Network Working Group S. Hardcastle-Kille Request for Comments: 1327 University College London Obsoletes: RFCs 987, 1026, 1138, 1148 May 1992 Updates: RFC 822 Mapping between X.400(1988) / ISO 10021 and RFC 822 Status of this Memo This RFC specifies an IAB standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "IAB Official Protocol Standards" for the standardization state and status of this protocol. Distribution of this memo is unlimited. Abstract This document describes a set of mappings which will enable interworking between systems operating the CCITT X.400 1988) Recommendations on Message Handling Systems / ISO IEC 10021 Message Oriented Text Interchange Systems (MOTIS) [CCITT/ISO88a], and systems using the RFC 822 mail protocol [Crocker82a] or protocols derived from RFC 822. The approach aims to maximise the services offered across the boundary, whilst not requiring unduly complex mappings. The mappings should not require any changes to end systems. This document is a revision based on RFCs 987, 1026, 1138, and 1148 [Kille86a,Kille87a] which it obsoletes. This document specifies a mapping between two protocols. This specification should be used when this mapping is performed on the DARPA Internet or in the UK Academic Community. This specification may be modified in the light of implementation experience, but no substantial changes are expected. Table of Contents 1 - Overview ...................................... 3 1.1 - X.400 ......................................... 3 1.2 - RFC 822 ....................................... 3 1.3 - The need for conversion ....................... 4 1.4 - General approach .............................. 4 1.5 - Gatewaying Model .............................. 5 1.6 - X.400 (1984) .................................. 8 1.7 - Compatibility with previous versions .......... 8 1.8 - Aspects not covered ........................... 8 1.9 - Subsetting .................................... 9 1.10 - Document Structure ............................ 9 Hardcastle-Kille [Page 1] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 1.11 - Acknowledgements .............................. 9 2 - Service Elements .............................. 10 2.1 - The Notion of Service Across a Gateway ........ 10 2.2 - RFC 822 ....................................... 11 2.3 - X.400 ......................................... 15 3 - Basic Mappings ................................ 24 3.1 - Notation ...................................... 24 3.2 - ASCII and IA5 ................................. 26 3.3 - Standard Types ................................ 26 3.4 - Encoding ASCII in Printable String ............ 28 4 - Addressing .................................... 30 4.1 - A textual representation of MTS.ORAddress ..... 30 4.2 - Basic Representation .......................... 31 4.3 - EBNF.822-address <-> MTS.ORAddress ............ 36 4.4 - Repeated Mappings ............................. 48 4.5 - Directory Names ............................... 50 4.6 - MTS Mappings .................................. 50 4.7 - IPMS Mappings ................................. 55 5 - Detailed Mappings ............................. 59 5.1 - RFC 822 -> X.400 .............................. 59 5.2 - Return of Contents ............................ 67 5.3 - X.400 -> RFC 822 .............................. 67 Appendix A - Mappings Specific to SMTP ..................... 91 Appendix B - Mappings specific to the JNT Mail ............. 91 1 - Introduction .................................. 91 2 - Domain Ordering ............................... 91 3 - Addressing .................................... 91 4 - Acknowledge-To: .............................. 91 5 - Trace ......................................... 92 6 - Timezone specification ........................ 92 7 - Lack of 822-MTS originator specification ...... 92 Appendix C - Mappings specific to UUCP Mail ................ 93 Appendix D - Object Identifier Assignment .................. 94 Appendix E - BNF Summary ................................... 94 Appendix F - Format of address mapping tables .............. 101 1 - Global Mapping Information .................... 101 2 - Syntax Definitions ............................ 102 3 - Table Lookups ................................. 103 4 - Domain -> O/R Address format .................. 104 5 - O/R Address -> Domain format .................. 104 6 - Domain -> O/R Address of Gateway table ........ 104 Appendix G - Mapping with X.400(1984) ...................... 105 Appendix H - RFC 822 Extensions for X.400 access ........... 106 Appendix I - Conformance ................................... 106 Appendix J - Change History: RFC 987, 1026, 1138, 1148 ..... 107 1 - Introduction .................................. 108 2 - Service Elements .............................. 108 3 - Basic Mappings ................................ 108 Hardcastle-Kille [Page 2] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 4 - Addressing .................................... 108 5 - Detailed Mappings ............................. 109 6 - Appendices .................................... 109 Appendix K - Change History: RFC 1148 to this Document ..... 109 1 - General ....................................... 109 2 - Basic Mappings ................................ 110 3 - Addressing .................................... 110 4 - Detailed Mappings ............................. 110 5 - Appendices .................................... 110 References ................................................. 111 Security Considerations .................................... 113 Author's Address ........................................... 113 Chapter 1 -- Overview 1.1. X.400 This document relates to the CCITT 1988 X.400 Series Recommendations / ISO IEC 10021 on the Message Oriented Text Interchange Service (MOTIS). This ISO/CCITT standard is referred to in this document as "X.400", which is a convenient shorthand. Any reference to the 1984 CCITT Recommendations will be explicit. X.400 defines an Interpersonal Messaging System (IPMS), making use of a store and forward Message Transfer System. This document relates to the IPMS, and not to wider application of X.400. It is expected that X.400 will be implemented very widely. 1.2. RFC 822 RFC 822 evolved as a messaging standard on the DARPA (the US Defense Advanced Research Projects Agency) Internet. It specifies and end to end message format. It is used in conjunction with a number of different message transfer protocol environments. SMTP Networks On the DARPA Internet and other TCP/IP networks, RFC 822 is used in conjunction with two other standards: RFC 821, also known as Simple Mail Transfer Protocol (SMTP) [Postel82a], and RFC 920 which is a Specification for domains and a distributed name service [Postel84a]. UUCP Networks UUCP is the UNIX to UNIX CoPy protocol, which is usually used over dialup telephone networks to provide a simple message transfer mechanism. There are some extensions to RFC 822, particularly in the addressing. They use domains which conform to RFC 920, but not the corresponding domain nameservers [Horton86a]. Hardcastle-Kille [Page 3] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 Bitnet Some parts of Bitnet and related networks use RFC 822 related protocols, with EBCDIC encoding. JNT Mail Networks A number of X.25 networks, particularly those associated with the UK Academic Community, use the JNT (Joint Network Team) Mail Protocol, also known as Greybook [Kille84a]. This is used with domains and name service specified by the JNT NRS (Name Registration Scheme) [Larmouth83a]. The mappings specified here are appropriate for all of these networks. 1.3. The need for conversion There is a large community using RFC 822 based protocols for mail services, who will wish to communicate with users of the IPMS provided by X.400 systems. This will also be a requirement in cases where communities intend to make a transition to use of an X.400 IPMS, as conversion will be needed to ensure a smooth service transition. It is expected that there will be more than one gateway, and this specification will enable them to behave in a consistent manner. Note that the term gateway is used to describe a component performing the protocol mappings between RFC 822 and X.400. This is standard usage amongst mail implementors, but should be noted carefully by transport and network service implementors. Consistency between gateways is desirable to provide: 1. Consistent service to users. 2. The best service in cases where a message passes through multiple gateways. 1.4. General approach There are a number of basic principles underlying the details of the specification. These principles are goals, and are not achieved in all aspects of the specification. 1. The specification should be pragmatic. There should not be a requirement for complex mappings for "Academic" reasons. Complex mappings should not be required to support trivial additional functionality. 2. Subject to 1), functionality across a gateway should be as high as possible. Hardcastle-Kille [Page 4] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 3. It is always a bad idea to lose information as a result of any transformation. Hence, it is a bad idea for a gateway to discard information in the objects it processes. This includes requested services which cannot be fully mapped. 4. All mail gateways actually operate at exactly one level above the layer on which they conceptually operate. This implies that the gateway must not only be cognisant of the semantics of objects at the gateway level, but also be cognisant of higher level semantics. If meaningful transformation of the objects that the gateway operates on is to occur, then the gateway needs to understand more than the objects themselves. 5. Subject to 1), the specification should be reversible. That is, a double transformation should bring you back to where you started. 1.5. Gatewaying Model 1.5.1. X.400 X.400 defines the IPMS Abstract Service in X.420/ISO 10021-7, [CCITT/ISO88b] which comprises of three basic services: 1. Origination 2. Reception 3. Management Management is a local interaction between the user and the IPMS, and is therefore not relevant to gatewaying. The first two services consist of operations to originate and receive the following two objects: 1. IPM (Interpersonal Message). This has two components: a heading, and a body. The body is structured as a sequence of body parts, which may be basic components (e.g., IA5 text, or G3 fax), or IP Messages. The heading consists of fields containing end to end user information, such as subject, primary recipients (To:), and importance. 2. IPN (Inter Personal Notification). A notification about receipt of a given IPM at the UA level. The Origination service also allows for origination of a probe, which is an object to test whether a given IPM could be correctly received. Hardcastle-Kille [Page 5] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 The Reception service also allows for receipt of Delivery Reports DR), which indicate delivery success or failure. These IPMS Services utilise the Message Transfer (MT) Abstract Service [CCITT/ISO88c]. The MT Abstract Service provides the following three basic services: 1. Submission (used by IPMS Origination) 2. Delivery (used by IPMS Reception) 3. Administration (used by IPMS Management) Administration is a local issue, and so does not affect this standard. Submission and delivery relate primarily to the MTS Message (comprising Envelope and Content), which carries an IPM or IPN (or other uninterpreted contents). There is also an Envelope, which includes an ID, an originator, and a list of recipients. Submission also includes the probe service, which supports the IPMS Probe. Delivery also includes Reports, which indicate whether a given MTS Message has been delivered or not. The MTS is REFINED into the MTA (Message Transfer Agent) Service, which defines the interaction between MTAs, along with the procedures for distributed operation. This service provides for transfer of MTS Messages, Probes, and Reports. 1.5.2. RFC 822 RFC 822 is based on the assumption that there is an underlying service, which is here called the 822-MTS service. The 822-MTS service provides three basic functions: 1. Identification of a list of recipients. 2. Identification of an error return address. 3. Transfer of an RFC 822 message. It is possible to achieve 2) within the RFC 822 header. Some 822-MTS protocols, in particular SMTP, can provide additional functionality, but as these are neither mandatory in SMTP, nor available in other 822-MTS protocols, they are not considered here. Details of aspects specific to two 822-MTS protocols are given in Appendices B and C. An RFC 822 message consists of a header, and content which is uninterpreted ASCII text. The header is divided into fields, which are the protocol elements. Most of these fields are analogous to P2 heading fields, although some are analogous to MTS Service Elements Hardcastle-Kille [Page 6] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 or MTA Service Elements. 1.5.3. The Gateway Given this functional description of the two services, the functional nature of a gateway can now be considered. It would be elegant to consider the 822-MTS service mapping onto the MTS Service Elements and RFC 822 mapping onto an IPM, but reality just does not fit. Another elegant approach would be to treat this document as the definition of an X.400 Access Unit (AU). Again, reality does not fit. It is necessary to consider that the IPM format definition, the IPMS Service Elements, the MTS Service Elements, and MTA Service Elements on one side are mapped into RFC 822 + 822-MTS on the other in a slightly tangled manner. The details of the tangle will be made clear in Chapter 5. Access to the MTA Service Elements is minimised. The following basic mappings are thus defined. When going from RFC 822 to X.400, an RFC 822 message and the associated 822-MTS information is always mapped into an IPM (MTA, MTS, and IPMS Services). Going from X.400 to RFC 822, an RFC 822 message and the associated 822-MTS information may be derived from: 1. A Report (MTA, and MTS Services) 2. An IPN (MTA, MTS, and IPMS services) 3. An IPM (MTA, MTS, and IPMS services) Probes (MTA Service) must be processed by the gateway, as discussed in Chapter 5. MTS Messages containing Content Types other than those defined by the IPMS are not mapped by the gateway, and should be rejected at the gateway. 