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Abstract. Performance of various experimental realizations of quantum crypto-
graphic protocols using polarization or phase coding are compared, including a new
self-balanced interferometric setup using Faraday mirrors. The importance of detec-
tor noise is illustrated and means of reducing it are presented. Maximal distances and
bit rates achievable with present day technologies are evaluated. Practical eavesdrop-
ping strategies taking advantages of the optical fiber that could open a gate into the
transmitter’s and receiver’s offices are discussed.
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1. Introduction

The use of quantum mechanical properties in cryptography has been proposed by Wies-
ner [24] and developed by Bennett and Brassard in 1984 [3]. In cryptography safety can
be guaranteed by a common secret key, known only to the two users, Alice and Bob.
Quantum cryptography (QC) provides means to establish such a key at a distance and
to check its confidentiality. It is based on the fact that any measurement of incompatible
quantities on a quantum system will inevitably modify the state of this system. Therefore
an eavesdropper, Eve, might get information out of a quantum channel by performing
measurements, but the legitimate users will detect her and hence not use the key. For
convenience the quantum system is in practice a single photon (or a weak pulse) propa-
gating through an optical fiber, and the key can be encoded either by its polarization or
by its phase. A variation of the general principle based on entangled photon pairs was
proposed by Ekert [8]. The first experimental demonstration of quantum cryptography
was performed in 1989 over 30 cm in air with polarized photons [2]. Since then, several
groups presented realizations of both the polarization [10], [21] and the phase coding
scheme in optical fibers over distances of up to 30 km [19], [14].

Three parameters describe the performance of experimental quantum cryptography
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systems: the transmission distance, the bit rate, and the error rate. The losses in optical
fibers are typically around 2 dB/km at 800 nm, 0.35 dB/km in the 1300 nm telecom
window, and 0.2 dB/km in the 1550 nm telecom window. Hence, at 1300 nm the bit rate
is reducted by a factor of ten after about 30 km. At this wavelength germanium avalanche
photo diodes (Ge APD) have to be used instead of commercial silicon photon counting
modules. This means lower detection efficiencies, hence lower bit rates and higher dark
count rates, hence higher error rates. Actually the noise of the available photon counters
in the near infrared is one major problem of experimental QC that finally limits the
transmission distance. Note that incompatible modes of a quantum channel cannot be
amplified without noise (no cloning theorem [25]). On the one hand this is essential for
the security of QC, on the other hand this limits the possible transmission distance.

Another experimental problem is that most QC systems need continuous alignment
of the setup. In polarization-based QC systems, the polarization has to be maintained
stable over tens of kilometers, in order to keep the polarizers at the emitter’s and at the
receiver’s ends aligned. In fact, depending on the environment the output polarization
can fluctuate randomly on time scales of hours to seconds. Therefore, these systems have
to compensate actively changes of the outcoming polarization. These fluctuations are
generally slow enough that automatic tracking would be feasible [21]. Interferometric
QC systems are usually based on two unbalanced Mach-Zehnder interferometers, one
at each end. Since two interfering pulses do not follow the same path within the two
interferometers, the difference in arm lengths must be kept stable to a fraction of a
wavelength for both interferometers, in order to obtain high visibility. Consequently,
every few seconds, one interferometer has to be adjusted to the other by a piezoelectric
transducer to compensate for thermal drifts [19].

In this article we show first that the performance of Ge APDs can be considerably
improved using fast active biasing electronics. Next, we introduce an interferometric
system with Faraday mirrors [20]. This phase coding setup needs no alignment of the
interferometer nor polarization control, and therefore considerably facilitates the experi-
ment. Moreover, it features excellent fringe visibility. Thirdly, we present the realization
of a secret key over 23 km of installed telecom fiber. The performance of this setup
is compared with polarization and phase coding setups presented before. Finally, the
susceptibility of the different setups to different eavesdropping strategies is briefly dis-
cussed.

