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Abstract : The ATM service category UBR is intended for
non-real-time applications that do not require guaranteed
QoS commitments. With additional, relatively inexpensive
control functions such as packet discard schemes, UBR
could become a cogt-effective dternative for the
transmission of data traffic, offering a straightforward and
flexible solution as opposed to nrt-VBR and GFR that
applies stricter traffic specifications as well as ABR with
its sophisticated and complex rate-control protocol. This
paper presents the results obtained from a comprehensive
set of experiments with TCP over UBR, comprising
measurements taken on different protocol layers. The goal
is to experimentally investigate the performance of UBR
to carry TCP traffic, to evaluate the performance gain
achievable by packet discard schemes and TCP parameter
tuning, to study the influence of the TCP implementation,
and in a final step, to relate the measurements to
simulation resullts.

Keywords: TCP, ATM Traffic Control, Unspecified Bit
Rate, Early Packet Discard.

1 Introduction

TCP over UBR [1] has been subject to many simulation
studies [2-6]. The main outcome of those studies is that
large UBR buffers (larger than one TCP window size) are
required to achieve reasonable performance, that packet
discard mechanisms (such as EPD) improve the effective
usage of the bandwidth and that more elaborated service
and drop strategies than FIFO+EPD, such as per VC

gueuing and accounting, might be required at the
bottleneck to ensure both high efficiency and fairness.
Though all studies clearly indicate that a buffer size not
less than one TCP window size is required, the amount of
extra buffer required naturally depends on the packet
discard mechanism used and it is still an open issue. Most
of the studies made to date are based on simulation results
and, according to the authors knowledge, no
experimental studies are available that clearly demonstrate
the performance of TCP over UBR and UBR with EPD
when several connections are multiplexed. As important
simulation studies are, as incomplete the outcome is,
because a lot of the dynamics of real equipment is
neglected. Several research groups however conducted
experimental work on TCP over ATM focusing either on
end system and TCP parameter tuning [7], [8], or focusing
on specific control functions related to ATM [9-11]. So
far, neither the mutual influences of both have been
investigated nor statistics from different layers have been
shown in detail. This paper evaluates the TCP over UBR
performance for a large set of parameters both at the TCP
and ATM layer in a local ATM network within the
framework of the ACTS project EXPERT. The main goals
of the experiment campaign presented here were (1) to
measure the performance of TCP over plain UBR, UBR
with PPD and EPD, in terms of efficiency and fairness as
a function of the switch buffer size and EPD threshold, (2)
to estimate experimentally the amount of buffering
required to achieve good efficiency and fairness, and (3) to
measure the impact of various TCP/IP parameters such as
MTU size Fast Retransmit and Recovery threshold.



This paper is organised as follows: Section 2 starts
with a brief overview of TCP and explains Early Packet
Discard, a widely implemented buffer acceptance
mechanism in ATM switches. In section 3, the testbed
configuration and measurement set-up are explained.
Section 4 presents the outcome of a vast TCP
measurement campaign studying both the influence of
ATM and TCP parameters and control functions. Finally,
section 5 compares and complements the experimental
results with simulations.

2 Overview of TCP and Early Packet Discard

TCP provides end-to-end window based flow control by
means of several congestion control algorithms such as
Jow Sart, Congestion Avoidance, Fast Retransmit and
Recovery [12]. All these algorithms assume that packet
loss indicates congestion in the network which has to be
resolved by an appropriate rate decrease. Since TCP
increases its transmission rate until congestion occurs,
TCP applications can hardly specify a traffic contract
unless they access shaping capabilities on the network
interface card. For this reason, the UBR service category
is a natural choice for TCP traffic, in particular if it is
enhanced by additional traffic control functions such as
EPD, per-VC queuing, per-VC accounting and Weighted
Fair Queuing [13] for example. This section surveys TCP
over UBR and points out the issues which give the
justification for the measurement campaign carried out
and presented in this paper.

2.1 Transmission Control Protocol

TCP's flow control and error control provides a reliable
byte stream service for data transfers over a best effort
network. Two types of flow control can be distinguished,
flow control imposed by the receiver and flow control
imposed by the sender. Flow control imposed by the
receiver is achieved by the so called diding window
mechanism of TCP, where the maximum amount of
outstanding data in the network is limited by the
receiver's advertised window, merely to avoid buffer
overflow a the receiver side. The combination of Sow
Sart, Congestion Avoidance, Fast Retransmit and
Recovery (FRR) redlise flow control imposed by the
sender by maintaining and updating a second window,
Congestion Window (cwnd), which forces a rate decrease
when congestion isindicated by the loss of segments[12].