1.5.4. Repeated Mappings The primary goal of this specification is to support single mappings, so that X.400 and RFC 822 users can communicate with maximum functionality. The mappings specified here are designed to work where a message traverses multiple times between X.400 and RFC 822. This is often essential, particularly in the case of distribution lists. However, in general, this will lead to a level of service which is the lowest common denominator (approximately the services offered by RFC 822). Some RFC 822 networks may wish to use X.400 as an interconnection mechanism (typically for policy reasons), and this is fully supported. Hardcastle-Kille [Page 7] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 Where an X.400 messages transfers to RFC 822 and then back to X.400, there is no expectation of X.400 services which do not have an equivalent service in standard RFC 822 being preserved - although this may be possible in some cases. 1.6. X.400 (1984) Much of this work is based on the initial specification of RFC 987 and in its addendum RFC 1026, which defined a mapping between X.400(1984) and RFC 822. A basic decision is that the mapping defined in this document is to the full 1988 version of X.400, and not to a 1984 compatible subset. New features of X.400(1988) can be used to provide a much cleaner mapping than that defined in RFC 987. This is important, to give good support to communities which will utilise full X.400 at an early date. To interwork with 1984 systems, Appendix G shall be followed. If a message is being transferred to an X.400(1984) system by way of X.400(1988) MTA it will give a slightly better service to follow the rules of Appendix G. 1.7. Compatibility with previous versions The changes between this and older versions of the document are given in Appendices I and J. These are RFCs 987, 1026, 1138, and 1148. This document is a revision of RFC 1148 [Kille90a]. As far as possible, changes have been made in a compatible fashion. 1.8. Aspects not covered There have been a number of cases where RFC 987 was used in a manner which was not intended. This section is to make clear some limitations of scope. In particular, this specification does not specify: - Extensions of RFC 822 to provide access to all X.400 services - X.400 user interface definition - Mapping X.400 to extended versions of RFC 822, with support for multimedia content. The first two of these are really coupled. To map the X.400 services, this specification defines a number of extensions to RFC 822. As a side effect, these give the 822 user access to SOME X.400 services. However, the aim on the RFC 822 side is to preserve current service, and it is intentional that access is not given to Hardcastle-Kille [Page 8] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 all X.400 services. Thus, it will be a poor choice for X.400 implementors to use RFC 987(88) as an interface - there are too many aspects of X.400 which cannot be accessed through it. If a text interface is desired, a specification targeted at X.400, without RFC 822 restrictions, would be more appropriate. Some optional and limited extensions in this area have proved useful, and are defined in Appendix H. 1.9. Subsetting This proposal specifies a mapping which is appropriate to preserve services in existing RFC 822 communities. Implementations and specifications which subset this specification are strongly discouraged. 1.10. Document Structure This document has five chapters: 1. Overview - this chapter. 2. Service Elements - This describes the (end user) services mapped by a gateway. 3. Basic mappings - This describes some basic notation used in Chapters 3-5, the mappings between character sets, and some fundamental protocol elements. 4. Addressing - This considers the mapping between X.400 O/R names and RFC 822 addresses, which is a fundamental gateway component. 5. Detailed Mappings - This describes the details of all other mappings. There are also eleven appendices. WARNING: THE REMAINDER OF THIS SPECIFICATION IS TECHNICALLY DETAILED. IT WILL NOT MAKE SENSE, EXCEPT IN THE CONTEXT OF RFC 822 AND X.400 (1988). DO NOT ATTEMPT TO READ THIS DOCUMENT UNLESS YOU ARE FAMILIAR WITH THESE SPECIFICATIONS. 1.11. Acknowledgements The work in this specification was substantially based on RFC 987 and RFC 1148, which had input from many people, who are credited in the respective documents. Hardcastle-Kille [Page 9] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 A number of comments from people on RFC 1148 lead to this document. In particular, there were comments and suggestions from: Maurice Abraham (HP); Harald Alvestrand (Sintef); Peter Cowen (X-Tel); Jim Craigie (JNT); Ella Gardener (MITRE); Christian Huitema (Inria); Erik Huizer (SURFnet); Neil Jones DEC); Ignacio Martinez (IRIS); Julian Onions (X-Tel); Simon Poole (SWITCH); Clive Roberts (Data General); Pete Vanderbilt SUN); Alan Young (Concurrent). Chapter 2 - Service Elements This chapter considers the services offered across a gateway built according to this specification. It gives a view of the functionality provided by such a gateway for communication with users in the opposite domain. This chapter considers service mappings in the context of SINGLE transfers only, and not repeated mappings through multiple gateways. 2.1. The Notion of Service Across a Gateway RFC 822 and X.400 provide a number of services to the end user. This chapter describes the extent to which each service can be supported across an X.400 <-> RFC 822 gateway. The cases considered are single transfers across such a gateway, although the problems of multiple crossings are noted where appropriate. 2.1.1. Origination of Messages When a user originates a message, a number of services are available. Some of these imply actions (e.g., delivery to a recipient), and some are insertion of known data (e.g., specification of a subject field). This chapter describes, for each offered service, to what extent it is supported for a recipient accessed through a gateway. There are three levels of support: Supported The corresponding protocol elements map well, and so the service can be fully provided. Not Supported The service cannot be provided, as there is a complete mismatch. Partial Support The service can be partially fulfilled. In the first two cases, the service is simply marked as Supported" or "Not Supported". Some explanation may be given if there are additional implications, or the (non) support is not intuitive. For Hardcastle-Kille [Page 10] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 partial support, the level of partial support is summarised. Where partial support is good, this will be described by a phrase such as "Supported by use of.....". A common case of this is where the service is mapped onto a non- standard service on the other side of the gateway, and this would have lead to support if it had been a standard service. In many cases, this is equivalent to support. For partial support, an indication of the mechanism is given, in order to give a feel for the level of support provided. Note that this is not a replacement for Chapter 5, where the mapping is fully specified. If a service is described as supported, this implies: - Semantic correspondence. - No (significant) loss of information. - Any actions required by the service element. An example of a service gaining full support: If an RFC 822 originator specifies a Subject: field, this is considered to be supported, as an X.400 recipient will get a subject indication. In many cases, the required action will simply be to make the information available to the end user. In other cases, actions may imply generating a delivery report. All RFC 822 services are supported or partially supported for origination. The implications of non-supported X.400 services is described under X.400. 2.1.2. Reception of Messages For reception, the list of service elements required to support this mapping is specified. This is really an indication of what a recipient might expect to see in a message which has been remotely originated. 2.2. RFC 822 RFC 822 does not explicitly define service elements, as distinct from protocol elements. However, all of the RFC 822 header fields, with the exception of trace, can be regarded as corresponding to implicit RFC 822 service elements. 2.2.1. Origination in RFC 822 A mechanism of mapping, used in several cases, is to map the RFC 822 header into a heading extension in the IPM (InterPersonal Message). Hardcastle-Kille [Page 11] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 This can be regarded as partial support, as it makes the information available to any X.400 implementations which are interested in these services. Communities which require significant RFC 822 interworking are recommended to require that their X.400 User Agents are able to display these heading extensions. Support for the various service elements (headers) is now listed. Date: Supported. From: Supported. For messages where there is also a sender field, the mapping is to "Authorising Users Indication", which has subtly different semantics to the general RFC 822 usage of From:. Sender: Supported. Reply-To: Supported. To: Supported. Cc: Supported. Bcc: Supported. Message-Id: Supported. In-Reply-To: Supported, for a single reference. Where multiple references are given, partial support is given by mapping to "Cross Referencing Indication". This gives similar semantics. References: Supported. Keywords: Supported by use of a heading extension. Subject: Supported. Comments: Supported by use of an extra body part. Hardcastle-Kille [Page 12] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 Encrypted: Supported by use of a heading extension. Resent-* Supported by use of a heading extension. Note that addresses in these fields are mapped onto text, and so are not accessible to the X.400 user as addresses. In principle, fuller support would be possible by mapping onto a forwarded IP Message, but this is not suggested. Other Fields In particular X-* fields, and "illegal" fields in common usage (e.g., "Fruit-of-the-day:") are supported by use of heading extensions. 2.2.2. Reception by RFC 822 This considers reception by an RFC 822 User Agent of a message originated in an X.400 system and transferred across a gateway. The following standard services (headers) may be present in such a message: Date: From: Sender: Reply-To: To: Cc: Bcc: Message-Id: In-Reply-To: References: Subject: The following non-standard services (headers) may be present. These are defined in more detail in Chapter 5 (5.3.4, 5.3.6, 5.3.7): Hardcastle-Kille [Page 13] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 Autoforwarded: Content-Identifier: Conversion: Conversion-With-Loss: Delivery-Date: Discarded-X400-IPMS-Extensions: Discarded-X400-MTS-Extensions: DL-Expansion-History: Deferred-Delivery: Expiry-Date: Importance: Incomplete-Copy: Language: Latest-Delivery-Time: Message-Type: Obsoletes: Original-Encoded-Information-Types: Originator-Return-Address: Priority: Reply-By: Requested-Delivery-Method: Sensitivity: X400-Content-Type: X400-MTS-Identifier: Hardcastle-Kille [Page 14] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 X400-Originator: X400-Received: X400-Recipients: 2.3. X.400 2.3.1. Origination in X.400 When mapping services from X.400 to RFC 822 which are not supported by RFC 822, new RFC 822 headers are defined. It is intended that these fields will be registered, and that co- operating RFC 822 systems may use them. Where these new fields are used, and no system action is implied, the service can be regarded as being partially supported. Chapter 5 describes how to map X.400 services onto these new headers. Other elements are provided, in part, by the gateway as they cannot be provided by RFC 822. Some service elements are marked N/A (not applicable). There are five cases, which are marked with different comments: N/A (local) These elements are only applicable to User Agent / Message Transfer Agent interaction and so they cannot apply to RFC 822 recipients. N/A (PDAU) These service elements are only applicable where the recipient is reached by use of a Physical Delivery Access Unit (PDAU), and so do not need to be mapped by the gateway. N/A (reception) These services are only applicable for reception. N/A (prior) If requested, this service must be performed prior to the gateway. N/A (MS) These services are only applicable to Message Store (i.e., a local service). Finally, some service elements are not supported. In particular, the new security services are not mapped onto RFC 822. Unless otherwise indicated, the behaviour of service elements marked as not supported will depend on the criticality marking supplied by the user. If the element is marked as critical for transfer or delivery, a non- Hardcastle-Kille [Page 15] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 delivery notification will be generated. Otherwise, the service request will be ignored. 2.3.1.1. Basic Interpersonal Messaging Service These are the mandatory IPM services as listed in Section 19.8 of X.400 / ISO/IEC 10021-1, listed here in the order given. Section 19.8 has cross references to short definitions of each service. Access management N/A (local). Content Type Indication Supported by a new RFC 822 header (Content-Type:). Converted Indication Supported by a new RFC 822 header (X400-Received:). Delivery Time Stamp Indication N/A (reception). IP Message Identification Supported. Message Identification Supported, by use of a new RFC 822 header (X400-MTS-Identifier). This new header is required, as X.400 has two message-ids whereas RFC 822 has only one (see previous service). Non-delivery Notification Not supported, although in general an RFC 822 system will return error reports by use of IP messages. In other service elements, this pragmatic result can be treated as effective support of this service element. Original Encoded Information Types Indication Supported as a new RFC 822 header (Original-Encoded-Information-Types:). Submission Time Stamp Indication Supported. Typed Body Some types supported. IA5 is fully supported. ForwardedIPMessage is supported, with some loss of information. Other types get some measure of support, dependent on X.400 facilities for conversion to IA5. This Hardcastle-Kille [Page 16] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 will only be done where content conversion is not prohibited. User Capabilities Registration N/A (local). 