2. QC and Sources of Errors

We recall the principle of QC (based on the four-states protocol BB84 [3]) using the
example of a polarization coding setup shown in Fig. 1. Experimental setups published
before were based on one laser followed by a polarization rotator. The present scheme
proposes using four lasers with polarizers oriented at 0◦, 90◦, 45◦, and 135◦.1 The lasers
fire at random at a rateν. Their polarization states are adjusted to compensate for the
transformation in the following fiber link with a total lossL. Bob randomly selects one

1 The use of four laser may have experimental advantages. However, one has to make sure that Eve cannot
find out which laser has fired due to differences in spectrum or timing.
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Fig. 1. Scheme of a polarization coding QC setup. PBS: polarization beam splitter.

of the two analyzers oriented at 45◦ (in this setup this is automatically done by a passive
coupler). To prevent the simplest eavesdropping strategy, that is just splitting the pulse in
two and measuring the polarization of one-half, at most 1 photon per pulse must be used.
In practice the laser pulses are attenuated to an average number of photons per pulse
well below 1 (µ = 0.1, say), to limit the probability of obtaining more than 1 photon per
pulse. The photons are then detected with a photon counter and acquisition electronics
collect the data. After the measurement Alice and Bob publicly compare the chosen bases
(0◦/90◦ or 45◦/135◦) of emission and detection, without revealing the polarization states
transmitted and measured. Incompatible measurements are disregarded. With the other
results a secret key can be established by interpreting 0◦ and 45◦ as bit 1, and 90◦ and
135◦ as bit 0. If, for example, Eve uses a simple intercept–resend strategy, i.e., would just
measure the polarization of every photon, she would introduce an error of 25% which
can be easily detected by Alice and Bob by simply comparing a sample of their key.

For comparison, the standard phase coding setup is shown in Fig. 2. There are two
unbalanced Mach-Zehnder interferometers, one at Alice’s and one at Bob’s side. Pulses
taking the short path in Alice’s and the long one in Bob’s interferometers will interfere
with pulses taking the long path in Alice’s and the short one in Bob’s interferometers. In
one arm, Alice randomly applies phase shifts of 0,π , or π/2, and 3π/2; Bob chooses
a base by applying a phase shift of 0 orπ/2. If compatible bases have been chosen,
i.e., the phase difference is 0 orπ , the outcome is deterministic. Hence a secret key
can be established by interpreting 0 andπ/2 as bit 1, andπ and 3π/2 as bit 0. Again
incompatible measurements are disregarded.

For every QC scheme the same simple equation for the raw data rateR, i.e., the number
of exchanged bits per second before any error correction, can be applied:

R= qµν(1− L)η, (1)

whereν is the pulse rate of the laser,µ is the average number of photon per pulse,
L is the losses in the fiber lnk,η is the quantum efficiency of the detector, andq is a
systematic factor smaller than (or equal to)1

2 depending on the chosen implementation.
For example, in the case of the polarization scheme of Fig. 1,q equals the maximum
value 1

2 due to the random selection of the polarizer basis.
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Fig. 2. Scheme of a standard phase coding QC setup. PM: phase modulator.

The error is generally expressed as the ratio of wrong bits to the total amount of detected
bits (or the ratio of probability of obtaining a false detection to the total probability of
detection). We call this quantity the quantum bit error rate (QBER):2

QBER= pdark+ popt · pphot

2 · pdark+ pphot
= ndark ·1τ + popt · µ(1− L)η

2 · ndark ·1τ + µ(1− L)η

∼= ndark ·1τ
µ(1− L)η

+ popt ≡ QBERdet+QBERopt, (2)

wherepdark, pphot, andpopt are the probabilities of obtaining a dark count, of detecting a
photon, and the probability that a photon went to an erroneous detector, respectively.ndark

is the dark count rate of the detector and1τ is the detection time window. This formula
applies for a setup with two detectors. Since a dark count will with a 50% chance not
lead to an error, but just to an additional count, there is a factor two in the denominator,
but not in the numerator. Of course, we do not consider dark counts when incompatible
bases are used. Hence, the factorq of (1) does not appear in the denominator.

The QBER consists of two parts: The first part QBERdet is due to the dark count rate
of the detector, this part is proportional to1τ . Hence a good detector must not only
be efficient and have a small dark count rate, it should also have a small time jitter, at
least smaller than the pulse length of the laser diodes. The second part is what we call
QBERopt, that is, the fraction of photonspopt whose polarization or phase is erroneously
determined, i.e., the fraction of photons who end up in the wrong detector. This is mainly
due to depolarization and to poor polarization alignments or due to the limited visibility
of the interferometers. For example, for our first long distance experiment below Lake
Geneva using polarization coding [21] we computed a QBERdet of 3% and a QBERopt

of 0.5%, which fitted to the measured total QBER of 3.4%. We discuss the first source
of errors and have a closer look at the photon counters used.