At connection set-up, the Congestion Window,
maintained in byte, is set to one TCP Maximum Segment
Size (MSS). At the receipt of a segment, the TCP receiver
returns an acknowledgement (ACK) to the sender. Each
time the sender receives an ACK, the Congestion Window
is increased by one MSS thus doubling the Congestion
Window every round-trip time (RTT). This mechanism

causes an exponential increase of the Congestion Window
controlled by the returning ACKs. This exponentia
increase slows down to a linear one when the Slow Start
Threshold, sstresh, is crossed. Then the Congestion
Avoidance Phase is entered

In addition, TCP measures the round-trip time
regularly and uses this measurement to adjust a
retransmission time-out value RTO. When this timer
expires before the peer acknowledges new data, the
sending TCP enters Slow Start as at the start-up of a
connection and retransmits a data segment starting from
the first unacknowledged byte.

In order to provide a more efficient retransmission
mechanism in networks with moderate packet losses, the
Fast Retransmit and Recovery algorithms were proposed
in 1990 and are now integrated in most TCP versions in
use, athough still with some mistakes (see [14] for a
discussion of different TCP implementations). With Fast
Retransmit, TCP uses the fact that the receiver is sending
duplicate ACKs for each out-of-sequence segment, thus
indicating that a segment might be lost. If three or more
duplicate ACKs are received in a row, it is a strong
indication that a segment has been lost. TCP then initiates
a retransmission of what appears to be the missing
segment, without waiting for a retransmission timer to
expire. After Fast Retransmit sends what appears to be the
missing segment, TCP changes to a Congestion
Avoidance instead of another Slow Start phase. Thisis the
Fast Recovery algorithm. It is an improvement that alows
high throughput under moderate congestion, especialy for
large windows. The reason for not performing slow start
in this case is that the receipt of duplicate ACKstells TCP
more than just a packet has been lost. Since the receiver
usually only generates a duplicate ACK when another
segment is received, that segment has left the network and
is in the receiver buffer. Hence, there is till data flowing
between the two connection endpoints, and TCP does not
need to reduce the flow abruptly by going into Slow Start.

According to [15], TCP should aso implement a
delayed acknowledgement strategy, but an ACK should
not be excessively delayed. In particular, the delay must be
less than 0.5s (ensured by a timer in the receiving TCP)
and there should be an ACK for at least every second
segment. By combining ACKs with window updates or
data in one TCP segment, the Delayed Acknowledgement
strategy  substantially reduces protocol processing
overhead by decreasing the total number of packets to be
produced by the receiver.

Furthermore, with the limited information contained
in cumulative acknowledgements, currently realised in
most TCP implementations, a sender can only learn about
a single lost packet per round-trip time. Especialy in
connections over large distances, this uncertainty leads to
dramatic  performance  drops and  unnecessary
retransmissions. In order to avoid these undesired effects,
Selective Acknowledgement (SACK) options [16] have



been proposed to dlow the receiver to request the
retransmission of only the lost segments, which is
expected to be much more efficient. However, these
extensions have not been widely deployed in current
systems and have not been used for the experiments
described here.

2.2 Early Packet Discard

Previous studies of TCP throughput behaviour on ATM
networks reported that poor performance of TCP over
plain ATM can be caused by the well-known problem of
fragmentation. When an ATM cell is dropped at a switch,
the rest of a higher layer packet is still transmitted to the
destination thus wasting bandwidth. Consequently if a cell
of an AALS frame must be dropped because of buffer
overflow, there is no reason for transmitting subsequent
cells of this corrupted frame. Consequently the switch may
apply Partial Packet Discard (PPD) [2] to discard the
remainder of the frame.

Early Packet Discard (EPD) enforces a switch to drop
entire frames prior to overflow. If thefirst cell of an AALS
frame arrives at a switch when the buffer exceeds a certain
threshold, the first as well as all subsequent cells of the
frame are discarded.

Severa approaches for setting the threshold have been
proposed, but usually EPD uses a fixed, global threshold.
Romanow and Floyd [2] reported a positive impact of EPD
on TCP performance, however, measurement campaigns
covering a large range of parameters have never been
carried out.

