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A. Quantum Key Distribution

The purpose of QKD is to establish a string of random bits (the “key”) shared by Alice and Bob,
where Alice and Bob can be highly confident that eavesdropper Eve knows almost nothing
about the key. Then the key can be used by Alice and Bob as a one-time pad for enciphering and
deciphering a message. Because the key is random and unknown by Eve, she can’t learn any-
thing about the message by intercepting the ciphertext.

The promise of quantum cryptography was first glimpsed by Stephen Wiesner,![1] who pro-
posed a quantum realization of unforgeable bank notes in the early 1970s. A decade later,
Charles Bennett and Gilles Brassard![2] proposed the first QKD scheme, which was published in
1984 and became known as the “BB84” protocol. In BB84, Alice repeatedly sends to Bob one of
four possible states of a qubit, and Bob measures each signal in one of two complementary
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bases. This protocol was reinvented a few years later by Douglas Wiedemann,![3] who was
unaware at the time of the work of Bennett and Brassard.

In 1990, Artur Ekert, also initially unaware of the earlier work, began developing a different
approach to quantum cryptography that ultimately proved very fruitful. Ekert proposed a key-
distribution protocol![4] in which entangled pairs of qubits are distributed to Alice and Bob,
who then extract key bits by measuring their qubits. Bennett, Brassard, and Mermin![5] then
noted that a simplified version of entanglement-based QKD can be cast in a form closely resem-
bling BB84, where each party measures the qubit in one of two complementary bases. Many
other variations on QKD were proposed later, such as
ß a “six-state protocol”![6], in which Alice sends each qubit in one of six possible states;
ß Bennett’s B92 protocol![7], in which Alice sends one of two nonorthogonal states;
ß the “time-reversed” EPR protocol![8], in which Alice and Bob send the BB84 states to a cen-

tral switching station (where their shared key is established via an entangled measurement);
and

ß protocols using continuous quantum variables![9], in which Alice sends a squeezed state or
a coherent state of a harmonic oscillator.

In their original paper and in subsequent work with other collaborators![10], Bennett and Bras-
sard analyzed “individual” attacks on BB84, in which Eve attacks the quantum signals one at a
time. However, a complete proof of information-theoretic security is more challenging. In prin-
ciple, Eve could attack all of the signals sent by Alice to Bob collectively, entangling the qubits
with an ancilla that she controls. Eve could then monitor the public classical communication
between Alice and Bob, in which they reveal their basis choices and exchange further informa-
tion to correct errors in their shared key and to amplify its privacy. The information Eve learns
from this public discussion might help her decide how to measure her ancilla to optimize her
information about the key.

New techniques for analyzing collective attacks by the eavesdropper were developed by
Andrew Yao![11] in 1995, and the first complete proof of information-theoretic security for BB84
was obtained by Dominic Mayers![12] in 1996. Around the same time, Bennett, Brassard, Pope-
scu, Schumacher, Smolin, and Wootters![13] discovered that noisy quantum entanglement can
be distilled, and Deutsch, Ekert, Jozsa, Macchiavello, Popescu, and Sanpera![14] noted that if
Alice and Bob have reliable quantum computers, they can use an entanglement-distillation
protocol to achieve a secure version of entanglement-based key distribution. This observation
was developed into a formal proof of security by Lo and Chau![15] in 1998. The approaches of
Mayers and of Lo and Chau were united in 2000 by Shor and Preskill,![16] who showed that
entanglement distillation can be invoked to formulate a relatively simple proof of the security of
the original BB84 protocol.

The Shor-Preskill analysis relies on the idea that Alice and Bob could use a quantum error-
correcting code to prevent Eve from becoming entangled with the protected qubits that are used
to generate the key. Furthermore, this code can be chosen to have the property that bit-flip error
correction and phase error correction can be performed separately. However, for the final key to
be private, it is not necessary to actually perform the phase error correction—it is enough to
know, based on the verification test included in the protocol, that phase error correction would
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have succeeded if it had been done. By this reasoning based on virtual quantum error correction, a
protocol invoking quantum error correction reduces to BB84 augmented by classical error cor-
rection and classical privacy amplification, which is therefore provably secure against any pos-
sible eavesdropping strategy.

