of verifying the results may help us identify
the correct results quicker. For example, the result of Shor’s algorithm can be easily verified
by multiplying the factors in polynomial time.

Thirdly, while quantum computers are small and unreliable, a great way to exploit their
special, but limited, abilities is to adopt a hybrid model which leverages both quantum and
classical computation. Perhaps the most promising example is in quantum chemistry, where
Variational Quantum Eigensolver (VQE) algorithms [OBK+16] perform a kind of heuristic
search by iterating between a quantum machine and a classical supercomputer. The goal is
to find the lowest energy state of a chemical compound (the ground state). We start from
the best known configuration of electrons from a classical supercomputer and estimate the
energy of that configuration using the quantum machine. This estimate is then given back
to a classical supercomputer to guide its search towards a configuration with lower energy.
In this way, the quantum machine acts as accelerator for the energy modeling part of the
computation.

2.2 Computer System Design

2.2.1 Compiler Optimizations

Quantum program compilation now is just like classical computer compilation in the 1950s,
where every bit and every gate matter. Due to the scarce and noisy resources given in
a quantum computer, it is important to optimize the programs for maximum parallelism,
minimal communication overheads, and highest precision. This multi-objective nature makes
a quantum program very difficult to optimize by hand. We should therefore approach this not
only by adopting traditional compiler techniques [HPJ+15] such as loop-unrolling, constant
propagation, inlining, function cloning, and DAG scheduling, but also by developing novel
techniques that take advantages of, for example, the structures in quantum algorithms and
the commutation relations in quantum circuits.

2.2.2 Architecture

One of the challenges in building a scalable quantum computer is to make the qubits live
longer before decoherence happens. Qubits in a NISQ computer are relatively short-lived
and gates are relatively noisy, so one big problem to solve in quantum computer archi-
tecture is to make sure the classical controls can keep up with the quantum processor.
Recently, researchers from TU Delft, The Netherlands have demonstrated an architecture
design [FRB+17] that generates operation pulses fast enough to prevent qubit waiting time

4



CMSC 33001 (Autumn 2018) Lecture 01

by keeping the event queues full and playing back from the queue according to synchroniza-
tion controls. To do so, they defined an Instruction Set Architecture (ISA). As a result,
it provides a clean library of only a few instructions, much like classical computer systems
that we are familiar with. However, this level of abstraction is probably leaving too much
efficiency on the table. If one stands outside of the box of classical computer architectures,
and rethinks about the quantum instructions from a more fundamental point of view, one
would argue that quantum instructions, implemented as pulse sequences, in the compiled
quantum assembly may not be those that a machine is best at. In other words, suppose one
function (possibly on multiple qubits) is comprised of ten assembly instructions; the corre-
sponding ten pulse sequences may not be the best way to achieve this function. Instead,
we can find the optimal pulse that take the qubits system from its initial state to the final
state with higher precision and faster speed. Our preliminary results show that multi-qubit
optimal control pulses are able to achieve an average of 2x and up to 10x improvement on
pulse durations.

2.2.3 Memory Management

Quantum applications usually requires a large number of temporary, scratch qubits, called
ancillae. This is partly because quantum gates are coherent processes that conserve energy
and must be reversible. In classical computing, we can build any logic gate in a circuit out
of NAND gates. However, NAND gate is not reversible, as there is no way to reconstruct
the two input bits from the single output bit. A reversible gate must have equal number of
input and output bits 1. For example, arithmetics in many quantum applications therefore
involve extensive use of ancillae. So how can we recycle them for multiple uses? It turns out
that those ancillary qubits cannot be directly reused, because they are sometimes “coupled”
with the result qubits and reusing them will corrupt those results. Instead, if one intend to
recycle the ancillae for future use, one may need to perform the “uncomputation” step that
reverses the coupling and restore the ancillae to their initial state. This will allow us to save
the total number of qubits, at the cost of roughly doubling the number of gates. It exposes
a direct resource tradeoff in space-time volume.

Additionally, there is an extra twist in memory management, that is locality matters in
most quantum devices. Specifically, most quantum machines support only nearest-neighbor
interactions between two qubits, e.g. a 2-D mesh of qubits. Therefore, it is crucial that,
when one recycles a qubit, it is later reused at a location that is not too far from its original
position. This gives rise to a mapping problem where the objective is to minimizing the
communication overhead.

There are a number of techniques that we can use to ensure low communication overhead.
They generally fall into two categories: one that utilizes global knowledge and the other that
relies on local heuristics. The objective is to keep interacting qubits close together. With
global knowledge of the interaction graph, we can use algorithms such as recursive graph
partitioning that works well if the interaction graph dose not have too many crossings, and
clustering algorithm that helps keeping densely connected components local [DHJA+18]. We

1This is a necessary but not sufficient condition.

5



CMSC 33001 (Autumn 2018) Lecture 01

can also adopt greedy approach to solve this problem. At any point in the program, we can
determine what’s the best mapping at that moment, and move on to the next part in the
program from there. This approach is more scalable and flexible, but its solution is often
less optimal than that of the global approaches.