3  Configuration and M easurements for the TCP
over UBR Experiments

3.1 Testbed Configuration

The ATM LAN configuration, depicted in Fig. 1, is based
on a FORE ASX-200 ATM switch. The ASX-200
implements delay priorities for three service classes (CBR,
VBR and ABR-UBR), programmable buffer size, a flavour
of per-VC queuing, VP shaping and Early Packet Discard
with a programmable EPD threshold. The EPD
mechanism implemented in the ASX-200 works as
follows: The EPD threshold, EPDth, is defined on the
shared buffer space. Whenever the fill level of the shared
buffer space is greater than EPDth when the first cell of
an AAL5 PDU arrives, the incoming AALS5 frame will be
fully discarded except for its last cell containing the EOM
field which allows to delimit different frames. In the case
a cel is lost in the middle of an AAL5 PDU, the
remaining cells of that PDU are discarded, i.e. subject to
PPD. Four Solaris 2.6 workstations are configured as
senders and two HP-UX 9.05 together with two HP-UX
10.20 workstations are configured as receivers. All the

senders behave as greedy sources sending bulk TCP traffic
to the receivers simultaneously during 180 seconds, a
large value compared to [2] and [4] which typicaly
simulate the system for 10 to 20 seconds. Only ACKs flow
in the reverse direction. These four TCP connections share
a bottleneck of 37.44 Mbit/s minus the overhead of ATM,
AALDS5, RFC1483 [17] and TCP/IP. The bottleneck rate is
limited by means of VP shaping. The protocol stack
involved in the experiments is also shown in Fig. 1. In all
measurements presented here, the user data buffer size is
set to 16 kB and the TCP maximum window size to 52224

byte.
3.2 Measurements and Performance Metrics

While measuring the performance of TCP over UBR
dependent on the switch buffer size and the MTU, Early
Packet Discard has been disabled or enabled with several
buffer thresholds and TCP's Fast Retransmit and
Recovery threshold varied. Furthermore, the influence of
the TCP implementation on TCP throughput efficiency
has been studied.

The benchmark tool ttcp generates and receives TCP
traffic at the application layer and measures the memory-
to-memory throughput, also called goodput, averaging out
10 runs with identical parameters. Throughout this paper,
TCP performance is assessed in terms of throughput
efficiency, defined as the ratio between aggregate TCP
goodput and theoretical achievable goodput under loss-
less conditions.

Results for EPD in this paper will often be presented as
a function of the EPD normalised excess buffer capacity,
b, i.e. the buffer capacity in excess of the EPD threshold
normalised to the MTU size. The EPD threshold EPDth
and normalised buffer excess capacity b are related by:
EPDth = Saitch Buffer - b . MTU*, where MTU* is an
upper bound to the MTU size (in cells). Note that if the
EPD threshold equals the switch buffer size, EPD is
equivalent to PPD.

The Cell Loss Ratio (CLR) is measured at the ATM
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Fig. 1: Configuration for the TCP over UBR experiments



switch as the ratio between the number of incoming and
outgoing ATM cells and the AAL5 Frame Error Ratio
(FER) is measured at the end-systems as the ratio between
the number of correctly received frames and the total
amount of received frames.

Other metrics like Dead Cell Ratio and Idle Cell Ratio
will also be used throughout this paper. The Dead Cell
Ratio corresponds to the ratio between the cells belonging
to corrupted AALS frames which are transported to the
destination and the total amount of cells, whereas the Idle
Cell Ratio quantifies the link idle time.

In [4], a metric for the assessment of fairness among
different TCP sources has been proposed. The fairness is
quantified through the fairness index defined as:

o (ag)?
Fairness_index = ————— (1)
n-(aa)

where N is the number of connections (N = 4 here),
and g is the goodput of connection i (i =1...4). This
fairness index is well suited for symmetric configurations
and is relatively simple.

4  Experimental Results

This chapter deals with the most important results of two
separate experimental campaigns with different TCP
implementations. In both scenarios, the performance of
TCP over UBR plus EPD is measured dependent on a
wide range of parameters in al layers involved. Variable
MTU, different switch buffers, duplicate ACK threshold,
and timer granularity values have been configured. By
means of using different TCP implementation, it can be
demonstrated that especially TCP's reactivity to segment
loss is critical for the performance of TCP over UBR with
EPD.
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Fig. 2: Measured TCP efficiency for plain UBR, PPD and
EPD, b= 1.