2 Physicists often call this quantity the bit error rate (BER). In telecommunications BER is commonly used
for the total error in a transmission and is in the order of 10−9. In QC the BER is in the order of 1%. Of course,
this does not correspond to the final error in the message, since error correction will be applied. However, to
prevent any confusion of Telecom specialists we renounce the expression BER and call it QBER. Note that in
theoretical papers about eavesdropping the QBER introduced by Eve is often called the disturbance (D).
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3. The Performance of Photon Counters

The photons are detected by liquid nitrogen (LN2) cooled Ge avalanche photodiodes
(NEC NDL5131) working in the passively quenched Geiger mode [22]. In this mode the
diodes are driven above breakdown, i.e., the bias voltage is so high that one electron hole
pair created by an absorbed photon will be able to produce an avalanche of thousands
of carriers. The avalanche only stops when the current created through the resistance
in series to the diode lowers the applied voltage below the breakdown value. The noise
in such detectors is due to carriers generated in the detector volume by other causes
than an impinging photon (dark counts). These carriers can be created thermally or by
band-to-band tunneling processes, or they can be emitted from trapping levels that were
populated in previous avalanches (after pulsing). The quantum efficiency and the dark
count ratendark both increase with increasing bias voltageUbias. To obtain a low QBER a
tradeoff between high efficiency and low noise has to be found. In the early experiment
mentioned above [21] we worked atη = 0.2% with ndark = 700 Hz and we obtained
3% QBERdet (following (2), for µ = 0.1 andL = 0.9). Forη = 10% we would have
expected more than 20% QBERdet.

For LN2 cooled Ge diodes the thermal contribution can be neglected and the dark
counts mainly consist of tunneled electrons and afterpulses, the latter being more impor-
tant if the total charge through the device is large [17]. The afterpulse rate is decreasing
almost exponentially with a time constant (1/e) of about 200 ns. This fact opens the door
to a further reduction of the dark count rate: If the diode is biased only immediately be-
fore a photon is expected, no spontaneous avalanches can occur before the detection and
consequently no afterpulses will fall into the detection time interval. So we developed
the following electronic circuit. The bias voltage of a diode is the sum of a DC part well
below the threshold and a 2 nslong almost rectangular pulse of 7.5 V amplitude that
pushes the diode about 1.4 V over the threshold at the time when the photon is expected.
This allows us to increase considerably the efficiency without excessively increasing the
noise. Moreover, the time jitter is reduced to a value below 100 ps. The short bias pulse
induces a parasite signal. A discriminator in combination with a temporal coincidence
window allows us to recover the true avalanche signal from this parasitic signal. A time-
to-amplitude converter followed by a window-discriminator of 300 ps width, allows us
to reduce the noise level further. Thanks to this technique we get 7 and 22 dark counts
per 1 million pulses (pdark= 22·10−6 and 7·10−6) for detection efficiencies of 10% and
20%, respectively. This corresponds to a QBERdet of 0.72± 0.13% at 10% efficiency.

Recent progress in photon counting with InGaAs APDs could allow us to replace
the LN2 cooled Ge detectors [18]. A QC experiment has been performed with InGaAs
detectors [14]. Performances similar to that of Ge APDs seem to be possible. Moreover,
these diodes would open the second telecom window at 1550 nm.

We compare Ge detector specifications to those of commercial silicon single photon
counting modules at 800 nm. These modules have about 50% efficiency with extremely
low dark count rates of down to 10 Hz. The QBERdet andR for the different wavelengths
with corresponding detector performances are summarized in Table 1 for different fiber
lengths.