2.3.1.2. IPM Service Optional User Facilities This section describes support for the optional (user selectable) IPM services as listed in Section 19.9 of X.400 / ISO/IEC 10021- 1, listed here in the order given. Section 19.9 has cross references to short definitions of each service. Additional Physical Rendition N/A (PDAU). Alternate Recipient Allowed Not supported. There is no RFC 822 service equivalent to prohibition of alternate recipient assignment (e.g., an RFC 822 system may freely send an undeliverable message to a local postmaster). Thus, the gateway cannot prevent assignment of alternative recipients on the RFC 822 side. This service really means giving the user control as to whether or not an alternate recipient is allowed. This specification requires transfer of messages to RFC 822 irrespective of this service request, and so this service is not supported. Authorising User's Indication Supported. Auto-forwarded Indication Supported as new RFC 822 header (Auto-Forwarded:). Basic Physical Rendition N/A (PDAU). Blind Copy Recipient Indication Supported. Body Part Encryption Indication Supported by use of a new RFC 822 header (Original-Encoded-Information-Types:), although in most cases it will not be possible to map the body part in question. Content Confidentiality Not supported. Hardcastle-Kille [Page 17] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 Content Integrity Not supported. Conversion Prohibition Supported. In this case, only messages with IA5 body parts, other body parts which contain only IA5, and Forwarded IP Messages (subject recursively to the same restrictions), will be mapped. Conversion Prohibition in Case of Loss of Information Supported. Counter Collection N/A (PDAU). Counter Collection with Advice N/A (PDAU). Cross Referencing Indication Supported. Deferred Delivery N/A (prior). This service should always be provided by the MTS prior to the gateway. A new RFC 822 header Deferred-Delivery:) is provided to transfer information on this service to the recipient. Deferred Delivery Cancellation N/A (local). Delivery Notification Supported. This is performed at the gateway. Thus, a notification is sent by the gateway to the originator. If the 822-MTS protocol is JNT Mail, a notification may also be sent by the recipient UA. Delivery via Bureaufax Service N/A (PDAU). Designation of Recipient by Directory Name N/A (local). Disclosure of Other Recipients Supported by use of a new RFC 822 header (X400-Recipients:). This is descriptive information for the RFC 822 recipient, and is not reverse mappable. Hardcastle-Kille [Page 18] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 DL Expansion History Indication Supported by use of a new RFC 822 header DL-Expansion-History:). DL Expansion Prohibited Distribution List means MTS supported distribution list, in the manner of X.400. This service does not exist in the RFC 822 world. RFC 822 distribution lists should be regarded as an informal redistribution mechanism, beyond the scope of this control. Messages will be sent to RFC 822, irrespective of whether this service is requested. Theoretically therefore, this service is supported, although in practice it may appear that it is not supported. Express Mail Service N/A (PDAU). Expiry Date Indication Supported as new RFC 822 header (Expiry-Date:). In general, no automatic action can be expected. Explicit Conversion N/A (prior). Forwarded IP Message Indication Supported, with some loss of information. The message is forwarded in an RFC 822 body, and so can only be interpreted visually. Grade of Delivery Selection N/A (PDAU) Importance Indication Supported as new RFC 822 header (Importance:). Incomplete Copy Indication Supported as new RFC 822 header (Incomplete-Copy:). Language Indication Supported as new RFC 822 header (Language:). Latest Delivery Designation Not supported. A new RFC 822 header (Latest-Delivery-Time:) is provided, which may be used by the recipient. Message Flow Confidentiality Not supported. Hardcastle-Kille [Page 19] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 Message Origin Authentication N/A (reception). Message Security Labelling Not supported. Message Sequence Integrity Not supported. Multi-Destination Delivery Supported. Multi-part Body Supported, with some loss of information, in that the structuring cannot be formalised in RFC 822. Non Receipt Notification Request Not supported. Non Repudiation of Delivery Not supported. Non Repudiation of Origin N/A (reception). Non Repudiation of Submission N/A (local). Obsoleting Indication Supported as new RFC 822 header (Obsoletes:). Ordinary Mail N/A (PDAU). Originator Indication Supported. Originator Requested Alternate Recipient Not supported, but is placed as comment next to address X400-Recipients:). Physical Delivery Notification by MHS N/A (PDAU). Physical Delivery Notification by PDS N/A (PDAU). Hardcastle-Kille [Page 20] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 Physical Forwarding Allowed Supported by use of a comment in a new RFC 822 header X400-Recipients:), associated with the recipient in question. Physical Forwarding Prohibited Supported by use of a comment in a new RFC 822 header X400-Recipients:), associated with the recipient in question. Prevention of Non-delivery notification Supported, as delivery notifications cannot be generated by RFC 822. In practice, errors will be returned as IP Messages, and so this service may appear not to be supported see Non-delivery Notification). Primary and Copy Recipients Indication Supported Probe Supported at the gateway (i.e., the gateway services the probe). Probe Origin Authentication N/A (reception). Proof of Delivery Not supported. Proof of Submission N/A (local). Receipt Notification Request Indication Not supported. Redirection Allowed by Originator Redirection means MTS supported redirection, in the manner of X.400. This service does not exist in the RFC 822 world. RFC 822 redirection (e.g., aliasing) should be regarded as an informal redirection mechanism, beyond the scope of this control. Messages will be sent to RFC 822, irrespective of whether this service is requested. Theoretically therefore, this service is supported, although in practice it may appear that it is not supported. Registered Mail N/A (PDAU). Hardcastle-Kille [Page 21] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 Registered Mail to Addressee in Person N/A (PDAU). Reply Request Indication Supported as comment next to address. Replying IP Message Indication Supported. Report Origin Authentication N/A (reception). Request for Forwarding Address N/A (PDAU). Requested Delivery Method N/A (local). The services required must be dealt with at submission time. Any such request is made available through the gateway by use of a comment associated with the recipient in question. Return of Content In principle, this is N/A, as non-delivery notifications are not supported. In practice, most RFC 822 systems will return part or all of the content along with the IP Message indicating an error (see Non-delivery Notification). Sensitivity Indication Supported as new RFC 822 header (Sensitivity:). Special Delivery N/A (PDAU). Stored Message Deletion N/A (MS). Stored Message Fetching N/A (MS). Stored Message Listing N/A (MS). Stored Message Summary N/A (MS). Subject Indication Supported. Hardcastle-Kille [Page 22] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 Undeliverable Mail with Return of Physical Message N/A (PDAU). Use of Distribution List In principle this applies only to X.400 supported distribution lists (see DL Expansion Prohibited). Theoretically, this service is N/A (prior). In practice, because of informal RFC 822 lists, this service can be regarded as supported. 2.3.2. Reception by X.400 2.3.2.1. Standard Mandatory Services The following standard IPM mandatory user facilities are required for reception of RFC 822 originated mail by an X.400 UA. Content Type Indication Delivery Time Stamp Indication IP Message Identification Message Identification Non-delivery Notification Original Encoded Information Types Indication Submission Time Stamp Indication Typed Body 2.3.2.2. Standard Optional Services The following standard IPM optional user facilities are required for reception of RFC 822 originated mail by an X.400 UA. Authorising User's Indication Blind Copy Recipient Indication Cross Referencing Indication Originator Indication Primary and Copy Recipients Indication Hardcastle-Kille [Page 23] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 Replying IP Message Indication Subject Indication 2.3.2.3. New Services A new service "RFC 822 Header Field" is defined using the extension facilities. This allows for any RFC 822 header field to be represented. It may be present in RFC 822 originated messages, which are received by an X.400 UA. Chapter 3 Basic Mappings 3.1. Notation The X.400 protocols are encoded in a structured manner according to ASN.1, whereas RFC 822 is text encoded. To define a detailed mapping, it is necessary to refer to detailed protocol elements in each format. A notation to achieve this is described in this section. 3.1.1. RFC 822 Structured text is defined according to the Extended Backus Naur Form (EBNF) defined in Section 2 of RFC 822 [Crocker82a]. In the EBNF definitions used in this specification, the syntax rules given in Appendix D of RFC 822 are assumed. When these EBNF tokens are referred to outside an EBNF definition, they are identified by the string "822." appended to the beginning of the string (e.g., 822.addr-spec). Additional syntax rules, to be used throughout this specification, are defined in this chapter. The EBNF is used in two ways. 1. To describe components of RFC 822 messages (or of 822-MTS components). In this case, the lexical analysis defined in Section 3 of RFC 822 shall be used. When these new EBNF tokens are referred to outside an EBNF definition, they are identified by the string "EBNF." appended to the beginning of the string (e.g., EBNF.importance). 2. To describe the structure of IA5 or ASCII information not in an RFC 822 message. In these cases, tokens will either be self delimiting, or be delimited by self delimiting tokens. Comments and LWSP are not used as delimiters, except for the following cases, where LWSP may be inserted according to RFC 822 rules. Hardcastle-Kille [Page 24] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 - Around the ":" in all headers - EBNF.labelled-integer - EBNF.object-identifier - EBNF.encoded-info RFC 822 folding rules are applied to all headers. 3.1.2. ASN.1 An element is referred to with the following syntax, defined in EBNF: element = service "." definition *( "." definition ) service = "IPMS" / "MTS" / "MTA" definition = identifier / context identifier = ALPHA *< ALPHA or DIGIT or "-" > context = "[" 1*DIGIT "]" The EBNF.service keys are shorthand for the following service specifications: IPMS IPMSInformationObjects defined in Annex E of X.420 / ISO 10021-7. MTS MTSAbstractService defined in Section 9 of X.411 / ISO 10021-4. MTA MTAAbstractService defined in Section 13 of X.411 / ISO 10021-4. The first EBNF.identifier identifies a type or value key in the context of the defined service specification. Subsequent EBNF.identifiers identify a value label or type in the context of the first identifier (SET or SEQUENCE). EBNF.context indicates a context tag, and is used where there is no label or type to uniquely identify a component. The special EBNF.identifier keyword "value" is used to denote an element of a sequence. For example, IPMS.Heading.subject defines the subject element of the IPMS heading. The same syntax is also used to refer to element values. For example, MTS.EncodedInformationTypes.[0].g3Fax refers to a value of MTS.EncodedInformationTypes.[0] . Hardcastle-Kille [Page 25] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 3.2. ASCII and IA5 A gateway will interpret all IA5 as ASCII. Thus, mapping between these forms is conceptual. 3.3. Standard Types There is a need to convert between ASCII text, and some of the types defined in ASN.1 [CCITT/ISO88d]. For each case, an EBNF syntax definition is given, for use in all of this specification, which leads to a mapping between ASN.1, and an EBNF construct. All EBNF syntax definitions of ASN.1 types are in lower case, whereas ASN.1 types are referred to with the first letter in upper case. Except as noted, all mappings are symmetrical. 3.3.1. Boolean Boolean is encoded as: boolean = "TRUE" / "FALSE" 3.3.2. NumericString NumericString is encoded as: numericstring = *DIGIT 3.3.3. PrintableString PrintableString is a restricted IA5String defined as: printablestring = *( ps-char ) ps-restricted-char = 1DIGIT / 1ALPHA / " " / "'" / "+" / "," / "-" / "." / "/" / ":" / "=" / "?" ps-delim = "(" / ")" ps-char = ps-delim / ps-restricted-char This can be used to represent real printable strings in EBNF. 3.3.4. T.61String In cases where T.61 strings are only used for conveying human interpreted information, the aim of a mapping is to render the characters appropriately in the remote character set, rather than to maximise reversibility. For these cases, the mappings to IA5 defined in CCITT Recommendation X.408 (1988) shall be used [CCITT/ISO88a]. These will then be encoded in ASCII. Hardcastle-Kille [Page 26] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 There is also a need to represent Teletex Strings in ASCII, for some aspects of O/R Address. For these, the following encoding is used: teletex-string = *( ps-char / t61-encoded ) t61-encoded = "{" 1* t61-encoded-char "}" t61-encoded-char = 3DIGIT Common characters are mapped simply. Other octets are mapped using a quoting mechanism similar to the printable string mechanism. Each octet is represented as 3 decimal digits. There are a number of places where a string may have a Teletex and/or Printable String representation. The following BNF is used to represent this. teletex-and-or-ps = [ printablestring ] [ "*" teletex-string ] The natural mapping is restricted to EBNF.ps-char, in order to make the full BNF easier to parse. 3.3.5. UTCTime Both UTCTime and the RFC 822 822.date-time syntax contain: Year (lowest two digits), Month, Day of Month, hour, minute, second (optional), and Timezone. 