4,1 Performance of Default TCP over UBR with Partial
and Early Packet Discard

In this section, the performance of TCP over UBR is
measured as a function of the switch buffer for plain UBR,
UBR with PPD and EPD with different EPD thresholds.
Fig. 2 shows TCP efficiency as a function of the switch
buffer for an MTU of 4352 byte (for EPD, the normalised
buffer excess capacity b is equa to 1). PPD and EPD
significantly improve the efficiency for small buffers and
as the buffer size is increased beyond 1088 cells
(approximately equal to one TCP window size), the three
curves saturate. With a buffer of 1088 cells, TCP achieves
approximately 87% efficiency with plain UBR, 91.5%
with PPD and close to 93% with EPD. With an MTU of
4352 byte and EPD with b equal to 1, TCP does not
encounter any fairness problems (not shown here). The
fairnessindex is larger than 0.95 with al buffers also used
in Fig. 2. With PPD, fairness is not as good as for EPD
with b equal to 1 but usually the fairness index is still
larger than 0.95 apart from a few exceptions between 0.75
and 0.95. On the other hand, fairness is not satisfactory
for plain UBR with buffers smaller than 1088 cells but at
least good with larger values (index larger than 0.9). Note
that the efficiency observed with a buffer of 2176 cells
corresponds to 99.5% of the efficiency measured with a
buffer that ensures a loss-free operation of TCP, which
means that close to full efficiency is already achieved with
a switch buffer of one window size (since the efficiency
does not increase very much between 1088 and
2176 cells).

For an MTU of 9180 byte (results not shown here but
available in [18]), the same observations remain generally
valid. In terms of efficiency, EPD with b equal to 1
performs better than PPD which excels plain UBR as
expected. On the other hand, the fairness is not
satisfactory up to a buffer of 1360 cells. Buffers larger
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Fig. 3: Measured TCP Efficiency for plain UBR, PPD and
EPD with different thresholds, MTU 4352 byte.
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than 1360 cells provide good fairness and efficiency.

Fig. 3 and Fig. 4 compare the efficiency achieved by
TCP for plain UBR, PPD and EPD with three different
EPD thresholds and different MTU. Best efficiency is
observed for EPD with b equal to 1. For a larger b,
efficiency decreases with small switch buffers because an
increased excess capacity is obvioudy rather seen as a
reduction of the effective buffer which results in
increasing segment loss. This is especialy critical for the
large MTU of 9180 byte since the excess capacity is set
proportional to the MTU. For large buffers, an increase of
the normalised excess buffer capacity does not decrease
efficiency because it aready saturates with a smaller
effective buffer.

Some authors [3], [4] explicitly state that TCP over
UBR actually requires buffers equal to the sum of the
maximum TCP window size to achieve zero loss and
consequently good performance. Our results show that
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Fig. 5: TCP Efficiency as a function of the Switch buffer
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zero loss is not necessary to achieve good bottleneck
utilisation. For example, the frame loss ratio is between
6.7% and 4.8% with buffers between 1088 and 2176 cells
in Fig. 2 for EPD with b equa to 1. Almost maximum
efficiency and fairness can already be observed for a much
smaller buffer size (than the sum of the TCP window size
of the involved connections) when EPD is used. A switch
buffer size dlightly larger than one TCP window size
dready ensures good performance. However, TCP's
reactivity to segment loss, i.e. its time-out and
retransmission strategy is a critical element in the
considered configuration. With small buffers, i.e. smaller
than one TCP window, when losses occur frequently, FRR
alone is not capable of avoiding retransmission time-outs
and consequently PPD and EPD can be efficient because
they concentrate cell loss to fewer frames. For a buffer
larger than one TCP window size, FRR turns out to be
very effective in avoiding time-outs and the difference
between plain UBR, PPD and EPD is only marginal.

4.2 Effect of TCP's Fast Retransmit and Recovery
Threshold

In order to evaluate the impact of FRR further, the number
of duplicate ACKs which have to be received (this
parameter is called duplicate ACK threshold) before Fast
Retransmit is triggered has been varied. Fig. 5 and Fig. 6
present efficiency and fairness respectively as a function of
the switch buffer size for different values of the duplicate
ACK threshold and an MTU of 9180 byte. Note that for a
socket buffer of 52'224 byte and an MTU of 9180 byte, the
maximum TCP window size corresponds to less than six
segments which means that a duplicate ACK threshold of
10 practically disables FRR (retransmission occur in this
case only after time-outs).