Another novel approach to proving the security of BB84 (long in gestation but still unpublished)
has been pursued by Ben-Or![17]. In Ben-Or’s proof, one uses the results of the verification test
to infer that the quantum state of Eve’s ancilla is highly compressible. Then results regarding
the quantum-communication complexity of the binary inner product function are cited to
establish that Eve cannot possibly have enough information to compute the final key generated
by Alice and Bob. Quite different technical tools were developed by Biham, Boyer, Boykin, Mor,
and Roychowdhury![18], who were the first after Mayers to obtain a complete proof of security.

The formal security proofs establish that, if the bit error rate (BER), d, observed in the verifica-
tion test is low enough, then the secure final key can be extracted from the sifted key at a
nonzero asymptotic rate. For example, in the case where error correction and privacy amplifi-
cation are carried out using only one-way communication from Alice to Bob, the ratio of the
length k of the final key (after error correction and privacy amplification) to the length n of the
sifted key satisfies

R = limnÆ• k/n ≥ 1-2H2(d), (Equation A-1)

where H2(d)!=!-d log2d!-!(1-d)log2(1-d) is the binary Shannon entropy function. Hence, secure key
exchange can be achieved for any d!<!11%. The proof shows the following: Suppose Eve uses a
strategy that passes the verification test with a probability that is not exponentially small. For
any such attack by Eve, if the verification test succeeds then Alice and Bob agree with high
probability on a final key that is nearly uniformly distributed, and Eve’s information about the
final key is exponentially small. Here “exponentially small” means bounded above by (e-Ck)
where k is the length of the final key and C is a positive constant, “high probability” means
exponentially close to 1, and “nearly uniformly distributed” means exponentially close to a uni-
form distribution. Informally, for any attack, either Alice and Bob are almost certain to catch
Eve, or else Eve knows almost nothing about the final key.

The Shor-Preskill method was adapted by Lo![19] to prove the security of the six-state protocol
for BERs up to 12.7%, and by Tamaki, Koashi, and Imoto![20] to prove the security of B92. Got-
tesman and Lo![21] have shown that if Alice and Bob use two-way communication to correct
errors and amplify privacy, then secure key distribution is still possible in BB84 for BERs up to
18.9%, and in the six-state protocol for BERs up to 26.4%. On the other hand, it is known that
information-theoretically secure key distribution is impossible if the BER is above 25% in BB84
or 33% in the six-state protocol—these are the error rates that arise if Eve measures each signal
in a randomly selected basis and then sends onto Bob the state resulting from her measurement
(“intercept/resend attack”). If Alice and Bob are limited to one-way communication, then
secure key distribution is impossible if the BER is above 14.6% in BB84 or 16.7% in the six-state
protocol—these are the error rates that arise if an optimal approximate cloner diverts to Eve a
state identical to that received by Bob. It is an interesting challenge to close the gaps between
the best known upper and lower bounds on the BER.
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The Shor-Preskill method was also applied by Gottesman and Preskill![22] to a continuous-vari-
able key-distribution protocol, in which Alice sends a squeezed state and Bob performs a
homodyne measurement. This scheme is information-theoretically secure if Alice’s signals are
squeezed sufficiently. Protocols in which Alice’s signals are coherent states have been shown to
be secure against certain types of individual attacks![23], but whether information-theoretic
security can be established for a coherent-state protocol remains an important open question.

QKD has also been called quantum key expansion, emphasizing that Alice and Bob must share a
short private key at the start of the protocol, which expands to a much longer key when key dis-
tribution is successful. The initial key is used for authentication; Alice and Bob need a way to
guarantee that they are really talking to one another. Otherwise, Eve could pretend to be Alice
when talking to Bob and pretend to be Bob when talking to Alice (“man-in-the-middle attack”).
Information-theoretically secure classical protocols for authentication are known, but these
require Alice and Bob to share the initial secret key. Suppose that the initial key used for authen-
tication was in fact generated during a previous round of quantum key expansion—might the
eavesdropper exploit this feature to sharpen her attack? This subtle question was answered
recently by Ben-Or and Mayers,![24] who showed that QKD can be safely composed with
authentication without compromising security. This work also highlights the importance of for-
mulating careful definitions of security that are amenable to composability.

Information-theoretic security has also been called “unconditional security,” to emphasize that
there are no assumptions about the technological sophistication or computational power of the
adversary. But of course there are conditions that must be satisfied for security proofs to
apply—in any analysis of security we have to decide what to trust and what to mistrust. For
example, in discussions of QKD, we typically accept that Alice’s random number generator is
reliable, and that Eve has no a priori knowledge of the bases chosen by Alice and Bob in the
protocol. Furthermore, assumptions are needed about the performance of the equipment used
in the protocol, and these should be carefully considered to assess whether QKD is really secure
in realistic implementations.