822.date-time also contains an optional day of the week, but this is redundant. Therefore a symmetrical mapping can be made between these constructs. Note: In practice, a gateway will need to parse various illegal variants on 822.date-time. In cases where 822.date-time cannot be parsed, it is recommended that the derived UTCTime is set to the value at the time of translation. When mapping to X.400, the UTCTime format which specifies the timezone offset shall be used. When mapping to RFC 822, the 822.date-time format shall include a numeric timezone offset (e.g., +0000). When mapping time values, the timezone shall be preserved as specified. The date shall not be normalised to any other timezone. 3.3.6. Integer A basic ASN.1 Integer will be mapped onto EBNF.numericstring. In many cases ASN.1 will enumerate Integer values or use ENUMERATED. An EBNF encoding labelled-integer is provided. When mapping from EBNF to Hardcastle-Kille [Page 27] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 ASN.1, only the integer value is mapped, and the associated text is discarded. When mapping from ASN.1 to EBNF, addition of an appropriate text label is strongly encouraged. labelled-integer ::= [ key-string ] "(" numericstring ")" key-string = *key-char key-char = <a-z, A-Z, 0-9, and "-"> 3.3.7. Object Identifier Object identifiers are represented in a form similar to that given in ASN.1. The order is the same as for ASN.1 (big-endian). The numbers are mandatory, and used when mapping from the ASCII to ASN.1. The key-strings are optional. It is recommended that as many strings as possible are generated when mapping from ASN.1 to ASCII, to facilitate user recognition. object-identifier ::= oid-comp object-identifier | oid-comp oid-comp ::= [ key-string ] "(" numericstring ")" An example representation of an object identifier is: joint-iso-ccitt(2) mhs (6) ipms (1) ep (11) ia5-text (0) or (2) (6) (1)(11)(0) 3.4. Encoding ASCII in Printable String Some information in RFC 822 is represented in ASCII, and needs to be mapped into X.400 elements encoded as printable string. For this reason, a mechanism to represent ASCII encoded as PrintableString is needed. A structured subset of EBNF.printablestring is now defined. This shall be used to encode ASCII in the PrintableString character set. Hardcastle-Kille [Page 28] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 ps-encoded = *( ps-restricted-char / ps-encoded-char ) ps-encoded-char = "(a)" ; (@) / "(p)" ; (%) / "(b)" ; (!) / "(q)" ; (") / "(u)" ; (_) / "(l)" ; "(" / "(r)" ; ")" / "(" 3DIGIT ")" The 822.3DIGIT in EBNF.ps-encoded-char must have range 0-127, and is interpreted in decimal as the corresponding ASCII character. Special encodings are given for: at sign (@), percent (%), exclamation mark/bang (!), double quote ("), underscore (_), left bracket ((), and right bracket ()). These characters, with the exception of round brackets, are not included in PrintableString, but are common in RFC 822 addresses. The abbreviations will ease specification of RFC 822 addresses from an X.400 system. These special encodings shall be interpreted in a case insensitive manner, but always generated in lower case. A reversible mapping between PrintableString and ASCII can now be defined. The reversibility means that some values of printable string (containing round braces) cannot be generated from ASCII. Therefore, this mapping must only be used in cases where the printable strings may only be derived from ASCII (and will therefore have a restricted domain). For example, in this specification, it is only applied to a Domain Defined Attribute which will have been generated by use of this specification and a value such as "(" would not be possible. To encode ASCII as PrintableString, the EBNF.ps-encoded syntax is used, with all EBNF.ps-restricted-char mapped directly. All other 822.CHAR are encoded as EBNF.ps-encoded-char. To encode PrintableString as ASCII, parse PrintableString as EBNF.ps-encoded, and then reverse the previous mapping. If the PrintableString cannot be parsed, then the mapping is being applied in to an inappropriate value, and an error shall be given to the procedure doing the mapping. In some cases, it may be preferable to pass the printable string through unaltered. Hardcastle-Kille [Page 29] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 Some examples are now given. Note the arrows which indicate asymmetrical mappings: PrintableString ASCII 'a demo.' <-> 'a demo.' foo(a)bar <-> foo@bar (q)(u)(p)(q) <-> "_%" (a) <-> @ (A) -> @ (l)a(r) <-> (a) (126) <-> ~ ( -> ( (l) <-> ( Chapter 4 - Addressing Addressing is probably the trickiest problem of an X.400 <-> RFC 822 gateway. Therefore it is given a separate chapter. This chapter, as a side effect, also defines a textual representation of an X.400 O/R Address. Initially we consider an address in the (human) mail user sense of "what is typed at the mailsystem to reference a mail user". A basic RFC 822 address is defined by the EBNF EBNF.822-address: 822-address = [ route ] addr-spec In an 822-MTS protocol, the originator and each recipient are considered to be defined by such a construct. In an RFC 822 header, the EBNF.822-address is encapsulated in the 822.address syntax rule, and there may also be associated comments. None of this extra information has any semantics, other than to the end user. The basic X.400 O/R Address, used by the MTS for routing, is defined by MTS.ORAddress. In IPMS, the MTS.ORAddress is encapsulated within IPMS.ORDescriptor. It can be seen that RFC 822 822.address must be mapped with IPMS.ORDescriptor, and that RFC 822 EBNF.822-address must be mapped with MTS.ORAddress. 4.1. A textual representation of MTS.ORAddress MTS.ORAddress is structured as a set of attribute value pairs. It is clearly necessary to be able to encode this in ASCII for gatewaying purposes. All components shall be encoded, in order to guarantee return of error messages, and to optimise third party replies. Hardcastle-Kille [Page 30] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 4.2. Basic Representation An O/R Address has a number of structured and unstructured attributes. For each unstructured attribute, a key and an encoding is specified. For structured attributes, the X.400 attribute is mapped onto one or more attribute value pairs. For domain defined attributes, each element of the sequence will be mapped onto a triple (key and two values), with each value having the same encoding. The attributes are as follows, with 1984 attributes given in the first part of the table. For each attribute, a reference is given, consisting of the relevant sections in X.402 / ISO 10021-2, and the extension identifier for 88 only attributes: Attribute (Component) Key Enc Ref Id 84/88 Attributes MTS.CountryName C P 18.3.3 MTS.AdministrationDomainName ADMD P 18.3.1 MTS.PrivateDomainName PRMD P 18.3.21 MTS.NetworkAddress X121 N 18.3.7 MTS.TerminalIdentifier T-ID P 18.3.23 MTS.OrganizationName O P/T 18.3.9 MTS.OrganizationalUnitNames.value OU P/T 18.3.10 MTS.NumericUserIdentifier UA-ID N 18.3.8 MTS.PersonalName PN P/T 18.3.12 MTS.PersonalName.surname S P/T 18.3.12 MTS.PersonalName.given-name G P/T 18.3.12 MTS.PersonalName.initials I P/T 18.3.12 MTS.PersonalName .generation-qualifier GQ P/T 18.3.12 MTS.DomainDefinedAttribute.value DD P/T 18.1 88 Attributes MTS.CommonName CN P/T 18.3.2 1 MTS.TeletexCommonName CN P/T 18.3.2 2 MTS.TeletexOrganizationName O P/T 18.3.9 3 MTS.TeletexPersonalName PN P/T 18.3.12 4 MTS.TeletexPersonalName.surname S P/T 18.3.12 4 MTS.TeletexPersonalName.given-name G P/T 18.3.12 4 MTS.TeletexPersonalName.initials I P/T 18.3.12 4 MTS.TeletexPersonalName .generation-qualifier GQ P/T 18.3.12 4 MTS.TeletexOrganizationalUnitNames .value OU P/T 18.3.10 5 MTS.TeletexDomainDefinedAttribute .value DD P/T 18.1 6 Hardcastle-Kille [Page 31] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 MTS.PDSName PD-SERVICE P 18.3.11 7 MTS.PhysicalDeliveryCountryName PD-C P 18.3.13 8 MTS.PostalCode PD-CODE P 18.3.19 9 MTS.PhysicalDeliveryOfficeName PD-OFFICE P/T 18.3.14 10 MTS.PhysicalDeliveryOfficeNumber PD-OFFICE-NUM P/T 18.3.15 11 MTS.ExtensionORAddressComponents PD-EXT-ADDRESS P/T 18.3.4 12 MTS.PhysicalDeliveryPersonName PD-PN P/T 18.3.17 13 MTS.PhysicalDeliveryOrganizationName PD-O P/T 18.3.16 14 MTS.ExtensionPhysicalDelivery AddressComponents PD-EXT-DELIVERY P/T 18.3.5 15 MTS.UnformattedPostalAddress PD-ADDRESS P/T 18.3.25 16 MTS.StreetAddress PD-STREET P/T 18.3.22 17 MTS.PostOfficeBoxAddress PD-BOX P/T 18.3.18 18 MTS.PosteRestanteAddress PD-RESTANTE P/T 18.3.20 19 MTS.UniquePostalName PD-UNIQUE P/T 18.3.26 20 MTS.LocalPostalAttributes PD-LOCAL P/T 18.3.6 21 MTS.ExtendedNetworkAddress .e163-4-address.number NET-NUM N 18.3.7 22 MTS.ExtendedNetworkAddress .e163-4-address.sub-address NET-SUB N 18.3.7 22 MTS.ExtendedNetworkAddress .psap-address NET-PSAP X 18.3.7 22 MTS.TerminalType T-TY I 18.3.24 23 The following keys identify different EBNF encodings, which are associated with the ASCII representation of MTS.ORAddress. Key Encoding P printablestring N numericstring T teletex-string P/T teletex-and-or-ps I labelled-integer X presentation-address The BNF for presentation-address is taken from the specification "A String Encoding of Presentation Address" [Kille89a]. In most cases, the EBNF encoding maps directly to the ASN.1 encoding of the attribute. There are a few exceptions. In cases where an attribute can be encoded as either a PrintableString or NumericString (Country, ADMD, PRMD), either form is mapped into the BNF. When generating ASN.1, the NumericString encoding shall be used if the string contains only digits. There are a number of cases where the P/T (teletex-and-or-ps) representation is used. Where the key maps to a single attribute, Hardcastle-Kille [Page 32] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 this choice is reflected in the encoding of the attribute (attributes 10-21). For most of the 1984 attributes and common name, there is a printablestring and a teletex variant. This pair of attributes is mapped onto the single component here. This will give a clean mapping for the common cases where only one form of the name is used. Recently, ISO has undertaken work to specify a string form of O/R Address [CCITT/ISO91a]. This has specified a number of string keywords for attributes. As RFC 1148 was an input to this work, many of the keywords are the same. To increase compatability, the following alternative values shall be recognised when mapping from RFC 822 to X.400. These shall not be generated when mapping from X.400 to RFC 822. Keyword Alternative ADMD A PRMD P GQ Q X121 X.121 UA-ID N-ID PD-OFFICE-NUMBER PD-OFFICE NUMBER When mapping from RFC 822 to X.400, the keywords: OU1, OU2, OU3, and OU4, shall be recognised. If these are present, no keyword OU shall be present. These will be treated as ordered values of OU. 4.2.1. Encoding of Personal Name Handling of Personal Name and Teletex Personal Name based purely on the EBNF.standard-type syntax defined above is likely to be clumsy. It seems desirable to utilise the "human" conventions for encoding these components. A syntax is defined, which is designed to provide a clean encoding for the common cases of O/R Address specification where: 1. There is no generational qualifier 2. Initials contain only letters 3. Given Name does not contain full stop ("."), and is at least two characters long. 4. Surname does not contain full stop in the first two characters. 5 If Surname is the only component, it does not contain full stop. Hardcastle-Kille [Page 33] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 The following EBNF is defined: encoded-pn = [ given "." ] *( initial "." ) surname given = 2*<ps-char not including "."> initial = ALPHA surname = printablestring This is used to map from any string containing only printable string characters to an O/R address personal name. To map from a string to O/R Address components, parse the string according to the EBNF. The given name and surname are assigned directly. All EBNF.initial tokens are concatenated without intervening full stops to generate the initials component. For an O/R address which follows the above restrictions, a string is derived in the natural manner. In this case, the mapping will be reversible. For example: GivenName = "Marshall" Surname = "Rose" Maps with "Marshall.Rose" Initials = "MT" Surname = "Rose" Maps with "M.T.Rose" GivenName = "Marshall" Initials = "MT" Surname = "Rose" Maps with "Marshall.M.T.Rose" Note that X.400 suggest that Initials is used to encode ALL initials. Therefore, the defined encoding is "natural" when either GivenName or Initials, but not both, are present. The case where both are present can be encoded, but this appears to be contrived! 4.2.2. Standard Encoding of MTS.ORAddress Given this structure, we can specify a BNF representation of an O/R Address. Hardcastle-Kille [Page 34] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 std-or-address = 1*( "/" attribute "=" value ) "/" attribute = standard-type / "RFC-822" / registered-dd-type / dd-key "." std-printablestring standard-type = key-string registered-dd-type = key-string dd-key = key-string value = std-printablestring std-printablestring = *( std-char / std-pair ) std-char = <"{", "}", "*", and any ps-char except "/" and "="> std-pair = "$" ps-char The standard-type is any key defined in the table in Section 4.2, except PN, and DD. The BNF leads to a set of attribute/value pairs. The value is interpreted according to the EBNF encoding defined in the table. If the standard-type is PN, the value is interpreted according to EBNF.encoded-pn, and the components of MTS.PersonalName and/or MTS.TeletexPersonalName derived accordingly. If dd-key is the recognised Domain Defined string (DD), then the type and value are interpreted according to the syntax implied from the encoding, and aligned to either the teletex or printable string form. Key and value shall have the same encoding. If value is "RFC-822", then the (printable string) Domain Defined Type of "RFC-822" is assumed. This is an optimised encoding of the domain defined type defined by this specification. The matching of all keywords shall be done in a case-independent manner. EBNF.std-or-address uses the characters "/" and "=" as delimiters. Domain Defined Attributes and any value may contain these characters. A quoting mechanism, using the non-printable string "$" is used to allow these characters to be represented. If the value is registered-dd-type, and the value is registered at the Internet Assigned Numbers Authority (IANA) as an accepted Domain Defined Attribute type, then the value shall be interpreted Hardcastle-Kille [Page 35] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 accordingly. This restriction maximises the syntax checking which can be done at a gateway. 