Fig. 5 demonstrates that FRR has a significant impact
on efficiency. With a duplicate ACK threshold of 1, a
single duplicate ACK triggers FRR thus avoiding time-
outs. Thanks to the sequence integrity guaranteed by
ATM, the number of false retransmissions remains
limited. Conversely, a threshold of three duplicate ACKs
is sometimes out of reach since a TCP sender cannot
always send enough segments into the network due to the
sending window constraint (especially with Delayed
Acknowledgement strategies) Of course, this happens
frequently with small buffers when the Congestion
Window tends to be smaller. Note that results for smaller
MTUs are qualitatively similar.

Fig. 6 shows the fairness index as a function of the
switch buffer size for the different duplicate ACK
thresholds. Fairness is high for a threshold of 1 whereas it
is potentially very low with a threshold of 3. If time-out
triggered retransmissions (threshold of 10) become
dominant, fairness is generally good at the expense of
efficiency. A more detailed analysis of the impact of FRR
on the fairnessis given in [18].

As alast comment it should be noted that FRR, when
effective, alows to mitigate the trade-off between
efficiency and fairness as observed when retransmission
are handled with time-outs as can be seen in Fig. 6 and as
is reported in literature [3] (results for small MTUs
support this[18]).

4.3 Influence of the TCP Implementation

EPD is expected to clean the frame loss process in a way
that one or more connections survive a congestion period
without multiple loss and subsequent idling. As will be
shown below, unusual, sometimes faulty implementation
details can prevent TCP from recovering quickly from
loss. Though this does not necessarily result in worse
performance, it further affects the potential benefit of
EPD.

0,8
r MTU = 1500 byte
o7 p—8H—-Fpfm——— £
L ""’9*77"’6““‘6
- s /ﬂ/Afff”’A»“‘f“
> r A—
2 06— l“.“.\.
5] L
S S
b L —@— Buffer = 725 cells
o r —l— Buffer = 1088 cells
O 05 —A-—- Buffer = 1451 cells
= r —O-- Buffer = 1814 cells
L —=- Buffer = 2176 cells
0.4 - ./.\.\.
0,3 | | | |

0 1 2 3
Normalised Excess Capacity (Number of Packets)

Fig. 7: Solaris-Linux TCP goodput as a function of the
normalised excess buffer capacity, MTU 1500 byte.

In the original configuration depicted in Fig. 1,
Solaris2.5.1 instead of Solaris2.6 workstations act as
senders and Linux 2.0.25 PCs replace the HP-UX
workstations as receivers. The systems involved are
perfectly homogeneous, however, this specia combination
holds some shortcomings.

First, a Linux receiver delays the acknowledgement
based on an operating system timer and thus
acknowledges a bunch of segments when this timer
expires. Even if more than two MSS byte of in-sequence
data have arrived, this timer is still used to
asynchronously send the acknowledgement, which yields a
delay of approximately 4 ms in the configuration under
consideration. Furthermore, new acknowledgements are
merged with the pending acknowledgements. Since the
number of acknowledgements is reduced significantly in
this way, such a , stretch ack” policy [14] dows down the
growth of the congestion window of TCP and, in addition,
makes it difficult to trigger Fast Retransmit at the sender.

Second, Solaris2.5.1 does not handle time-out
triggered retransmissions properly. When severa
segments are lost, Solaris 2.5.1 doubles the retransmission
time-out every now and then even if an outstanding
segment has just been acknowledged. Besides, incoming
acknowledgements are often processed incorrectly which
results in a long phase of time-out triggered, partly
unnecessary retransmissions. As Fast Retransmit is
practically disabled due to the Linux acknowledgement
mechanism, this faulty implementation of TCP changes
the system behaviour drastically.