Note that the wavelength of 800 nm is a good choice only for distances shorter than
5 km, taking advantage of the efficient and commercially available Si detectors. The
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Table 1. Quantum bit error rates (QBER) and raw data ratesR for different wavelengths and detector
performances for two different fiber lengths withν = 10 MHz,µ = 0.1 (or as indicated), andq = 0.5.∗

5 km 20 km QBERmax= 15%

QBERdet (%) R (kHz) QBERdet (%) R (kHz) Lmax (km) R (Hz)

800 nm,η = 0.5, 0.0022 25 0.2 0.025 29 0.3
pdark= 10−8

1300 nm,η = 0.1, 0.11 33 0.35 10 67 233
pdark= 7 · 10−6

1300 nm,η = 0.2, 0.16 67 0.53 20 62 700
pdark= 21 · 10−6

1300 nm,η = 0.2, 0.016 67 0.053 20 90 70
pdark= 21 · 10−6

µ = 1, ν = 1 MHz†

1550 nm,η = 0.1, 0.13 40 0.25 20 109 333
pdark= 10−5

1550 nm,η = 0.1, 0.013 40 0.025 20 159 33
pdark= 10−5

µ = 1, ν = 1 MHz†

∗ The transmission losses are assumed to be 2 dB/km at 800 nm, 0.35 dB/km at 1300 nm, and 0.2 dB/km at
1550 nm. At 1550 nm, the estimated performance of InGaAs detector according to first results [14], [18].
† 1 MHz single photon production rate.

disadvantage is that fibers and modulators are generally conceived for the longer telecom
wavelengths. Consequently, when Peltier cooled InGaAs counters with the expected
performance are available, the telecom wavelengths will clearly be preferable, especially
at 1550 nm for long distance QC. According to recent calculations QC could be performed
securely with QBER up to 15% [11]. In the last column of Table 1, the maximum length of
the link leading to this QBER is calculated. The limit for 1550 is around 110 km, a limit,
however, that depends strongly on the performance of the detector, and its development
in future. The given QBERs andLmax could be improved using single photon states
(µ = 1) [4].3 The attainable raw data rates would be in the same order of magnitude,
supposing that both a 1 MHz single photon production rate and a 10 MHz pulse rate for
weak pulses are feasible.

Of course, the raw bit rates obtained will be reduced further, due to error correction and
privacy amplification depending on the corresponding QBER. So the above-mentioned
tradeoff between efficiency and noise of the detector depends not only on the transmission
length, but also on the error correction algorithms.

With present day detector performances the QBER limit for transmission lengths

3 The single photon source can be a two photon source (based on parametric down-conversion) where one
photon serves as a trigger for the presence of its twin. The wavelength of the trigger photon is chosen in the
detection range of high efficiency and low noise Si detectors. However, these are not really single photon states,
because the two photon distribution is chaotic. Taking into account our time resolution the photon number can
be considered as Poisson distributed as for attenuated laser pulses. For 1 MHz production rate the probability
of having a second photon in a 1 nstime window pulse is 0.05%, equal to that of a laser pulse withµ = 0.001.
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below 20 km is set by QBERopt that is in the order of 0.5%. Therefore, we have a closer
look at the sources of this part of the QBER.

4. Polarization Control

The fiber optic implementation of the polarimetric scheme faces three difficulties:
The first one is a topological problem related to the transport of a vector along a curve.

Since the path taken by the light in the optical fiber is three-dimensional, its polarization
rotates by an angle related to Berry’s phase [5]. This effect does not limit the distance or
the quality of the transmission if the fiber link is stable. It is clear from that consideration
that an aerial cable or cable sustaining strong vibrational perturbations are not suited.

The second difficulty arises from the intrinsic birefringence of optical fibers. Changes
in mechanical stress that can cause birefringence will change the state of polarization
at the output of the fiber. However, these changes are usually quite slow in the order of
tens of minutes depending on the mechanical and thermal stability of the environment
[12]. Another effect of the birefringence is polarization mode dispersion (PMD) [13]. An
optical cable behaves as a concatenation of pieces of birefringent fibers. The result of this
is a spread of the pulses growing with the square root of length for long distances. This
evolution is the same as a random walk. To prevent depolarization of the light pulses,
lasers with a coherence time larger than the polarization mode delay must be used. This
is not a real limitation since typical PMDs are between 0.1 ps/km2 and 1 ps/km2 and
semiconductor lasers with 1 ns coherence time are available.

A third potential problem are polarization dependent losses in optical components that
could arise in Passive Optical Networks (PONs). In this case the relation between the
polarization state at the input and the output of the optical link is no longer unitary [16].