In the original BB84 security proof by Mayers, it is assumed that Alice’s source is perfect, but
Bob’s detector can be completely uncharacterized; the flaws in the detector cannot fool Alice
and Bob into accepting a key that Eve knows, and the rate of key generation R for a given BER d
is independent of the detector’s performance. Koashi and Preskill![25] showed that an analo-
gous result holds if the detector is perfect and the source is uncharacterized, as long as the
source does not leak to Eve any information about Alice’s basis choice.

The security analysis is more delicate if the faulty performance of the source does reveal some
information about the basis choice. Of particular practical importance is the case where the
source emits weak coherent states rather than single photons, and Alice’s qubit is encoded in
the photon polarization. The source occasionally emits more than one photon in the same
polarization state, and Eve can skim off the extra photon(s), wait until Alice and Bob announce
their bases, and then measure in the correct basis, obtaining perfect polarization information at
no cost in disturbance. The privacy-amplification scheme must be sufficiently powerful (and the
coherent states sufficiently weak), to nullify this advantage. Inamori, Lütkenhaus, and May-
ers![26] proved the information-theoretic security of BB84, where Alice’s source emits weak
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coherent states and Bob’s detector is uncharacterized, establishing that secure final key can be
extracted from sifted key at an asymptotic rate

R ≥ (1 - D) -H2(d) - (1 - D) H2(d/(1 - D)); (Equation A-2)

here d is the BER observed in the verification test, and D=pM/pD, where pM is the probability that
the source emits multiple-photons, and pD is the probability that a photon emitted by the source
is detected by Bob.

More generally, if we trust a characterization of the equipment ensuring that the flaws in the
source and detector are sufficiently small, then in many cases information-theoretic security can
be proven, and lower bounds on the asymptotic key generation rate established; various exam-
ples have been analyzed by Gottesman, Lo, Lütkenhaus, and Preskill![27]. Furthermore, Mayers
and Yao![28] have formulated the concept of a “self-testing” source and detector, which can be
reliably characterized even if we do not trust the devices used to test the equipment. However,
we are still lacking a complete proof of security that applies to arbitrary attacks by the eaves-
dropper and fully realistic implementation.

Another difficulty for the implementation of QKD using polarization encoding is that optical
fibers rotate the polarization, and the amount of rotation may fluctuate over time. Boileau, Got-
tesman, Laflamme, Poulin, and Spekkens![29] proposed a means of overcoming this difficulty,
in which the key bits are encoded in a noiseless subsystem. Their scheme requires Alice to have
a source of entangled photons.

A serious limitation on practical QKD is that losses in optical fibers limit the range over which a
secure key can be established. In principle, the range could be extended dramatically using
“quantum repeaters” that implement quantum error correction; this might be an important
application for quantum computers of modest scale. For example Dür, Briegel, Cirac, and
Zoller,![30] among others, have described how, with reasonable resources, a nested cascade of
entanglement distillation protocols can establish high-fidelity entangled pairs over long dis-
tances, which could then be used for key distribution. Further theoretical work aimed at opti-
mizing the efficiency of quantum repeaters may prove fruitful.

Let us summarize the current status of the theory of QKD. The designer of a cryptographic sys-
tem should ensure that the security of the system rests on a firm foundation. It is reckless to
underestimate the ingenuity of the adversary and inherently risky to assume that the eaves-
dropper will use a particular strategy, even if that assumption seems to be warranted by appar-
ent technological limitations. Therefore, theorists have focused primarily on establishing the
security of QKD against unrestricted attacks by the eavesdropper (“information-theoretic” or
“unconditional” security). Satisfactory proofs of security have been found for protocols exe-
cuted under ideal conditions. However, existing quantum cryptosystems are far from ideal, and
the demanding criteria that these systems must meet to provide genuine security pose new
challenges for the system designer, quite distinct from the problems encountered in classical
cryptography. Recent results show that information-theoretic security can be maintained in the
presence of certain kinds of system faults. An important goal for future research is to sharpen
our understanding of the conditions that ensure adequate security, so that practitioners of QKD
can achieve high confidence in the reliability of their systems.
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8. Quantum-computational security
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