4.3. EBNF.822-address <-> MTS.ORAddress Ideally, the mapping specified would be entirely symmetrical and global, to enable addresses to be referred to transparently in the remote system, with the choice of gateway being left to the Message Transfer Service. There are two fundamental reasons why this is not possible: 1. The syntaxes are sufficiently different to make this awkward. 2. In the general case, there would not be the necessary administrative co-operation between the X.400 and RFC 822 worlds, which would be needed for this to work. Therefore, an asymmetrical mapping is defined, which can be symmetrical where there is appropriate administrative control. 4.3.1. X.400 encoded in RFC 822 The std-or-address syntax is used to encode O/R Address information in the 822.local-part of EBNF.822-address. In some cases, further O/R Address information is associated with the 822.domain component. This cannot be used in the general case, due to character set problems, and to the variants of X.400 O/R Addresses which use different attribute types. The only way to encode the full PrintableString character set in a domain is by use of the 822.domain-ref syntax (i.e. 822.atom). This is likely to cause problems on many systems. The effective character set of domains is in practice reduced from the RFC 822 set, by restrictions imposed by domain conventions and policy, and by restrictions in RFC 821. A generic 822.address consists of a 822.local-part and a sequence of 822.domains (e.g., <@domain1,@domain2:user@domain3>). All except the 822.domain associated with the 822.local-part (domain3 in this case) are considered to specify routing within the RFC 822 world, and will not be interpreted by the gateway (although they may have identified the gateway from within the RFC 822 world). The 822.domain associated with the 822.local-part identifies the gateway from within the RFC 822 world. This final 822.domain may be used to determine some number of O/R Address attributes, where this does not conflict with the first role. RFC 822 routing to gateways will usually be set up to facilitate the 822.domain being used for both purposes. The following O/R Address attributes are considered Hardcastle-Kille [Page 36] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 as a hierarchy, and may be specified by the domain. They are (in order of hierarchy): Country, ADMD, PRMD, Organisation, Organisational Unit There may be multiple Organisational Units. A global mapping is defined between domain specifications, and some set of attributes. This association proceeds hierarchically. For example, if a domain implies ADMD, it also implies country. Subdomains under this are associated according to the O/R Address hierarchy. For example: => "AC.UK" might be associated with C="GB", ADMD="GOLD 400", PRMD="UK.AC" then domain "R-D.Salford.AC.UK" maps with C="GB", ADMD="GOLD 400", PRMD="UK.AC", O="Salford", OU="R-D" There are three basic reasons why a domain/attribute mapping might be maintained, as opposed to using simply subdomains: 1. As a shorthand to avoid redundant X.400 information. In particular, there will often be only one ADMD per country, and so it does not need to be given explicitly. 2. To deal with cases where attribute values do not fit the syntax: domain-syntax = alphanum [ *alphanumhyphen alphanum ] alphanum = <ALPHA or DIGIT> alphanumhyphen = <ALPHA or DIGIT or HYPHEN> Although RFC 822 allows for a more general syntax, this restricted syntax is chosen as it is the one chosen by the various domain service administrations. 3. To deal with missing elements in the hierarchy. A domain may be associated with an omitted attribute in conjunction with several present ones. When performing the algorithmic insertion of components lower in the hierarchy, the omitted value shall be skipped. For example, if "HNE.EGM" is associated with "C=TC", "ADMD=ECQ", "PRMD=HNE", and omitted organisation, then "ZI.HNE.EGM" is mapped with "C=TC", "ADMD=ECQ", "PRMD=HNE", "OU=ZI". Attributes may have null values, and this is treated separately from omitted attributes (whilst it would be bad practice to treat these Hardcastle-Kille [Page 37] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 two cases differently, they must be allowed for). This set of mappings needs be known by the gateways relaying between the RFC 822 world, and the O/R Address space associated with the mapping in question. There needs to be a single global definition of this set of mappings. A mapping implies an adminstrative equivalence between the two parts of the namespaces which are mapped together. To correctly route in all cases, it is necessary for all gateways to know the mapping. To facilitate distribution of a global set of mappings, a format for the exchange of this information is defined in Appendix F. The remaining attributes are encoded on the LHS, using the EBNF.std- or-address syntax. For example: /I=J/S=Linnimouth/GQ=5/@Marketing.Widget.COM encodes the MTS.ORAddress consisting of: MTS.CountryName = "TC" MTS.AdministrationDomainName = "BTT" MTS.OrganizationName = "Widget" MTS.OrganizationalUnitNames.value = "Marketing" MTS.PersonalName.surname = "Linnimouth" MTS.PersonalName.initials = "J" MTS.PersonalName.generation-qualifier = "5" The first three attributes are determined by the domain Widget.COM. Then, the first element of OrganizationalUnitNames is determined systematically, and the remaining attributes are encoded on the LHS. In an extreme case, all of the attributes will be on the LHS. As the domain cannot be null, the RHS will simply be a domain indicating the gateway. The RHS (domain) encoding is designed to deal cleanly with common addresses, and so the amount of information on the RHS is maximised. In particular, it covers the Mnemonic O/R Address using a 1984 compatible encoding. This is seen as the dominant form of O/R Address. Use of other forms of O/R Address, and teletex encoded attributes will require an LHS encoding. There is a further mechanism to simplify the encoding of common cases, where the only attributes to be encoded on the LHS is a (non- Teletex) Personal Name attributes which comply with the restrictions of 4.2.1. To achieve this, the 822.local-part shall be encoded as EBNF.encoded-pn. In the previous example, if the GenerationQualifier was not present in the previous example O/R Address, it would map with the RFC 822 address: J.Linnimouth@Marketing.Widget.COM. Hardcastle-Kille [Page 38] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 From the standpoint of the RFC 822 Message Transfer System, the domain specification is simply used to route the message in the standard manner. The standard domain mechanisms are used to select appropriate gateways for the corresponding O/R Address space. In most cases, this will be done by registering the higher levels, and assuming that the gateway can handle the lower levels. 4.3.2. RFC 822 encoded in X.400 In some cases, the encoding defined above may be reversed, to give a "natural" encoding of genuine RFC 822 addresses. This depends largely on the allocation of appropriate management domains. The general case is mapped by use of domain defined attributes. A Domain defined type "RFC-822" is defined. The associated attribute value is an ASCII string encoded according to Section 3.3.3 of this specification. The interpretation of the ASCII string depends on the context of the gateway. 1. In the context of RFC 822, and RFC 920 [Crocker82a,Postel84a], the string can be used directly. 2. In the context of the JNT Mail protocol, and the NRS [Kille84a,Larmouth83a], the string shall be interpreted according to Mailgroup Note 15 [Kille84b]. 3. In the context of UUCP based systems, the string shall be interpreted as defined in [Horton86a]. Other O/R Address attributes will be used to identify a context in which the O/R Address will be interpreted. This might be a Management Domain, or some part of a Management Domain which identifies a gateway MTA. For example: C = "GB" ADMD = "GOLD 400" PRMD = "UK.AC" O = "UCL" OU = "CS" "RFC-822" = "Jimmy(a)WIDGET-LABS.CO.UK" OR C = "TC" ADMD = "Wizz.mail" PRMD = "42" "rfc-822" = "postel(a)venera.isi.edu" Hardcastle-Kille [Page 39] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 Note in each case the PrintableString encoding of "@" as "(a)". In the second example, the "RFC-822" domain defined attribute is interpreted everywhere within the (Private) Management Domain. In the first example, further attributes are needed within the Management Domain to identify a gateway. Thus, this scheme can be used with varying levels of Management Domain co-operation. There is a limit of 128 characters in the length of value of a domain defined attribute, and an O/R Address can have a maxmimum of four domain defined attributes. Where the printable string generated from the RFC 822 address exceeeds this value, additional domain defined attributes are used to enable up to 512 characters to be encoded. These attributes shall be filled completely before the next one is started. The DDA keywords are: RFC822C1; RFC822C2; RFC822C3. Longer addresses cannot be encoded. There is, analagous with 4.3.1, a means to associate parts of the O/R Address hierarchy with domains. There is an analogous global mapping, which in most cases will be the inverse of the domain to O/R address mapping. The mapping is maintained separately, as there may be differences (e.g., two alternate domain names map to the same set of O/R address components). 4.3.3. Component Ordering In most cases, ordering of O/R Address components is not significant for the mappings specified. However, Organisational Units (printable string and teletex forms) and Domain Defined Attributes are specified as SEQUENCE in MTS.ORAddress, and so their order may be significant. This specification needs to take account of this: 1. To allow consistent mapping into the domain hierarchy 2. To ensure preservation of order over multiple mappings. There are three places where an order is specified: 1. The text encoding (std-or-address) of MTS.ORAddress as used in the local-part of an RFC 822 address. An order is needed for those components which may have multiple values (Organisational Unit, and Domain Defined Attributes). When generating an 822.std-or-address, components of a given type shall be in hierarchical order with the most significant component on the RHS. If there is an Organisation Attribute, it shall be to the right of any Organisational Unit attributes. These requirements are for the following reasons: Hardcastle-Kille [Page 40] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 - Alignment to the hierarchy of other components in RFC 822 addresses (thus, Organisational Units will appear in the same order, whether encoded on the RHS or LHS). Note the differences of JNT Mail as described in Appendix B. - Backwards compatibility with RFC 987/1026. - To ensure that gateways generate consistent addresses. This is both to help end users, and to generate identical message ids. Further, it is recommended that all other attributes are generated according to this ordering, so that all attributes so encoded follow a consistent hierarchy. When generating 822.msg-id, this order shall be followed. 2. For the Organisational Units (OU) in MTS.ORAddress, the first OU in the SEQUENCE is the most significant, as specified in X.400. 3. For the Domain Defined Attributes in MTS.ORAddress, the First Domain Defined Attribute in the SEQUENCE is the most significant. Note that although this ordering is mandatory for this mapping, there are NO implications on ordering significance within X.400, where this is a Management Domain issue. 0Ґ��м§��b�Ё��b�©©��b�Є��b�WЄ��A����������������������������������� <�������Ш�x�������р���p��<�������Ш���������р�шWЄ��eЄ��Z�€Є��Z�–Є��Z�єЄ��Z�ИЄ��Z����������������������������������� <�������Ш�x�������р� <�������Ш���������р���p��ИЄ��T«��b� ¬��I�‰��I�о±��I�›ґ��I�p¶��I��������������������������������������<�������Ш���������р�ш<�������Ш�x�������р�шp¶��є��b�Wє��b�ёє��V�Ў»��V�:ј��V��������������������������������������������<�������Ш�<�������Ш<�������Ш���������р�ш:ј��ѓј��b�Жј��V�Ѕ��V�xЅ��V�6ѕ��V�їѕ��V�ыѕ��V�������������������������������������������Ш�<�������Ш<�������Ш���������р�шыѕ��.ї��o�0ї��o�vВ��V�–В��5������������������������������ <��������р�x�H�����р���x�� <�������Ш���������р�°<�������Ш–В��єВ��Z�ЪВ��9�яВ��9�Г��9������������������������������ <� <�������Ш���������р����x��ш <�������р�x�������р����x��шГ��0Г��Z�\Г��Z�^Г��N�2Д��N�FД��>��������������������������������<��������р�x�H<�������Ш <�������Ш���������р����x��шFД��Д��o�‘Д��o�іД��o�бД��o�Е��o�6Е��o�lЕ��o�~Е��o�®Е��o����������������������������������������������������������<��������ґ ®Е��цЕ��o�)Ж��o�EЖ��o�‹Ж��o�№Ж��o�НЖ��o�бЖ��o�цЖ��o�З��o����������������������������������������������������������<��������ґ З��EЗ��o�dЗ��o�’З��o�©З��o�Й��V���������������������������������������������������������<�������Ш�x�������р�ш<��������ґЙ���К��b�|Л��b�Н��b�МС��b�”Ф��b�СЧ��b� Щ��b���������������������������������������������<�������Ш<�������Ш���������р�ш Щ��RЩ��o�ќЩ��o�ЪЩ��o�Ъ��o�YЪ��o�©Ъ��o�Э��V���������������������������������������������<�������Ш�x�������р�ш<�������ШЭ��XЭ��m�¦Э��a�№ж��a�јж��D���������������������������������������������<�������ґ����� ���р�ш��а<�������Ш<�������Ш�xјж��Дж��^�Цж��^�Шж��A�rз��A������������������������������������������<�������ґ����� ���р�ш��а<�������ґ����� ���р�ш��аrз��€з��b�фй��E�0к��,���������������������������<�������ґ����� ���р�ш<��nҐ��р����� ���р�ш��а<��������р�x��� ���р�ђ 0к��?к��^�Aк��^�п��^�Џр��^�Зр��A�������������������������������� ���<���Ґ��ґ����� ���р�ш��а<�������ґ����� ���р�ш��аЗр��Oу��i�Qу��i�ху��i�™ф��i�ц��L�tц��L�������������������������������������Ґ��<�������ґ����� ���р�ш��а<����Ґ��ґ����� tц��vц��^�„ц��A�†ц��$�������������������<�������ґ����� ���р�ш��а<�������ґ����� ���р�ш��а<�������ґ����� ���р�ш��а†ц��Нц��^�¦ч��^�бш��^�*щ��^�”ы��^���������������������������������а<�������ґ����� ���р�ш��а<�������ґ����� ���р�ш��а”ы��фы��^� ь��A�3я��$�������������������<�������ґ�x��� ���р�ш��а<�������ґ����� ���р�ш��а<�������ґ�x��� ���р�ш��а3я��Ѕя��^�їя��^�Хя��A�������������������<�������ґ�x��� ���р�ш��а<�������ґ����� ���р�ш��а<�������ґ����� ���р�ш��аХя��'�^�)�A�A�A�©�A�%�A���������������������������������а<�������ґ����� ���р�ш��а<����ы��ґ����� ���р�ш��а%�‡�^��^�±�^�і�^�К�A���������������������������������а<�������ґ����� ���р�ш��а<�������ґ����� ���р�ш��аК�М�^�Ё�A�Є�$�������������������<��������ґ����� ���р�ш��а<����Љ��ґ����� ���р�ш��а<�������ґ����� ���р�ш��аЄ�‡�^�т�^�ф�^�ѕ�A������������������������������ ���р�ш��а<����4��ґ����� ���р�ш��а<�������ґ����� ���р�ш��аѕ��^��^�)�A������������������������������������ ���р�ш��а<�������ґ����� ���р�ш��а<�������ґ����� ���р�ш��а)�+�^�”�^�Е�^�{�^�Q�^�4�^�А�^���������������������������������������������р�ш��а<�������ґ����� ���р�ш��аА�В�^�:�A�<�$�������������������<�������ґ����� ���р�ш��а<�������ґ�Ё��� ���р�ш��а<�������ґ����� ���р�ш��а<�Q�^�S�A��A�������������������<�������ґ����� ���р�ш��а<�������ґ����� ���р�ш��а<�������ґ����� ���р�ш��а�%�^�'�A�• �A�!