As for the topological effects, polarization instabilities are due to mechanical stresses
and temperature variations. This requires the optical fiber to be kept as stable as possible.
However, an active polarization controller is necessary to align Alice’s and Bob’s polar-
izers and keep them aligned, compensating temporal evaluation. The error ratepopt can
be determined simply by aligning at the receiver a polarization analyzer on the outgoing
state of polarization and measure the ratio of the intensities of the two arms. In our
experiments, both in the laboratory over 26 km and in the field over 23 km, we obtained
a separation of the polarization of 23 dB that corresponds to an error fractionpopt of
0.5%. The stability of the polarization alignment in the field experiment was excellent
most of the time, and measurements could be performed for an hour without realigning
the system. However, from time to time there were quite fast polarization instabilities
of 2π within a few seconds. In such moments we could not of course compensate the
fluctuations with our manual polarization controller. An automated polarization con-
troller with a response time of some tens of milliseconds should be able to guarantee an
uninterrupted operation.

One might think that one could spare the polarization controller by using the phase
coding scheme of Fig. 2. In fact, to prevent that only every second photon chooses
interfering paths (to increaseq from 1

4 to 1
2 in (1)), a polarizing beamsplitter (PBS) is

used at the receiver’s end. Consequently, the phase coding scheme requires polarization
controllers, too [23]. Ignoring the delay loops (which are actually no longer necessary
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using PBSs) the two Mach-Zehnder interferometers with the phase shifters can simply
be regarded as polarization modulators. The interferometric setup is finally equivalent
to the polarization code scheme. It has just the additional inconveniences that in each
Mach-Zehnder interferometer polarization has to be controlled to improve the fringe
visibility and the path length differences have to be balanced every few seconds [19].
The fringe visibility obtained in phase coding is 0.99 [19], corresponding to a polarization
separation of 20 dB and leading to QBERopt = 1%.

To summarize, polarization separation of 23 dB over 23 km can be achieved, leading
to QBERopt = 0.5%. For a practical system, however, the main drawback is the need
for active polarization controllers to compensate for fluctuations due to thermal and
mechanical disturbances of the fiber. In the next section we present a novel QC setup
that at the same time needs no alignment and reduces QBERopt further.

5. QC Using Faraday Mirrors

5.1. An Interferometer with Faraday Mirrors

Let us have a closer look at the QC scheme depicted in Fig. 3 [20], [26], disregarding
the Faraday rotators (FR) for the moment, their crucial effect will be explained later. In
principle Bob has a very unbalanced Michelson interferometer (beamsplitter C2) with
one long arm going all the way to Alice. The laser pulse impinging on C2 is split in
two pulses P1 and P2. P2 propagates through the short arm first (mirror M2 then M1)
and then travels to Alice and back, whereas P1 propagates first to Alice and next passes
through the short arm. As both pulses run exactly the same path length, they interfere
maximally at C2 (disregarding polarization for the time being). To encode their bits,
Alice acts with her phase modulator (PM) only on P2 (phase shiftϕa), whereas Bob lets
pulse P2 pass unaltered and modulates the phase of P1 (phase shiftϕb). If no phase shifts

Fig. 3. Experimental setup of an interferometric QC system with Faraday mirrors. C1, C2, and C3: fiber
optic couplers; M1, M2, and M3: Faraday mirrors (ordinary mirrors in combination with Faraday rotators,
FR); PM: phase modulator; A: Attenuator; D0: photon counter; DA: photodiode; T: optional trigger output;
SRS: delay generator; FG: function generator; &: and-gate.
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are applied or if the differenceϕa − ϕb = 0, then the interference will be constructive.
On the contrary, whenϕa − ϕa = π the interference will be destructive and no light
will be detected by detector D0. Since the interfering pulses travel the same path, the
interferometer is automatically aligned. The visibility of the fringes is also independent
of the splitting ratio of C2.

However, visibility depends also strongly on the polarization states of the interfering
pulses. LetMin be the vector representing the polarization state of the incoming laser
pulse at C2 on the Poincar´e sphere, then the polarization states of the interfering pulses
P1 and P2 are