2.2.4 Verifying Quantum Programs

In order to get the most out of scarce quantum resources, researchers will need to “cut
corners” as much as possible without compromising correctness. This leads to a strong need
for a methodology for verifying the correctness of both quantum software and hardware.
Coming up with such a methodology is a bit of a grand research challenge, because we do
not yet have reliable quantum hardware and it is exponentially-difficult to simulate quantum
computations on classical computers (since a quantum computer’s state space is exponential
in the number of its qubits).

We can either adopt testing-based or formal-methods approach to these verification prob-
lems (or hybrids of both). Assuming that we will use classical computation for verification,
both approaches skirt a fundamental tension between classical simulation of quantum com-
putations and quantum supremacy. If we can efficiently simulate quantum computation
on a classical computer, then we have proven that this quantum computation does not
demonstrate quantum supremacy! Verification approaches involving too much of an algo-
rithms state space also tread in a similar space. If we are optimistic and assume that some
quantum algorithms have supremacy over classical algorithms, then we must come up with
restricted verification properties that only require partial simulation or formal verification of
a sub-exponential state space.

Some results from partial simulation illustrate the subtlety of this boundary between
classical simulation and quantum supremacy. Classical computers can simulate quantum
algorithms consisting of only “Clifford gates” in time polynomial in the number of qubits
used in the algorithm, which proves that these algorithms do not demonstrate quantum
supremacy. Algorithms such as Shor’s factoring algorithm, which are exponentially better
than known classical algorithms, contain “T gate” (rotations on quantum vectors) as well
as Clifford gates. We do not know how to classically simulate Shor’s algorithm in sub-
exponential time. We do know, however, how to simulate algorithms consisting of Clifford
gates and a very small number of T gates in polynomial time. So the boundary between
quantum supremacy and no supremacy is somewhere between a small number of T gates
and a lot of T gates in an algorithm. Verification through simulation might exploit the
polynomial side of this boundary by trying to define correctness properties that only require
simulation of part of an algorithm that contains a small number of T gates. What these
properties will be, however, is very much an open area of research.

If we have a simulator or working machine, we can perform end-to-end unit tests or we
can invest some extra quantum bits to test assertions. Methods have been developed to test
for basic properties such as whether two quantum states are equal, whether two states are
entangled, or whether operations commute. Some progress has also been made in applying
formal methods to verify quantum computations. QWire [RPZ18] uses coq to verify some

6



CMSC 33001 (Autumn 2018) Lecture 01

properties of simple quantum circuits, but classical computation for the theorem prover
scales exponentially with the number of qubits. Once again, the key challenge is to define
useful correctness properties that a theorem prover can handle more scalably.

References

[BBC+17] Lev S Bishop, Sergey Bravyi, Andrew Cross, Jay M Gambetta,
and John Smolin. Quantum volume. Technical report, Tech-
nical report, 2017. URL: https://dal. objectstorage. open. soft-
layer. com/v1/AUTH 039c3bf6e6e54d76b8e66152e2f87877/community-
documents/quatnum-volumehp08co1vbo0cc8fr. pdf, 2017.

[DHJA+18] Yongshan Ding, Adam Holmes, Ali Javadi-Abhari, Diana Franklin, Margaret
Martonosi, and Frederic T Chong. Magic-state functional units: Mapping and
scheduling multi-level distillation circuits for fault-tolerant quantum architec-
tures. arXiv preprint arXiv:1809.01302, 2018.

[FGG14] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate
optimization algorithm. arXiv preprint arXiv:1411.4028, 2014.

[FRB+17] Xiang Fu, MA Rol, CC Bultink, J Van Someren, Nader Khammassi, Imran
Ashraf, RFL Vermeulen, JC De Sterke, WJ Vlothuizen, RN Schouten, et al.
An experimental microarchitecture for a superconducting quantum processor.
In Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 813–825. ACM, 2017.

[Gro96] Lov K Grover. A fast quantum mechanical algorithm for database search. In
Proceedings of the twenty-eighth annual ACM symposium on Theory of comput-
ing, pages 212–219. ACM, 1996.

[HPJ+15] Jeff Heckey, Shruti Patil, Ali JavadiAbhari, Adam Holmes, Daniel Kudrow,
Kenneth R Brown, Diana Franklin, Frederic T Chong, and Margaret Martonosi.
Compiler management of communication and parallelism for quantum compu-
tation. ACM SIGARCH Computer Architecture News, 43(1):445–456, 2015.

[OBK+16] PJJ OMalley, Ryan Babbush, ID Kivlichan, Jonathan Romero, JR McClean,
Rami Barends, Julian Kelly, Pedram Roushan, Andrew Tranter, Nan Ding,
et al. Scalable quantum simulation of molecular energies. Physical Review X,
6(3):031007, 2016.

[Pre18] John Preskill. Quantum computing in the nisq era and beyond. arXiv preprint
arXiv:1801.00862, 2018.

[RPZ18] Robert Rand, Jennifer Paykin, and Steve Zdancewic. Qwire practice: Formal
verification of quantum circuits in coq. arXiv preprint arXiv:1803.00699, 2018.

7



CMSC 33001 (Autumn 2018) Lecture 01

[Sho99] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM review, 41(2):303–332, 1999.

8