�A�R"�A���������������������������������а<�������ґ����� ���р�ш��а<�������ґ�x��� ���р�ш��аR"�#$�^��&�^�-)�^�/)�^�1)�^���������������������������������а<�������ґ����� ���р�ш��а<�������ґ����� ���р�ш��а1)�?)�^�A)�A�0-�A���������������������������������������������а<�������ґ����� ���р�ш��а<�������ґ����� ���р�ш��а0-�N-�^�P-�A�ы-�A�Ў0�A�С1�A���������������������������������а<�������ґ����� ���р�ш��а<�������ґ�Ш��� ���р�ш��аС1�4�^�Р5�^�К8�^�(:�^�*:�^�-:�^�����������������������������������������ґ����� ���р�ш��а<�������ґ����� ���р�ш��а-:�a:�^�c:�A�Ё;�A�Є;�A�ц;�A������������������������������������<�������ґ����� ���р�ш��а<�������ґ����� ���р�ш��ац;�2<�^�M<�^�h<�^�ѓ<�^�љ<�E������������������������������������<<�������ґ����� ���р�а<�������ґ����� ���р�ш��аљ<�µ<�^�Р<�^�л<�^�=�E������������������������������������������<<�������ґ����� ���р�а<�������ґ����� ���р�ш��а=�=�^�:=�^�U=�^�a=�E������������������������������������������<<�������ґ����� ���р�а<�������ґ����� ���р�ш��аa=�|=�^�—=�^�І=�^�Р=�E������������������������������������������<<�������ґ����� ���р�а<�������ґ����� ���р�ш��аР=�л=�^�>�^�!>�^�<>�^�Q>�^�S>�^�P@�^��������������������������������������������� ���р�а<�������ґ����� ���р�ш��аP@�R@�^�i@�^�k@�^�GE�^�IE�^�^E�^�`E�^��������������������������������������������� ���р�а<�������ґ����� ���р�ш��а`E�СH�^�УH�^�зH�^�йH�^�J�^��������������������������������������������������������� ���р�а<�������ґ����� ���р�ш��аJ�<J�^�>J�A�VK�A�XK�A�€K�A������������������������������������<�������ґ����� ���р�ш��а<�������ґ����� ���р�ш��а€K�ЉK�^�#N�^�LO�^�ЂQ�^�љU�^�њU�^�КU�^���������������������������������������������р�ш��а<�������ґ����� ���р�ш��аКU�rX�^�ёZ�A�ПZ�3�������������������КU�^����������<�������р�x<�������ґ����� ���р�ш��а<�������ґ�x��� ���р�ш��аПZ�Y_�b�†_�V�a�J�;a�>����������������������������<�������<�������ѕ<�������ѕ<�������А<�������А�x�������р�@;a�Еc�o�ъc�R�2d�1�������������������������������� <�������р����� ���р�ђ��°��<�������р����� ���р�р��<�������ѕ2d�jd�V�d�)������������������������������,<��������р���������р�ђ��p��°��° �����$<��������р���������р�ђ��°��p��d�еd�R�e�-������������������������������,<�$<��������р���������р�ђ�� ��°��(<��������р���������р�ђ��°��p��@��e�Qe�^�§e�P�Юe�7������������������������,<�$<�������<�������р�x��� ���р�`<�������р�x<��������р���������р�р��Юe�f�i�Zf�яя—f�яяТf�яяg�яяDg�яяpg�яяњg�яя��������������������������������������������������������<�������р����� њg�Иg�яялg�яяh�яя>h�яяRh�x�o�[�p�[��������������������������������������������������<�������� ���������р�Р��и<p�/r�Z�Jr�9�������������Rh�x�o�[�p�[���������������� <�������р���������р�Р��и��ё <�������� ���������р�Р��и��ёJr�Lr�Z�s�Z�s�Z�5s�9���������������������������������� <�������р�x�ђ�����р�Р��и��ё <��������р���������р�Р��и��ё5s�Kt�t�эt�d�u�T�w�H�x�<�������������������������������@ ���п��А>�п����А<�������р�x�x@ ���п��А���H>�пx�x�k�ix�_�Єx�S�јx�C�������������������������������������@ ���<������� x�x@ ���п��А>�п����А<�������р�x�xјx�z�o�P{�c�W{�S�)|�G�������������������������������������@ ���<>�п����А<������� x�x@ ���п��А>�п����А)|�т|�o�щ|�_�?~�S�[~�G�������������������������������������@ ���<@ ���п��А>�п����А<������� x�x@ ���п��А[~�m~�k�э~�_�$�S�4�C�������������������������������������@ ���<������� x�x@ ���п��А>�п����А<������� x�x4�Ў�o�fЂ�c�ѓЂ�S�oЃ�L�e‚�C�������������������������������@ ���@ ���п>�п<������� x�x@ ���п��А>�п����Аe‚�|‚�m�Х‚�a�ѓ�U�%ѓ�E�������������������������������������@ ���@<������� x�x@ ���п��А>�п����А<�������р�x%ѓ�џѓ�o�„�c�0„�S�Ы„�G�к„�G�������������������������������@ ���@<>�п����А<������� x�x@ ���п��А>�п����Ак„�’…�o�”…�яя•…�яя–…�яя������������������������������������@ ���@<>�п����А<������� x�x@ ���п��А@ ���п��АТ ?ѓ.яяSz8nВ&�7й<ЌЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬ� �����R��‘)��¶4��?��FT��j����ў‘��‡Ґ��Fј��ТН��:ж��aш��Џ�я&�«9�K�к_�Fc�Џn�Сz�…������ �����O�����*�����������2�����J �����������.��� �е��� �M������z���������I����������®��������������ў�����4������������������ЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬ��…��� �…�яяяяяяЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬ������� �(�������06/21/9301/12/92…�ЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬommunication with public physical delivery serviceF.420 CCITT standard for public interpersonal message serviceF.421 CCITT standard for communication between X.400 interpersonal messaging and telex serviceF.422 CCITT standard for communication between X.400 interpersonal messaging and teletext serviceF.500 CCITT standard for international public directory serviceFAT File Allocation TableFAX A messaging service based on transmitting bit maps of 200 dots per inchFCB File Control BlockFCC Federal Communication CommissionFCS Fiber Channel Standard Fast Circuit Switching / Frame Check SequenceFDPP Fast Digital Parallel ProcessingFDDI Fiber Data Distribution Interface (100Mb/s)FEC Forward Error CorrectionFEND Frame EndFEP Front End ProcessorFESC Frame EscapeFDDI Fiber Data Distribution InterfaceFDM Frequency Division MultiplexingFDPP Fast Digital Parallel ProcessingFF Form FeedFIF Fractional Image FormatFIFO First In First Out (memory)FINGER A way of finding out information about 1ѕ���«��������Б…�р@@DEEC:\WORD\SIDEBY.STY��������������������������������������������������HP������FА�]^��A@��DµGlossary of terms A&R Academic and ResearchACE Advanced Computer EnvironmentACF Advanced Communications FunctionACK AcknowledgeACL Access Control ListACM Association for Computing MachineryABI Application Binary Interface (PowerPC)ABM Asynchronous Balanced ModeABR AUNTHOOD Rate detectionACE Advanced Computing EnvironmentACS Application Control Service/ Access Control SetACSE Association Control Service ElementACTLU Active Logical UnitACTPU Active Physical UnitADB Analog Delay & BufferADI Autodesk Device InterfaceADMD ADministration Management Domain nameADPCM Adaptive Differential Pulse Code ModulationADS AutoCAD Development SystemAFS Andrew File SystemAID Automatic Internet DatagramAIX Advanced Interactive aXecutive (RFC 1177, IBM UNIX)AMD Advanced Micro DevicesAME Advanced Modeling ExtensionAMI Alternate Mark Inversion (bipolar coding)AMS Applied Mathematical Science program in OERANO Automated Network OperationANS Advanced Networks and ServicesANSI American National Standard InstituteAPE Application Programming ElementAPI Application Program Interface (WINDOWS)APPC Advanced Program-to-Program CommunicationAPPN Advanced Peer-to-peer NetworkingAPS American Physical SocietyAPSP Analog Pulse Shape ProcessorARM Asynchronous Response ModeARP Address Resolution Protocol (RFC 826)ARPA Advanced Research Project Agency of Defence Department, sponsor of first packet-switching networkARQ Automatic Repetition reQuestARS Address Resolution ProtocolASCII American Standard Code for Information InterchangeASE Application Service ElementASIC Application Specific Integrated CircuitsASN Abstract Syntax NotationASP Associative String of ProcessorsASPI Advanced SCSI Programming InterfaceASSP Application Specific Standard ProductATC Address Translation CasheATCP AppleTalk Control Protocol (RFC1378)ATM Asynchronous Transfer MODEAUI Attachment Unit InterfaceAWG American Wire Gauge system (wire size)BASIC Beginner All-purpose Symbolic Instruction CodeBBF Back-to-Back FrigateBBS Bulletin Board SystemBCC Block Check CharacterBCD Binary Coded DigitalBCP Bulk Copy ProgramBER Bit Error Rate / Basic Encoding RulesBFTP Background File Transfer Program (RFC 1068)BGP Border Gateway Protocol (RFC 1265-1268)BID Bulletin IdentifierBIOS Basic Input Output SystemBISDN Broadband Integrated Services Digital NetworksBISYNC BInary SYNchronous CommunicationBITNET "Because It's Time" Network, (academic and research), coupled to EARN and NET-NORTHBLOB Binary Large OBjectBOCA BORLAND Object Component ArchitectureBPB BIOS Parameter Blockbps bit per secondBRD Baud Rate Generator BS BackSpaceBSC Binary Synchronous CommunicationBSD Berkeley Software DistributionCA Common Application (SAA) / Certification AuthorityCAD Computer Aided DesignCAE Computer Aided EngineeringCALS Computer Aided Acqisition and Logistics SupportCAM Common Access Method / Computer Aided ManufactureCAN Campus Area Network (between LAN and WAN)CAS Column Address StrobeCASE Common application Service ElementsCATS Committee Analyzing Transport ServiceCBS Colored Book Software (JANET protocols)CC Country CodeCCD Charge Coupled DeviceCCITT Comite Consultatif Internacionale pour la Telephonie et la TelegraphieCCL Cyber Control LanguageCCR Commitment, Concurrence and RecoveryCCM Conventional Command ModeCCS Common Communication Support (SAA)CD Carrier DetectedCDMA Code Division Multiple AccessCDP Conditional Di-Phase (digital encoding)CDROM Compact Disk Read Only MemoryCELP Code Excited Linear PredictionCERT Computer Emergency Respose TeamCGM Computer Graphics MetafileCIC Certificate Integrity CheckCIDR Classless Inter Domain RoutingCIF Common Intermediate Format (TV)CIM Computer Integrated ManufactureCISC Complex Instruction Set ComputerCLI Call Level InterfaceCLNS Connection Less Network ServiceCLNP Connection Less Network ProtocolCLUT Color LookUp TableCMIP Common Management Information Protocols (RFC1189)CMS Conversational Monitor System (IBM interactive OS)CN Common Name Abbreviation (X.400)CND Caller Number delivery (caller ID)CNRI Corporation for National Research InitiativesCOBOL Common Business-Oriented LanguageCONS Connection Oriented Network ServiceCOS Corporation for Open SystemsCOSINE Cooperation for OSI Networking in Europe (RFC1274)CPE Customer Premises EquipmentCPI-C Common Programming Interface for CommunicationCPN Customer Premises Network / Computer Product NewsCPU Central Processing UnitCR Carriage ReturnCRC Cyclic Redundancy Check (Control)CREN Corporation for Research and Education NetworkingCRMA Cyclic-Reservation Multiple-Access protocolCSMA/CD Carrier Sense Multiple Access/Collision Detection (Ethernet)CSNet Computer+Science NetworkCSPDN Circuit Switching Public Data NetworkCSU Channel Service Unit (User DSU -> DDS lines)CTERM Command Terminal Protocol (layer 6, virtual term. service)CTS Clear To SendCUA Common User Access (SAA)CUG Closed User GroupDACS Digital Access and Cross Connect SystemDAP Data Access ProtocolDARPA Defence Advanced Research Project AgencyDAT Digital Audio TapeDBCS Double-Byte Character Set DCA Document Content Architecture / Defence Communication AgencyDCB Device Control BlockDCC Data Country CodeDCD Data Carrier DetectedDCE Data Communication Equipment (Data Circuit Equipment)DCL Digital Command Language (DEC)DDB Digital Delay & BufferDDE Dynamic Data Exchange (WINDOWS)DDL Dynamic Link Library (WINDOWS)DDN Defence Data NetworkDDS Digital Data Storage or Digital Data SystemDEC Digital Equipment CorporationDEK Data Encrypting KeysDES Data Encryption StandardDFN Deutschen Forschungs NetzeDIANE Dynamic Installation and Network Enhancement (for PC)DIB Device Independent Bitmap (Windows)DICC Drop/Insert and Cross-Connect (Philips)DIOS DIstributed Operating SystemDIP Dual In line PackageDIS Draft Information StandardDISOSS DIStributed Office Support SystemDLAL Dual Letter Acronym ListingDLC Data Link ControlDLE Data Latch EnableDLL Dynamicaly Linked LibraryDLS Digital Library SystemDMA Direct Memory AccessDPMI DOS Protected Mode InterfaceDNA Digital Networking ArchitectureDNANS DNA Naming ServiceDNCP DEC Net Control ProtocolDNM Distributed Node ManagementDNS Domain Name System (RFC 1034,1035)DOE (U.S.) Department of EnergyDOV Data Over Voice (data & voice)DPF Division of Particles and Fields of the APSDPI Distributed Program Interface (RFC 1228)/ Dots Per InchDPLL Digital Phase locked LoopDPM Double Port MemoryDQDB Distributed Queue Dual Bus (802.6)DS-1 1.544 Mbps channelDS-3 45 Mbps channelDSAB Distributed Systems Architecture BoardDSAP Destination Service Access PointDSE Data switching ExchangeDSP Digital Signal Processor / Domain Specific PartDSR Data Set Ready (RS-232-C signal)DSU Data Service UnitDTA Disk Transfer AreaDTE Data Terminal EquipmentDTR Data Terminal Ready (RS-232-C signal)DUP Diagnostics & Utilities Protocol (DEC)DVE Digital Video EffectDVI Digital Video InteractiveE.163 CCITT numbering scheme for public switched telephone networksE.164 CCITT standard for numbering in an ISDN environmentEARN European Academic Research Network, coupled to BITNET and NETNORTHEasyNet DEC internal communication networkEBCDIC Extended Binary Coded Decimal Interchange Code (IBM)EC Echo CancellationECM Enhanced Command ModeECMA European Computer Manufacturers AssociationEDI Electronic Data InterchangeEDNA European Data Network AgencyEDI Electronic Data InterchangeEDP Electronic Data ProcessingEET Edge Enhancement TechnologyEGA Enhanced Graphics AdapterEGP Exterior Gateway Protocol (RFC 827,904)EIA Electronic Industries AssociationEIP Extended Internet Protocol (RFC 1385) EISA Extended Industry Standard Architecture (IBM/PC bus)ELMS Extended Lan Management SoftwareEMI Electro-Magnetic InterferenceEMP Enhanced Memory ProductEMS Expanded Memory Specification (зҐаҐ§ ®Є®)EOT End of TransmissionEPA Enhanced Performance ArchitectureEPB EXEC Parameter BlockEPS Encapsulated PostScriptES End System (OSI RFC1070)ESA European Space AgencyESC Engineering Services Channel (satellite)ESDI Enhanced Small Device InterfaceESF Extended Superframe FormatES-IS End System to Intermediate System (protocol)ESNET Energy Sciences Network, computer network of DOE/OERETSI European Telecommunication Standards InstituteETX End of Text (control symbol)EUnet European UNIX Network (based on UUCP)EUTELSAT European Telecommunication Satellite Organizationexabyte one billion gigabytesExCA Exchangeable Card ArchitectureE1 2.048 Mbps digital carier system (CEPT)F.60 CCITT standard for telex serviceF.69 CCITT standard for telex addressesF.110 CCITT standard for maritime mobile serviceF.160 CCITT standard for international public fax serviceF.200 CCITT standard for teletex serviceF.201 CCITT standard for internetwork teletex & telex serviceF.300 A set