M1out = R2R1R3Min and M2out = R3R1R2Min,

whereRi is the matrix describing the polarization rotation in a round trip path to mirror
Mi . Because rotation operators do not commute, these two operations are in general
not identical, hence the two outcoming polarizations are not parallel. This is where the
Faraday mirrors (FM) enter the game. An FM is composed of a 45◦ Faraday rotator
and a mirror. A light pulse injected in any arbitrary polarization into a fiber terminated
by an FM will come back exactly orthogonally polarized, regardless of the polarization
transformations in the fiber due to induced birefringence.4 Hence a round trip path in
any fiber terminated with an FM will lead to a polarization transformationR = −1.
This is true since there are no significant mechanical or thermal variations during the
time of flight of the photons [21], which is 300µs for a 30 km link. However, this
applies only if there is no Faraday rotation inside the fiber. In fact, although the Verdet
constant of a standard optical fiber is low, Faraday rotation due to the geomagnetic field
may not be completely neglected for optical fibers of several tens of kilometers,5 hence
R3 6= −1. However, withR1 = R2 = −1 we obtainM1out = R3Min = M2out. To
quantify the performance of our interferometer, we measure the ratio of the count rates
for constructive and destructive interference. In practice, we change the attenuation (A)
at Alice to obtain the same count rate with and without phaseshift. When we apply a
phaseshift at Bob’s piezo-optic modulator we obtain an attenuation of 30± 1 dB, while
when we apply the phaseshift at Alice’s LiNbO3 integrated optic phase modulator the
extinction is 27± 1 dB. Obviously the integrated phase shifter is slightly less precise.
These values were reproducible within the given errors over weeks. An extinction of
30 dB corresponds to a classical fringe visibilityV = (Imax− Imin)/(Imax+ Imin) of
99.8%. The measured values of 30 dB and 27 dB result in a QBERopt of 0.1% and 0.2%,
respectively. The average, decisive for key creation, is therefore 0.15%. Replacing one
Faraday mirror by an ordinary mirror, the extinction is strongly fluctuating and can be
reduced to 20 dB. If two Faraday mirrors are removed, essentially no interference is
visible.

4 This description of Faraday mirrors requires that after a reflection one switches from a right-handed to a
left-handed reference frame, or vice versa. This is no problem as long as the interfering paths each undergo
the same (the same parity of) numbers of reflections.

5 The horizontal component of the geomagnetic fieldH = B/µ0 is 17 A/m in Geneva, the Verdet constant
is ca. 0.6 · 10−4 ◦/A at 1300 nm. Therefore the polarization is turned by about twice 1◦ per km displacement
in the north–south direction. However, polarization mode coupling strongly reduces this effect.
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5.2. Key Creation

For the key exchange we used the two-states protocol B92 [1], because our driving
electronics for the phase modulators could not be used for the four-states protocol [3].
In principle, our setup could be quite easily adapted to the latter protocol by inserting
another coupler and detector. We tested that using alsoπ/2 and 3π/2 phase shifts the
same excellent performances of the interferometer are obtained. Alice and Bob choose
at random 0 orπ phase shifts, defined as bit values 0 and 1. Since very weak pulses are
used, in most cases no photon will be detected in D0. If a detection, i.e., constructive
interference occurred, Alice and Bob know that they applied the same phase shift, and
they register the same bit value. In our interferometric setup the pulses leaving Bob
carry no phase information. The information is in the phase difference of the two pulses
P1 and P2 leaving Alice. The attenuator (A) is set such that the weaker pulse P2 that
already passed through Bob’s delay line has 0.05 photons on average when leaving
Alice. The information that Eve could obtain depends on the number of photons in the
weaker pulse. Therefore, to measure the phase difference, she must attenuate P1 to the
intensity of P2 in order to obtain complete interference. She actually performs the same
measurement as Bob does. More generally, such a kind of measurement can be called a
Loss Induced Generalized Measurement [16]. Consequently, 0.05 photons in the weaker
pulse is equivalent to an average number ofµ = 0.1 for the pulse pair. Of course, this
reasoning applies also for the standard time multiplexed interferometer setup (Fig. 2),
where the two pulses may also have different intensities.