Fig. 7 indicates that EPD hardly improves efficiency
with these TCP implementations. Since the Linux
receivers usually cannot generate sufficient duplicate
acknowledgements to trigger Fast Retransmit and
Recovery, TCP is not able to recover quickly from
multiple losses and ends up with a Solaris 2.5.1 typical
long phase of time-out triggered retransmissions. As
illustrated in Fig. 8, a lower timer granularity of 20 ms
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Fig. 8: Solaris-Linux TCP efficiency as afunction of the
buffer size for different timer granularity values, EPD b=1.
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may result in a noticeable efficiency gain with small
buffers. On the other hand, EPD still does not improve
anything at all, see Fig. 9. In fact, the idle cell ratio at the
bottleneck switch port shown in Fig. 10 is orders of
magnitude higher than the FER at the receivers (which
can be regarded as a sufficiently safe upper bound of the
dead cell ratio). Hence, in this situation, larger
performance improvements can be achieved by improving
TCP's reactivity to losses with a lower timer granularity
rather than by reducing the proportion of dead cells with
EPD.

5 Reation with Simulation Studies
The experiments described in the previous sections show

that TCP over UBR performance may benefit from EPD,
however, it is very sensitive to many parameters such as (a
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Fig. 11: Simulated TCP efficiency as a function of the
normalised excess capacity.

possibly heterogeneous) packet size, the delayed (stretch)
acknowledgement strategy, the reaction and reactivity of
TCP to multiple loss and probably other effects not
covered in this paper. Of course, any experimenta
configuration does not scale well and suffers from a
limited flexibility and controllability as opposed to
simulations. For this reason, this chapter relates
experimental to simulation results and discusses the
deviation of this study from previous simulation work
reported in [2].

5.1 Smulated Performance of Default TCP over UBR

The simulation tool used, models the experimental
configuration from Fig. 1. In particular, the TCP version
includes the specifications from [15] and [12]. Throughout
this section, the MTU is 4352 byte, the duplicate ACK
threshold for Fast Retransmit/Recovery is set to 3, and
TCP works with atimer granularity of 200 ms.
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Fig. 12: Simulated Frame Error Ratio at the receivers and
CLR at the switch as a function of b.
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Fig. 11 clearly shows that the chosen parameter subset is
appropriate to demonstrate the potential benefit of EPD
similar to section 4.1 and 4.2 as well as [2]. With small
buffers, which is the most interesting case, EPD achieves
the highest performance improvement with a normalised
excess capacity of 2. With this setting, the CLR at the
switch approaches the FER at the receivers, as can be seen
in Fig. 12, i.e. the dead cell ratio approaches 0. A further
increase of the normalised excess capacity beyond 2 leads
to a performance decrease with small buffers. In this case,
the FER gets higher again because EPD with a normalised
capacity of 2 fulfils its assigned role of avoiding dead cells
amost perfectly (Fig. 13) and a further increase of the
excess capacity is rather seen as a reduction of the
effective buffer size. However, with the optimum threshold
settings, EPD redly cleans the packet loss process
compared to PPD, as has been shown by a more detailed
trace-driven analysis in [19]. The likelihood increases that
a least one connection survives loss periods without
multiple loss and thus can recover quickly. As a result,
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Fig. 14: Simulated TCP efficiency and fairness with 16
sources as a function of the normalised excess capacity

usualy at least one connection is active. Without EPD,
often al TCP connections enter a time-out triggered
retransmission phase when congestion occurs and thus
show atendency to idle synchronously.

5.2 Increasing the Number of Connections

With small buffers, 725 and 1088 cells, maximum
performance is achieved for an excess capacity of 2. This
is different from [2], where performance of EPD increases
monotonously. However, the respective configurations
deviate from each other since the parameter sets used
throughout this paper were the result of often very
practical considerations as well as careful end system
performance measurements. First, the experimental
configuration introduced in Fig. 1 comprises fewer sources
than normally used in simulation studies. By means of
shaping, the bottleneck capacity at the bottleneck link is
reduced to 37.44 Mbit/s in order to ensure that each
individual TCP connection is able to exploit the
bandwidth with any arbitrary parameter combination used
in this paper. The ASX-200 switch schedules the UBR
per-V C gqueues with a round robin discipline as opposed to
the FIFO strategy simulated in [2]. In addition, timer
granularity is either set to 20 ms or 200 ms (default) and
not to 0.1 ms as in [2]. In a local environment, a large
timer granularity causes TCP to over-estimate the round-
trip time. This results in a too large retransmission time-
out value and waste of bandwidth.