of CCITT recomendations for Videotext systemsF.401 CCITT standard for naming & addressing for public message-handling serviceF.410 CCITT standard for public message transfer serviceF.415 CCITT standard for intercommunication with public physical delivery serviceF.420 CCITT standard for public interpersonal message serviceF.421 CCITT standard for communication between X.400 interpersonal messaging and telex serviceF.422 CCITT standard for communication between X.400 interpersonal messaging and teletext serviceF.500 CCITT standard for international public directory serviceFARNET Federation of Academic Research NetworksFAT File Allocation TableFAX A messaging service based on transmitting bit maps of 200 dots per inchFCB File Control BlockFCC Federal Communication CommissionFCS Fiber Channel Standard Fast Circuit Switching / Frame Check SequenceFDPP Fast Digital Parallel ProcessingFDDI Fiber Data Distribution Interface (100Mb/s)FEC Forward Error CorrectionFEND Frame EndFEP Front End ProcessorFESC Frame EscapeFDDI Fiber Data Distribution InterfaceFDM Frequency Division MultiplexingFDPP Fast Digital Parallel ProcessingFF Form FeedFIF Fractional Image FormatFIFO First In First Out (memory)FINGER A way of finding out information about the users at a host (RFC 742)FIPS Federal Information Processing StandardFLOPS FLoating Operations per SecondFNC Federal Networking CouncilFPB Frame Pointer BufferFSF Free Software FoundationFTAM File Transfer, Access and Management (application service)FTE Full Time EquivalentFTP File Transfer Protocol (DARPA RFC-959,765)FXO Foreign Exchange Office (voice interface) FXS Foreign eXchange SubscriberGDI Graphics Device InterfaceGDP Gateway Discovery Protocol / Global Descriptor TableGGP Gateway to Gateway ProtocolGIFT General Internet File TransferGIX Global Internet eXchangeGKS Graphical Kernel SystemGND GroundGNU GNU's Not UNIXGOSIP Governmental OSI ProtocolsGRASP Graphic Animation System for Professionals (Standrd)GQ Generation QualifierGSA General Service AdministrationGUI Graphical User InterfaceG.703 CCITT standard digital interface 64 kbps-2.048 MbpsHAP Host Access Protocol (RFC1221)HDH HDLC Distinct HostHDLC High Level Data Link ControlHDTV High Definition TVHEMP High-level Entity Management ProtocolHEMS High-level Entity Management SystemHIPPI High Performance Parallel InterfaceHMA High Memory AreaHMI Hub Management Interface (Novell) Horizontal Motion Index (HP LJ)HNS Hughes Network SystemHP Hewlett PackardHPC HEPNET Policy CommitteeHPCC High Performance Computing and CommunicationsHPFS High Performance File SystemHRC HEPNET Review CommitteeHRS High Rate SegmentHSSI High Speed Serial Interface (34-52)MbpsHST High Speed Technology (¬Ґв®¤ ¬®¤г«пжЁЁ)HT Horizontal TabHTCC HEPNET Technical Coordinating CommitteeI.120 CCITT description of ISDNIA Issuing Authority (mail)IAB Internet Activities Board (RFC1177)IBC Integrated Broadband CommunicationsIBM International Business MachineICD International Code DesignatorICM InComing MessageICMP Internet Control Message Protocol (TCP/IP,RFC792)IDE Integrated Drive ElectronicsIDI Initial Domain IdentifierIDNX Integrated Digital Network eXchange (IBM)IDSN Integrated Digital Service NetworkIE Interrupt EnableIEEE Institute of Electrical and Electronic EngineersIESG Internet Engineering Task Force Steering GroupIETF Internet Engineering Task ForceIFRB International Frequency Restriction BoardIGP Interior Gateway Protocol (e.g. RIP)IGRP Interior Gateway Routing Protocol (CISCO)IKIS Knowbot Information Service (to find mail address)IOP In/Out ProcessorINMARSAT International Maritime Satellite OrganizationINFN National Nuclear Physics Research Institutes of ItalyINOC Internet Network Operation CenterINTELSAT International Telecommunication Satellite OrganizationInternet Coupled networks using Internet Protocol (IP)IP Internet Protocol, low level network protocol used in ARPANET and others (RFC791,950,919,922)IPCP Internet Protocol Control Protocol (RFC 1332)IP-IEEE Internet Protocol on IEEE (RFC 1042)IPMS InterPersonal Messaging SystemIPS Federal Information Processing StandardIPSO IP Security OptionIPX Internet Packet eXchangeIRQ Interrupt ReQestIRTF Internet Research Task ForceISA Industry Standard Architecture (PC/AT bus)ISAC ISDN Subscriber Access ControllerISBN Integrated Satellite Business Network (Hughes)ISDN Integrated Services Digital NetworkISF International Scientific Foundation IS-IS Intermediate System to Intermediate System (OSI protocols for routers)ISL Intermediate Sequential LanguageISN Integrated Services NetworkISO International Standard OrganizationISODE ISO Development Environment (Software)ISSI Inter-System Switching InterfaceITU International Telecommunication UnionIU Interface UnitJANET Academic and Research Network in the UKJNT Joint Network Team (JANET group)JPEG Joint Photographic Expert GroupJTM Job Transfer ManipulationKDC Key Distribution CenterKIS Knowbot Information ServiceKISS Keep It Simple, StupidLAN Local Area NetworkLAP-M Link Access Protocol for Modems (V-42)LAT Local Area TransportLCD Liquid Crystal DisplayLCP Link Control ProtocolLDP Local descriptor TableLF Line FeedLIFO Last In First OUT (memory)LION Local Integrated Optical NetworkLFN Long, Fat pipe Network (pronounced as "elephant")LLC Logic Link Control (FDDI; 802.2)LLNL Lawrence Livermore National LaboratoryLME Layer Management EntitiesLMI Layer Management InterfaceLPD Line Printer Daemon protocol (UNIX-TCP/IP; RFC 1179)LPDA Line Problem Determination ApplicationLQ Letter QualityLRC Longitudinal Redundancy Check / Local Routing CenterLRU Least Recently Used (memory)LSA Link Subnetwork AccessLSAP Link Service Access PointLSP Link State PacketLU Logical UniteMAC Medium Access Control (FDDI, Token Ring)MAN Metropolian Area NetworkMANS Metropolitan Area NetworksMAP Manufacturing Automation ProtocolMARS Message Archiving and Retrieval Service (RFC744)MAU Multistation Access UnitMCA Micro Channel ArchitectureMCAV Modified Constant Angular Velosity (WORM)MCB Memory Control Block / Message Control BlockMCI Multiport Communication InterfaceMCR Modem Control RegisterMDI Multiple Document InterfaceMFENET Magnetic Fusion Energy NetworkMFM Modified Frequency ModulationMFR Multi-Port Fiberoptic RepeaterMHS Message Handling ServiceMIB Management Information BaseMIC Message Integrity CheckMIDI Musical Instrument Digital InterfaceMILNET Military NetworkMIMD Multi Instruction Miltiple dataMIME Multipurpose Internet Mail ExtensionsMIPS Million Instructions Per SecondMINT Mail InterchangeMIPS Million Instructions per secondMIS Management Information SystemMLAL MultiLetter Acronym ListingMM Multi Mode (fiberoptics)MMFS Manufacturing Message Format StandardMMS Matra Marconi SpaceMMU Memory Management UnitMNP Microcom Networking ProtocolMOTIS Message Oriented Text Interchange SystemMPP Message Posting Protocol (RFC 1204)MR Modem ReadyMRCS MultiRate Circuit SwitchingMRS Medium Rate SegmentMS Micro Soft MSS Maximum Segment SizeMSDTP Message Services Data Transmission Protocol (RFC713)MTA Message Transfer AgentMTBF Mean Time Between FailuresMTTR Mean Time to RepairMTU Maximum Transfer UnitMVC Monitor View ControlMVDM Multiple Virtual DOS MachineMVS Multiple Virtual Storage (IBM)MX Mail eXchangeNACS NetWare Asynchronous Communications ServerNAK Negative AcknowledgmentNANP North American Numbering PlanNAS Network Application Support (DEC)NASI NetWare ASynchronous InterfaceNAT Network Address TranslationNBS National Bureau of StandardsNCCF Network Communication Control FacilityNCL Network Command LanguageNCP Network Control ProgramNCS Network Computing SystemNCSA National Center for Supercomputer ApplicationsNDP Numerical Data Processor (IBM)NetBIOS Network Adapter Basic In/Out System (protocol to find server process & communicate with it, RFC1001,1002)NETBLT Bulk Data Transfer Protocol (high speed block transfer protocol)NETNORTH Canadian academic and research network, closely coupled to BITNET and EARNNEWS Network Extensible Window SystemNFS Network File SystemNIC Network Information CenterNICE Novell Integration, Coordination and EvolutionNIS Network Information ServiceNIST National Institute for Standards and TechnologyNLDM Network Logical Data ManagerNLM Network Loading Modules (UNIX-server) / NetWare Loadable ModulesNLQ Near Letter QualityNMA Network Management ArchitectureNMFECC National Magnetic Fusion Energy Computer Center at LLNL (supercomputers, MFENET and ESNET)NMPF Network Management Productivity FacilityNMS Netware Management SystemNMVT Network Management Vector TransportNNS NetWare Name ServiceNNT National Network TestbedNNTP NetNews Transfer ProtocolNOC Network Operation CenterNORDUNET Nordic University NetworkNPDA Network Problem Determination ApplicationNPSI NCP Packet Switching InterfaceNQS Network Queueing SystemNREN National Research and Education NetworkNRZ Non-Return to Zero (binary encoding scheme)NSAP Network Service Access PointNSF U.S. National Science Foundation Network Supervisory FunctionNSI NASA Science InternetNSP Network Service ProtocolNSS Nodal Switching SystemNT Network TerminationNTP Network Time Protocol (RFC 1165)NTSC National Television System CommitteeOC-1 51.840 Mbps, OCX-3=155.52Mbps, OC-9=466.56 Mbps, OC-12=622.08Mbps, OC-18=933.12 Mbps, OC-24=1244.16Mbps, OC-36=1866.24, OC-48= 2488.32Mbps, OC-240=12.4416Gbps. SONET Optical Carrier speedsOCA Open Communication ArchitectureOCCF Operator Communication Control FacilityOCR Optical Character Recognition / ReadingODA Office Document ArchitectureODAPI Open Database Application Programming InterfaceODBC Open DataBase Connectivity. ‚Ёавг «мл© ¤®бвгЇ Є Ў § ¬ зҐаҐ§ WINDOWSODI Open Data-link Interface OEM Original equipment ManufecturerOER Office of Energy Research; basic research section of the Department of EnergyOGM OutGoing Message (FAX)OLE Object Linking & EmbeddingONC Open Network ComputingOOP Object Oriented ProgrammingORB Object Request Broker (SUN)O/R Originator/recepient addressOS Operating SystemOSF Open Software FoundationOSI Open Systems InterconnectionsOSINLCP OSI Network Layer Control Protocol (RFC1377)OSPF Open Shortest Path First (RFC 1245-48)OSTP White House Office of Scientific and Technical PolicyOU Organization Unit (X.400 address attribute)OUI Organizationally Unique IdentifierOWL Object Windows LibraryPAD Packet Assembler/Disassembler Protocol AdapterPAL Paradox Application Language / Phase Alternation Line (TV-system)PBC Peripheral Board Controller Philips Branch Cross-connect systemPBX Private Branch ExchangePC Personal ComputerPCI Peripheral Component Interconnect (BUS, Intel)PCL Programmable Logical Controllers / Printer Command LanguagePCM Pulsed Code ModulationPCMCIA Personal Computer Memory Card International Association (connector standard)PCN Personal Communication NetworkPDA Personal Digital AssistantPDF Portable Document Format (E-mail)PDN Public Data Network (X.25)PDU Protocol Data UnitPEP Packetized Ensemble ProtocolPER Packet Error RatePES Personal Earth Station Processor/Performance Enhancement SocketPGA Pin Grid ArrayPHIGS Programmer's Hierarchical Interactive Graphics SystemPHY PHysical Layer ProtocolPIC Position Independent CodePID Process IdentifierPING Packet InterNet GroperPIR Packet Insertion RatePLL Phase Locked LoopPLR Packet Loss RatePLS Personal Library SystemPMD Physical layer Media DependentPOP Post Office ProtocolPOST Power On Self Test and initialization (PC)POSIX Portable Operating System Interface for Computer Environment (IEEE-standard)POTS Plain Old Telephone ServicePPP Point-to-Point Protocol (RFC 1331-34; 77-78)PPSN Public Packet Switched NetworkPROFS Professional Office System (IBM package)PRMD PRivate Management Domain namePS Post ScriptPSD Printer Sequance DescriptionPSDN Packet Switch Data NetworksPSI DEC's X.25 interface software Packet-Switch InterfacePSN Packet-Switch Network (Nodes)PSP Program Segment Prefix / Packet Switching ProcessorPSPDN Packet Switching Public Data NetworkPSS Packet Switch StreamPSTN Public Switched Telephone NetworkPTO Public Telecommunication Operator (e.g. PTT)PTT Post, Telephone, Telegraph servicePU Physical UnitePUS Processor Upgrade SocketQ.700 Introduction to CCITT SS No. 7 Q.701 The message transfer part of Signalling System N7Q.711 Signalling connection control part of Signalling System N7Q.721 Telephone user part of Signalling System N7Q.761 The ISDN user part of Signalling System N7QAM Quadratural-Amplitude Modulation (1pulse=4bits)QICDS Quoter Inch Cartridge Drive StandardsRACE Research on Advanced Communication on EuropeRACF Resource Access Control FacilityRAID Redundant Array of Intelligent DrivesRAL Rutherford Appleton Laboratory in UKRAM Random Access MemoryRARE European Association of Research Networks (french)RARP Reverse Address Resolution Protocol (ARP RFC 903)RAS Row Address StrobeRATP Reliable Asynchronous Transfer Protocol (RFC916)RCC Routing Control CenterRCL Revoked Certificate List (used in X.509)RCP Remote Copy / Routing and Control ProcessorRDA Remote Data AccessRDBMS Related Data Base Management SystemRDP Reliable Data Protocol (RFC1151)RET Resolution Enhancement TechnologyRFC Request for Comments, name for ARPANET standard documentsRFNM Ready For Next Message (from PSN)RGB Red/Green/Blue (video standard)RI Ring Indicator / Referential IntegrityRIP Routing Information Protocol / Raster Image ProcessorRISC Reduced Instruction SET ComputerRJF Remote Job FacilityRJE Remote Job EntryRLE Run Length EncodedRLL Run Length Limited (disk coding)RMF Remote Management Facility (NetWare)RMS Record Management ServicesRNR Receiver Not ReadyROWS Read Often, Write Seldom (¤ЁбЄЁ ®б®ўҐ д«ни-Ї ¬пвЁ EPROM)RPC Remote Procedure Call (RFC 1050,1057)RSPF Radio Shortest Path First Routing ProtocolRTC Real Time ClockRTF Rich Text Format (WORD)RTMP Routing Table Management Protocol Apple Talk)RTP Routing Table ProtocolRTS Request To Send (RS-232-C signal)RTT Round Trip Transmission (delay in network)RSH Remote ShellSAA System Application Architecture (IBM) / Standard Application ArchitectureSAC Single Access ControlSAG SQL Access GroupSAH Start of HeaderSAP Service Access Point/ Service Advertising ProtocolSAS Single Attachment StationSASE Special Application Service Elements (ISO)SAW Session AWarenessSCCP Signalling Connection Control Part (Q.711)SCRI Supercomputations Research Institute at Florida State UniversitySCS Scientific Computing Stuff in OERSCSI Small Computer System InterfaceSDH Synchronous Digital HierarchySDK Software Development Kit (MS WINDOWS)SDLC Synchronous