5.3. Experimental Realization

The heart of our experiment is a delay generator (SRS 535) at Bob (see Fig. 3). It
beats at 1 kHz and triggers the laser, Bob’s phase modulator (PM), the actively biased
photon counter (D0), and Bob’s computer. The 1300 nm DFB-laser (Fujitsu, driven by
an Avtech pulser) delivers 300 ps pulses. The phase modulator is a fiber wrapped around
piezoelectric-tube. It is driven by a sinus function from a function generator (SRS DG
345). The modulation frequency of the piezo of about 10 kHz is high enough since the
time delay between the two pulses is about 230µs. Only if the computer gives a logical
1 to the and-gate at the external trigger input of the function generator is a phase applied.
The optical fiber is a 22.8 km long telecom link between Geneva and Nyon, Switzerland,
featuring 8.6 dB loss. The pulse P1 detected at Alice byDA (Newport AD-300/AC)
triggers Alice’s phase modulator and Alice’s computer. At Alice the delay between the
two pulses is smaller, hence a 1 GHz LiNbO3 waveguide phase modulator is used. Again
this modulator is driven by a function generator, in case Alice’s computer supplies a
logical 1. Back at Bob’s, the interfering photon directly runs to the detector D0 via
the 10 dB coupler C1 to limit the losses. The photon counter electronics are precisely
triggered to coincide with the arrival of the photon at Bob and the biasing of diode. The
adjustment must be precise within 100 ps, which can be easily obtained with the delay
generator. Every detection is registered by Bob and assigned to the number of the pulse
after the beginning of the measurement. Alice and Bob disposed of 100 files of 65,536
bits of random numbers. These numbers have been generated by an apparatus based on
thermal noise of an electrical resistor [7].
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Table 2. Results of the key distribution with a QC setup with Faraday mirrors.

Photons per Measured QBERdet QBERopt Length of key Bit rate
pulseµ QBER (%) (%) (%) (bit) (Hz)

0.2 0.5± 0.1 0.40± 0.07 0.15± 0.03 2,980 0.9
0.1 1.35± 0.08 0.81± 0.14 0.15± 0.03 20,142 0.5

5.4. Results and Discussion

After having registered the results of the measurement, Alice and Bob compare their
random lists in order to determine the QBER. The results are summarized in Table 2.

To our knowledge, these QBER rates are the lowest ever obtained for the corresponding
numbers of photons per pulse and over a distance of more than 20 km. The measurement
for µ = 0.1 lasted more than 11 hours and no realignment was performed, hence the
stability of the setup was extraordinary. However, we notice that the measured QBER is
higher than the sum of the detector and interferometer noise. We believe that the increase
in the error rate is not due to any fluctuations of the interferometer, but rather due to an
increasing QBERdet in the course of the measurement. Variations in the photon counter,
its electronics and timing, which proved to be quite delicate, might be the reason for
this increase. We also tried to trigger the photon counter by the strong laser pulse at the
trigger output (T) running down another fiber to Alice and back, in order to obtain less
time jitter and to be less sensitive to changes in the optical path length due to temperature
variations. We gave up this optical trigger signal, because it did not improve the results
for short time measurements (tens of minutes) significantly enough to justify the need
of an additional fiber. Under difficult environmental conditions with large temperature
fluctuations, however, the use of an auxiliary fiber for timing improvements might be
appropriate, or periodical readjustments of the detector timing could be envisaged.

The obtained bit rates are quite low, in agreement with the expected values following
(1). This is simply due to the low pulse rate and could be increased by replacing the
piezoelectric modulator and adapting the computer steering. We have noticed that the
noise of our detector increases if a relatively strong light pulse is impinging before the
detection window. This might cause a problem going to higher frequencies, since in our
setup we have to deal with different parasite pulses.

It is noteworthy that the timing of Alice’s apparatus can be preadjusted in the laboratory
and will not change, even if the apparatus is plugged into another fiber to communicate
with a third party. The timing of Bob’s apparatus, especially of his photon counter, has
to be adjusted once for every link, this could be done using an Optical Time Domain
Reflectometer (OTDR).