At first glance, the number of connections might be
the most important difference. This section therefore
investigates the performance of TCP over UBR plus EPD
in simulations with 16 sources. The main results are
presented in Fig. 14. With a buffer of only 1088 cells, the
efficiency of TCP is quite robust against a change of the
excess capacity but gill non-monotonous performance
behaviour can be observed. Whereas also perfect fairness
is achieved with that buffer size (not shown in Fig. 14),
the system with a switch buffer size of 725 cells gets
rather unfair. If both fairness and efficiency are taken as
performance criteria, PPD or an excess buffer capacity of
4 should be favoured. However, the complete different
behaviour for the respective buffer size renders any
profound dimensioning impossible.

5.3 Discussion of the Idling TCP Configuration

In section4.3, experimental results with a TCP
configuration composed of Solaris2.5.1 senders and
Linux 2.0.25 have been summarised. In this scenario,
TCP over UBR only benefits little from EPD. This section
tries to validate those result by approximating the known
unusual TCP implementation details. Among others, the
simulator was subject to the following modifications:
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Fig. 15: Simulated TCP efficiency as a function of the
normalised excess capacity (Modified TCP).

Exponential  backoff is only reset when all
retransmitted segments have been acknowledged in
order to emulate the extensive idling after multiple
loss.

The stretch acknowledgement delay is set to 4 ms.
While waiting for the return of an acknowledgement
for a segment which was retransmitted by Fast
Retransmit, the congestion window must not be
increased. This is a conservative approximation of a
Solaris 2.5.1 implementation detail reported in [14].
The duplicate acknowledgement counter is not reset
when a retransmission time-out occurs [14].

As discussed in section4.3, the number of
acknowledgements decreases dramatically thus practically
disabling Fast Retransmit/Recovery. At the same time, the
amount of data acknowledged at once increases which will
lead to more bursty packet arrivals. In fact, these changes
make the TCP over UBR plus EPD system ineffective
(Fig. 15). Even with an excess capacity of 0 (PPD), only a
few dead cells can be observed in Fig. 16 (compared with
Fig. 13). As pointed out above, EPD is beneficial only in
conjunction with Fast Retransmit because it concentrates
cell loss on fewer segments thus enabling at least some
TCP connections to avoid retransmission time-outs. Since
this does not work here, EPD only reduces the effective
buffer size, and performance gets even worse.

6 Conclusions

This paper summarises the most important results of a
vast measurement campaign to study the performance of
TCP over UBR. Packet length, switch buffer, Partial
Packet and Early Packet Discard with different thresholds,
and many TCP protocol parameters have been tuned or
varied to gan insight into the manifold relevant
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Fig. 16: Simulated Dead Cell Ratio at the receiversas a
function of b (Modified TCP).

parameters impacting the performance in a local ATM
network.

An efficient co-operation of EPD with TCP's
retransmission strategy has been found to be the key
requirement for good TCP over UBR performance with
relatively small buffers, compared to the TCP window
size. In the local network configuration, the Fast
Retransmit and Recovery algorithms work sufficiently
well. EPD cleans the loss episode by concentrating cell
loss to alower number of segments and, in this way, helps
some TCP connections to avoid retransmission time-outs.

However, in experiments with different TCP
implementations, which were characterised by a
dominance of time-out triggered over FRR
retransmissions, EPD has little impact. In this case, only a
reduction of the timer granularity makes TCP more
reactive to segment loss and thus reduces idle time. The
ratio of cells belonging to corrupted frames but still
arriving at the receiver (dead cell ratio) alone is only an
indicator for good EPD performance if it is compared to
the values measured with plain UBR and PPD.

Moreover, good performance in terms of both
efficiency and fairness for TCP over UBR with EPD can
be achieved with a switch buffer dlightly larger than one
TCP window size. Zero loss is not necessary to obtain
good performance but, as stated above, losses must be
reduced such that many lost segments can be
retransmitted efficiently with Fast Retransmit/Recovery.
EPD helps to meet this requirement with a smaller buffer
size, compared to plain UBR and PPD, provided that the
threshold is set appropriate. The latter condition can be
hard to meet in a more heterogeneous scenario.

In this work, both experiments and simulations have
been carried out in order to vaidate the results but also to
test hypotheses about the behaviour of the real systems. At
the end, a qualitative correspondence between simulation
and measurements was achieved.



Selective Acknowledgement [16] may also enable TCP
to bypass retransmission time-outs and to recover quickly
from congestion with multiple loss. The investigation of
this option in the context of UBR and EPD is a
worthwhile subject for future experimental work.
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