6. Practical Eavesdropping

We have seen that the simplest attack of Eve can be prevented using weak pulses with,
e.g.,µ = 0.1. More elaborated strategies are analyzed in [2], [11], [15], [6], and [9].
However, in practice, Eve could follow another strategy: She could chop the fiber and
try to measure actively the phase or polarization settings applied by Alice. Eve could
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mount an interferometer similar to Bob’s one and measure with intense light pulses
the phase shifts applied by Alice. Then she can apply the same phase shifts to the
pulses received from Bob and send them back to him, as if she was Alice. However,
as Alice attenuates the incoming pulses by more than 40 dB down to the 0.1 photon
level before sending them back, Eve is forced to send intense pulses to Alice, which
can be detected by the detector DA, inserted for this purpose. However, by assumption,
Eve has perfect technology at her disposal. Therefore, she could for example try to
sense Alice’s phase with a very short pulse beyond the bandwidth of DA. Alice, in
return, could prevent such an intrusion with a narrow line filter. Probably any kind of
intrusion could be prevented with the appropriate means, but security would no longer
be guaranteed solely by the fundamental laws of quantum mechanics. In fact, all other
QC schemes face the same problem. In the standard phase scheme the position of the
phase shifter could be sensed interferometrically using small reflections at Alice’s or
Bob’s ends. Hypothetically, Eve might find an optical technique to find out which laser
fired or which detector clicked in the polarization scheme proposed above. In these
setups optical isolators could be introduced in contrast to the Faraday mirror setup. We
cannot discuss all possible strategies of Eve and the technical means to fight them. A
general assumption implicit in all discussions of QC security is that Alice’s and Bob’s
offices are absolutely safe. This is a reasonable assumption, necessary also for all other
cryptosystems. However, as illustrated by the above discussion, care should be given
to the fact that the fiber-obtic quantum channel provides a potential entrance gate for
malevolent intruders.

In yet another eavesdropping strategy, that applies to the two-states system only [1],
Eve interrupts the transmission and measures as many pulses as possible. She sends to
Bob only the pulses for which she obtained the phase or the polarization. To prevent
this, Bob has to introduce another detector to monitor the stronger pulse P1 to make sure
that Eve cannot suppress this pulse. If Eve suppresses only the weak one, because she
did not get the phase information, the strong pulse alone will introduce 50% error on
detector D0. To render the power of P1 measurable by a conventional detector, the losses
of Bob’s delay line could be increased and the attenuation applied at Alice’s side reduced
by the same amount. The attenuation at Alice applies also to pulses needed by Eve to spy
on Alice’s phase, following the strategy mentioned above. With the laser power and the
detectors at our disposal, it is not possible to monitor P1 at Bob’s and P2 at Alice’s (hence
Eve’s spying pulse) at the same time (also with appropriate choice of the splitting ratio
of the couplers C2 and C3, presently 3 dB couplers). So, the present implementation of
the B92 protocol is insecure, and the BB84 protocol should be applied.

In the four-states protocol BB84 [3] the eavesdropping strategy mentioned in the
previous paragraph fails because Eve would introduce errors when she chooses the
wrong basis. However, suppose that Eve has a lossless line and a way to sense how many
photons are in the pulse. Forµ = 0.1 there is about a 6% chance of having two photons
in a nonempty pulse. In these cases Eve could let one photon pass and store the other
until Alice and Bob publicly communicate their bases and get full information on this
bit. Eve would then send only these pulses to Bob, and block the others. Bob would
not notice Eve’s presence, since he expects considerable losses in his line. Therefore,
Eve could obtain 100% of the information if the line had, e.g., just 6% transmission. In
conclusion, as a function ofµ and the losses in the line Eve could win a considerable
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fraction of the information. Again this could be prevented by measuring the intensity of
a stronger pulse, to force Eve to send a pulse every time [15].

QC with correlated photon pairs would have the advantage that, since in this case real
single photon states are used, all strategies dealing with the fraction of pulses containing
more than one photon must fail. Unfortunately, the self-aligning setup with Faraday
mirrors is not suited for such a photon source, due to the high losses in a complete round
trip.

In practice, a tradeoff has to be found between the complexity, hence the price, and the
absolute security of the setup. We mention in this context that since the interferometer
in the Faraday mirror setup is not stabilized, the absolute phase difference between the
pulses P1 and P2 will randomly fluctuate, rendering Eve’s job very hard. This contrasts
with the standard phase coding setup, where the intense pulses sent by Alice to adjust
Bob’s interferometer can also be used by Eve to adjust hers.

7. Conclusions

We have discussed the experimental advantages and drawbacks of different QC setups.
We have seen that one major problem is the availability of good photon counters. It is
essentially the noise of these detectors, in combination with the losses in the optical fiber,
that limits the maximum distance of a QC link. This maximum distance would be about
100 km working at 1550 nm in combination with InGaAs photon counters. The other
problem of standard polarization and phase coding setups is the need for continuous
alignment. We introduced and demonstrated an interferometric QC setup using Faraday
mirrors which requires no continuous alignment. It features impressive stability and a
fringe visibility of 99.8%. Using this new QC setup, we produced a secret key of 20 kbit
length with a QBER of 1.35% for 0.1 photon per pulse.
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