Dial-up Connection (data link communication) Synchronous Data Link ControlSDSC San Diego Supercomputer CenterSFT System Fault ToleranceSGI Silicon Graphics, IncorporatedSGML Standard Generalized Markup LanguageSIMD Single Instruction Multiple DataSIMM Single In line Memory ModuleSIP Single In line PackageSLIP Serial Line IPSMAP System Management Application ProcessSMD Surface mounted deviceSMDS Switched Multi-megabit Data Service SMF Standard Message FormatSMI System Management Interface / InterruptSMM System Management ModeSMT Station Management (standard version 5.1)SMTP Simple Mail Transfer Protocol (RFC1351,1352,)SNA System Networking ArchitectureSNAP Sub Network Address ProtocolSNCC System/Network Control CenterSNI Subscriber Network InterfaceSNMP Simple Network Management Protocol (RFC1381-82)SNTP Simple Network Time Protocol (RFC 1361)SOC Serial Optical ChannelSOM System Object ModelSONET Synchronous Optical NetworkSP SpaceSPAN Space Physics Analysis NetworkSPARC Scalable Processor ArchitectureSPCF Service Point Command Facility (IBM)SPE Synchronous Payload EnvelopeSPF Shortest Path First (OSPF)SPP Sequential Packet ProtocolSPTN Single Protocol Transport NetworkSPX Sequential Packet eXchangeSPTN Single Protocol Transport NetworkSQE Signal Quality ErrorSQL Structured Query LanguageSRM Short Range Modem (micro-modem)SSAP Source Service Access PointSSCP System Services Control PointSSFN Session Setup Failure NotificationSSI SubSystem InterfaceSSM Single Segment MessageSS-TDMA Satellite switched Time Division multiple AccessSS7 Signalling System 7Statmux Statistical MultiplexorSTP Shielded Twisted PairSTM Synchronous transfer modeSTS Synchronous Transport SignalSTX Start of TextSVC Switched Virtual CircuitSVGA Super Video Graphic AdapterSVID System V Interface Definition (AT&T)SWAN Sun's Wide Area NetworkSWS Silly Window Syndrome (window=0, RFC813)SYN Synchronous Idle (control signal)TAD Telephone Answering DeviceTAF Terminal Access FacilityTAG Terminal Access Gateway (VM CERN)TARA Threshold Analysis and Remote AccessTCM Trellis-coded Modulation (бЁ¦ҐЁҐ зЁб« ®иЁЎ®Є § бзҐв Ё§Ўлв®з®бвЁ)TCP Transport Control Protocol, higher level network protocol runs on top of IP (RFC 793)TDBS The Data Base System (eSoft Database)TDM Time Division MultiplexingTDW Turbo Debugger for WindowTE Terminal EquipmentTELAPI Telnet Application Programming Interface (RFC854)terabyte one trillion bytesTES Terminal Emulation Service (Int 14)TFEND Transposed Frame EndTFTP Trivial File Transfer Protocol (RFC 783)THT Token Holding Timer (FDDI & Token ring)TIA Telecommunication Industry AssociationTIFF Tagged Image File FormatTIMS The Integrated Mail SystemTSESC Transposed Frame EscapeTLI Transport Level InterfaceTMS Terminal Management Suite (TV)TNC Terminal Node ControllerTNM Transmission Network Manager (IBM)TOP Technical Office ProtocolTPW Turbo Pascal for WindowTRT Token Rotation TimerTS Transport ServicesTSO Time Sharing OptionTSOP Thin Small Outline Package (8x20x1.2 mm)TSR Terminate and Stay ResidentTTL Time To Live (datagram in Internet) TTR Transparent Translation RegistersTTRT Target Token Rotation TimeT1 Communications line standard providing 1.544 MbpsT3 DS-3 formatted digital signal at 44.746 Mbps(RFC1177)T.4 CCITT standard for group 3 facsimile TransmissionT.6 CCITT standard for group 4 facsimile TransmissionUA User AgentUAE Unrecoverable Application ErrorsUART Universal Asynchronous Receiver TransmitterUDP User Datagram Protocol (RFC 768)UFO User Familiar ObjectsUFS Ultimate File SystemUID User IDentificationUIMS User Interface Management SystemUMB Upper Memory BlocksUPS Uninterrupted Power SystemUUCP Unix-to-Unix Copy ProgramVCDK Video Conferece Developers KitVCI Virtual Channel IdentifierVCPI Virtual Control Program InterfaceVFIP Voice File Interchange Protocol (RFC 978)VICP VINES Interprocess Communication ProtocolVINES VIrtual NEtware System (OS of Banyan Co)VLIW Very Long Instruction WordVMI Vertical Motion Index (HP LJ)VMS Virtual Memory SystemVMTP Versatile Message Transaction Protocol (RFC 1045)VNCA VTAM Node Control ApplicationVPI Virtual Pass IdentifierVSAT Very Small Aperture TerminalsVSP Video Signal ProcessorVT Vertical TabV.21 CCITT standard for 300bps duplex modem over the general switched telephone networkV.22 CCITT standard for 1200bps duplex operationV.22bis CCITT standard for 2400bps duplex operation V.23 CCITT standard for 600/1200bps modemV.24 CCITT standard for definition of circuits between a DTE and DCEV.26 2400/1200 bps leased line modemV.27 CCITT standard for 4800bps modemV.27bis 2400/4800bps leased line modem with equalizerV.27ter 2400/4800bps dial modemV.29 CCITT standard for 9600bps modem over 4-wire leased lineV.32 CCITT standard for a family of 2-wire modems operating up to 9600bpsV.33 CCITT standard for 14.4kbps modems over leased lineV.35 High speed 9600bps leased line modemV.32bis 14400bps leased line modem (1Ў®¤ = 6 ЎЁв)VAX Virtual Address eXtension (DEC)VHD Very High DensityVIU Video Interface UnitVMS Virtual Memory SystemVMT Virtual Method TableVTAM Virtual Telecommunication Access MethodWAD Walk Away in Disgust. Assembly language opcodeWAIS Wide Area Information Servers (database)WAN Wide Area NetworkWBC WideBand ChannelWBI Water Binary Tree. Assembly language opcodeWDM Wave Division MultiplexingWHOIS Internet program-database for user address findingWKS Well Known Service (TCP or UDP)WORM Write Once Read Multiple (compact disk memory)WPS WorkPlace ShellWTDM Wavelength & time division MultiplexingWUPO Wad Up Printer Output. Assembly language opcodeXDR eXternal Data Representation standard (RFC 1014) XID eXchange IDentification (used by HDLC)XMS eXtended Memory SpecificationXNS Xerox Network SystemXXX X.3, X.28, X.29 (login by means of X.25)X.3 CCITT standard for a pocket assembler/ disassembler (PAD)X.12 ANSI committee for Electronic Data Interchange X.21 CCITT standard for circuit-switched networks, DTE/DCE 15-pin interfaceX.25 Low level packet switch.CCITT protocol up to 64kBX.28 CCITT protocol for asynchronous terminal to communicate with an X.3 PADX.29 CCITT protocol for synchronous DTE (Host) to control & communicate with an X.3 PAD.X.75 CCITT protocol for interconnecting separate X.25 networksX.81 Internetworking between ISDN and public (e.g., X.21) circuit-switched networksX.110 CCITT standard for routing principles on public data networksX.121 CCITT numbering plan for public data networksX.200 CCITT version of the OSI reference modelX.208 CCITT version of the OSI ASN.1X.209 CCITT version of the OSI ASN.1 Basic Encoding Rules (BER)X.211 Physical service definition for OSI for CCITT applicationsX.212 Data link service definitions for OSI for CCITT applicationsX.213 Network layer service definition for OSI for CCITT applicationsX.214 Transport service definition for OSI for CCITT applicationsX.215 Session service definition for OSI for CCITT applicationsX.216 Presentation service definition for OSI for CCITT applicationsX.217 ACSE definition for OSI for CCITT applicationsX.218 CCITT equivalent of ISO 9066-1: Text communication reliable transferX.219 CCITT equivalent of the ISO Remote Operations Service Element (ROSE) X.220 CCITT specification of the use of X.200-series protocols in CCITT applicationsX.223 Use of X.25 to provide the OSI connection mode network serviceX.400 CCITT E-mail standardX.402 CCITT message-handling servicesX.403 CCITT message-handling system: Conformance testingX.407 CCITT message-handling system: Abstract service definitions conventionsX.408 CCITT message-handling system: Encoded information type conversion rules.X.411 CCITT message-handling system: Message transfer system: Abstract service definitions & proceduresX.413 CCITT message-handling system: Message store: Abstract service definitionsX.419 CCITT message-handling system: Protocol specificationsX.420 CCITT message-handling system: Interpersonal messaging systemX.500 Directory standard (RFC 1279, 1275, 1274)X.509 CCITT directory: Authentication frameworkX.511 CCITT directory: Abstract service definitionX.519 CCITT directory: Protocol specificationX.520 CCITT directory: Selected attribute typesX.521 CCITT directory: Selected object classesZIF Zero Insertion ForceZIPP Zigzag In-line Pin Package The revised ISO Reference Model ЪДДДДДДДДДДДДДДДДДДДДДДДДВДДДДДДДДДДДДДДДДДДДДДДДДїі і Application іі ГДДДДДДДДДДДДДДДДДДДДДДДДґі Environments і Presentation іі ГДДДДДДДДДДДДДДДДДДДДДДДДґГДДДДДДДДДДДДДДДДДДДДДДДДґ Session іі ГДДДДДДДДДДДДДДДДДДДДДДДДґі Stacks і Transport іі ГДДДДДДДДДДДДДДДДДДДДДДДДґГДДДДДДДДДДДДДДДДДДДДДДДДґ Network іі Interfaces ГДДДДДДДДДДДДДДДДДДДДДДДДґГДДДДДДДДДДДДДДДДДДДДДДДДґ Data Link іі ГДДДДДДДДДДДДДДДДДДДДДДДДґі Substrates і Physical іАДДДДДДДДДДДДДДДДДДДДДДДДБДДДДДДДДДДДДДДДДДДДДДДДДЩ PEP (Packet Encoding Protocol) ЁбЇ®«м§гҐв Ї®«г¤гЇ«ҐЄбго б奬㠯ҐаҐ¤ зЁ Ёд®а¬ жЁЁ, ЇаЁ н⮬ Є « а §ЎЁў Ґвбп 511 ®зҐм ¬ «ҐмЄЁе Є «®ў, а Ў®в ойЁе ў ®¤®¬ Їа ў«ҐЁЁ. ‚ Ёв®ЈҐ бЄ®а®бвм ¤®бвЁЈ Ґв 18000 ЎЁв/б. ‘Є®а®бвм ¬®¤г«пжЁЁ Є ¦¤®Ј® ¬ «ҐмЄ®Ј® Є « ў § ўЁбЁ¬®бвЁ ®в ®б®ЎҐ®б⥩ «ЁЁЁ ¬ҐпҐвбп Ґ§ ўЁбЁ¬® б и Ј®¬ 100 ЎЁв/б. 4800 ЎЁв/б ᮮ⢥вбвўгҐв 1200 Ў®¤/б. Џа®в®Є®« PEP а §а Ў®в ¤«п ЇҐаҐ¤ зЁ д Єб®ў Ё Ў®«миЁе д ©«®ў. Data encapsulation in Ethernet ЪДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДД 1 frame ДДДДДДДДДДДДДДДДДДДДїГДДДДДДДДДДВДДДДДДДДДДДДДВДДДДДДДДДВДДДДДДДДВДДДДДДДДДДДДДДДДДДДДДВДДДДДДДВДД Д Д Д Д Д Д Д Д Д Д Д Д їі Preamble і Destination і Source і Type і DATA і Frame і Interframe іі і address і address і і і check і spacing іі і і і і і sum і іАДДДДДДДДДДБДДДДДДДДДДДДДБДДДДДДДДДБДДДДДДДДБДДДДДДДДДДДДДДДДДДДДДБДДДДДДДБДД Д Д Д Д Д Д Д Д Д Д Д Д Щ 64 bits 48 bits 48 bits 16 bits 368 to 12000 bytes 32 bits 9.6 mks CRC If two transceivers start transmision simultaneously, that will make a collision. The Ethernet address has 48 bits and is fixed at the production stage (phisical address). The addaptive Ethernet bridge connects two segments, forwarding frames from one to the other. It uses source addresses to learn which machines lie on which segment. Maximum distance between two nodes 1500m of cable. Max. network length 2500m. 900m Max. segment length я500m 185m Max. station # per segment я100 я30 Min distance between stations я2.5m 0.5m Station number per network 1024 1024 Not more than 4 repeaters between two users. HEPNET ўЄ«оз Ґв ў бҐЎп Ў®«ҐҐ 2000 ќ‚Њ Ё 700 ЁбвЁвгв®ў. ‚ 1997 Ј®¤г Ї« ЁагҐвбп ®ЎкҐ¬ ЇҐаҐ¤ зЁ 100 ЊЎў. ‚ –…ђЌ ў Є зҐб⢥ ®б®ўл бҐвЁ Ї« ЁагҐвбп § ¬ҐЁвм ETHERNET FDDI (¤ў®©®Ґ Є®«мж®). ‚ –…ђЌ Ё¬ҐҐвбп 700 Ethernet ᥣ¬Ґв®ў. Ѓ §®ўл¬ ¤«п HEPNET ўлЎа Їа®в®Є®« TCP/IP. ЏаЁҐ¬«Ґ¬®© § ¤Ґа¦Є®© ®вЄ«ЁЄ бзЁв Ґвбп 10-20¬б. ‡ ¤Ґа¦Є ~я80я¬б 㦥 а §¤а ¦ Ґв. ЏаЁ а Ў®вҐ б ®¤Ё¬ бЇгвЁЄ®¬ ¬ЁЁ¬ «м п § ¤Ґа¦Є б®бв ў«пҐв 500я¬б. ђҐ «м®, Ё§-§ Їа®в®Є®«мле ЇаЁзЁ Ё § ¤Ґа¦ҐЄ ў ¬Ґбвле бҐвпе нв жЁда ¬®¦Ґв 㢥«ЁзЁвмбп 100-200я¬б. ‘зЁв Ґвбп, зв® 56-ЄЎЁв/б «ЁЁп бв®Ёв, ўЄ«оз п ®Ў®а㤮ў ЁҐ, Ґ®Ўе®¤Ё¬®Ґ ¤«п ҐҐ нЄбЇ«г в жЁЁ, $40K/Ј®¤. ‡ ¤Ґа¦Є ®вЄ«ЁЄ ў ¬Ґ¦ жЁ® «мле бҐвпе ᥣ®¤п б®бв ў«пҐв ®Є®«® 10я¬бҐЄ. ‚аҐ¬п ЇҐаҐЄ«о票п бв ¤ ав®Ј® IP-агвҐа б®бв ў«пҐв 2я¬бҐЄ. ‡ ўҐа襨Ґ Їа®жҐ¤гал TDM ¬®¦Ґв ¤®Ў ўЁвм 1-2я¬бҐЄ. Џа®¬Ґ¦гв®злҐ PTT TDM ¬®Јгв ¤®Ў ўЁвм ¤ҐбпвЄЁ ¬бҐЄ. ‘।пп § ¤Ґа¦Є ®вЄ«ЁЄ ў бҐвЁ Ethernet - 1.5я¬бҐЄ, ў FDDI - 1.8 ¬бҐЄ. ђ бЇаҐ¤Ґ«ҐЁҐ ¬®й®бвЁ ў бҐвпе, Ё¬ҐойЁе ўл室 CERN: DoD IP 7960 kbps (71.97%) DECnet 1490 kbps (13.47%) SNA 1150 kbps (10.40%) X.25 я460 kbps (я4.16%) ‘зЁв Ґвбп, зв® ў®§¬®¦® ᮧ¤ ЁҐ бҐвҐ© 50 Є¬ ў ¤Ё ¬Ґвॠ(1000 㧫®ў) c Їа®ЇгбЄ®© бЇ®б®Ў®бвмо 1 ЈЁЈ ЎЁв ў ᥪ. 㧥«. Џ а бв жЁ© ¬®¦Ґв ЇҐаҐ¤ ў вм ¤агЈ ¤агЈг ¤® 100 mbps, § Јаг¦ п CPU «Ёим 10%. X.25 X.25 - Їа®в®Є®«, Є®в®ал© ®ЇаҐ¤Ґ«пҐв ЁвҐадҐ©б ¬Ґ¦¤г ®Є®Ґзл¬ ®Ў®а㤮ў ЁҐ¬ ¤ ле (ЋЋ„) Ё ЇЇ а вга®© ЇҐаҐ¤ зЁ ¤ ле (ЂЏ„) ¤«п вҐа¬Ё «®ў, а Ў®в ойЁе ў Ї ЄҐв®¬ ०Ё¬Ґ. €вҐа䥩б пў«пҐвбп бЁеа®л¬. ’Ґа¬Ё «®¬ ¬®¦Ґв б«г¦Ёвм ќ‚Њ Ё«Ё «оЎ п ¤агЈ п бЁб⥬ , 㤮ў®«Ґвў®апой п вॡ®ў Ёп¬ X.25. ЂбЁеа®л© бв ав-бв®Їл© вҐа¬Ё « Ї®¤Є«оз Ґвбп Є бҐвЁ Є®¬¬гв жЁЁ Ї ЄҐв®ў зҐаҐ§ Ї ЄҐвл© ¤ ЇвҐа ¤ ле (ЏЂ„) Ё ®вўҐз Ґв ४®¬Ґ¤ жЁп¬ X.3, X.28 Ё X.29. Ћ¤Ё ЏЂ„ ®ЎҐбЇҐзЁў Ґв ЁвҐадҐ©б ¤«п 8, 16 Ё«Ё 24 бЁеа®ле вҐа¬Ё «®ў. Џ ЄҐв ¤ ле б®бв®Ёв ®Ўлз® Ё§ 128 Ў ©в®ў, Є®в®алҐ ЇҐаҐ¤ овбп Ї® ¤аҐбг, ᮤҐа¦ 饬гбп ў Ї ЄҐвҐ. ЏаҐ¦¤Ґ 祬 Ї ЄҐв Ўг¤Ґв ЇҐаҐ¤ Ґ®Ўе®¤Ё¬® гбв ®ўЁвм бўп§м ¬Ґ¦¤г Ёб室묨 ќ‚Њ/ЏЂ„ Ё ¤аҐб㥬묨 ќ‚Њ/ЏЂ„. ‘гйҐбвўгов ¤ў ўЁ¤ ᮥ¤ЁҐЁ©: Є®¬¬гвЁагҐ¬л© ўЁавг «мл© Є « Ё Ї®бв®пл© ўЁавг «мл© Є «. ‘ҐвҐў®© ¤аҐб Ї®«м§®ў ⥫п б®бв®Ёв Ё§ 12 ¤ҐбпвЁзле жЁда. 1-4 - Ё¤ҐвЁдЁЄ в®а бҐвЁ ЇҐаҐ¤ зЁ ¤ ле (3 - бва , 4 - бҐвм); 4-12 - жЁ® «мл© ®¬Ґа (5-7 ¬Ґбв п ®Ў« бвм, 8-12 - ¬Ґбвл© ®¬Ґа). Љ ¦¤®Ґ Ї®¤Є«о票Ґ Є бҐвЁ Є®¬¬гв жЁЁ Ї ЄҐв®ў Ё¬ҐҐв бў®© жЁ® «мл© ®¬Ґа. „«п Ї®¤Є«о票Ґ Ї® ўЁав㠫쮬㠪 «г ќ‚Њ/ЏЂ„ Ї®бл« Ґвбп Ї ЄҐв (Call Request), ᮤҐа¦ йЁ© бҐвҐў®© ¤аҐб Ї®«м§®ў ⥫п. Џ®б«Ґ Ї®¤вўҐа¦¤ҐЁп ᮥ¤ЁҐЁп Ё ЇҐаҐ¤ зЁ/ЇаЁҐ¬ ¤ ле ўЁав㠫쮥 ᮥ¤ЁҐЁҐ ¬®¦Ґв Ўлвм а §®аў ® Їг⥬ ЇҐаҐ¤ зЁ Ї ЄҐв (Clear Request). Ћ¤Ё дЁ§ЁзҐбЄЁ© Є « бўп§Ё X.25 ¬®¦Ґв Ї®¤¤Ґа¦Ёў вм ҐбЄ®«мЄ® Є®¬¬гвЁа㥬ле ўЁавг «мвле Є «®ў. Џ®бв®пл© ўЁавг «мл© Є « Ї®¤®ЎҐ ўл¤Ґ«Ґ®© «ЁЁЁ - ®Ў¬Ґ ў®§¬®¦Ґ ў «оЎ®© ¬®¬Ґв. X.25 ®ЇаҐ¤Ґ«пҐв ЇҐаўлҐ ваЁ га®ўп ᮥ¤ЁҐЁп ®вЄалвле бЁб⥬. 1 - дЁ§ЁзҐбЄЁ© X.21 2 - Є «мл© (HDLC - Їа®в®Є®« ўлб®Є®Ј® га®ўп гЇа ў«ҐЁп Є «®¬). 3 - бҐвҐў®© (Ї ЄҐвл©) X.21 - гЁўҐаб «мл© ЁвҐадҐ©б ¬Ґ¦¤г ®Є®Ґзл¬ ®Ў®а㤮ў ЁҐ¬ Ё ЇЇ а вга®© ЇҐаҐ¤ зЁ ¤ ле ¤«п бЁеа®®Ј® ०Ё¬ а Ў®вл ў бҐвпе ®ЎйҐЈ® Ї®«м§®ў Ёп. X.21bis - ⮦Ґ ® ¤«п ¬®¤Ґ¬®ў, 㤮ў®«Ґвў®апойЁе ४®¬Ґ¤ жЁп¬ бҐаЁЁ V. „«п Є «м®Ј® га®ўп ЁбЇ®«м§гҐвбп Ї®¤¬®¦Ґбвў® Їа®в®Є®« HDLC (пў«по饣®бп а §ўЁвЁҐ¬ бв ¤ ав SDLC IBM), ®ЎҐбЇҐзЁў о饥 ў®§¬®¦®бвм ўв®¬ вЁзҐбЄ®© Ї®ўв®а®© ЇҐаҐ¤ зЁ ў б«гз Ґ ў®§ЁЄ®ўҐЁп ®иЁЎ®Є ў «ЁЁЁ. ”®а¬ в Є ¤а ¤«п Їа®в®Є®« HDLC Ї®Є § Ё¦Ґ: ®вЄалў ойЁ© д« Ј гЇа ў«по饥 Ї®«Ґ § Єалў ойЁ© д« Ј і ЪДДДДДДЩ(1-2 Ў ©в ) іЪДДДДВДДДДВДДДДВДДДДВДДДДВДДДДДДДДДДДДДДДДДДДДВДДДДВДДДДДВДДДДїі і і іbyteіbyteі іbyteі і іі і і і 1 і 2 і і N і і іАДДДДБДДДДБДДДДЕДДДДБДДДДБДДДДДДДДДДДДДДДДДДДДБДДДДЕДДДДДБДДДДЩ ¤аҐб ДДЩ і €д®а¬ жЁ®®Ґ Ї®«Ґ і і і і і і Љ ¤а®ў п Їа®ўҐа®з п Ї®б«Ґ¤®ў ⥫м®бвм (2 Ў ©в )ДЩ і 1 8 і ГДДДДДДДДДДДДДДДДДДДВДДДДДДДДДДДДДДДґ і ®¬Ґа ЈагЇЇл і €¤ҐвЁдЁЄ в®аі Ў ©в 1 і «®ЈЁзҐбЄ®Ј® Є « і ®ЎйҐЈ® д®а¬ в і і €¤ҐвЁдЁЄ в®а і (Q-ЎЁв=ЎЁв8) і ГДДДДДДДДДДДДДДДДДДДБДДДДДДДДДДДДДДДґ Ў ©в 2 і €¤ҐвЁдЁЄ в®а вЁЇ Ї ЄҐв і ГДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДґ Ў ©в 3 і „®Ї®«ЁвҐ«млҐ Ї®«п і і ў § ўЁбЁ¬®бвЁ ®в вЁЇ Ї ЄҐв і ГДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДґ Ў ©в N і і АДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДЩ ђЁб. 2 ЏаҐ¤гᬮваҐл ¤ўҐ Їа®жҐ¤гал ¤®бвгЇ Є Є «г (ЇаҐ¤Ї®звЁвҐ«мҐ© LAPB): я*яЏа®жҐ¤га ¤®бвгЇ Є Є «г (LAPя-яLinkяAccessяProcedure), ў ®б®ўҐ Є®в®а®© «Ґ¦ в бЁ¬¬ҐваЁзлҐ ®ЇҐа жЁЁ ०Ё¬ бЁеа®®Ј® ®вўҐв (ARM - Asynchronous Response Mode) Їа®в®Є®« HDLC. я*яЃ « б п Їа®жҐ¤га ¤®бвгЇ Є Є «г (LAPB - Link Access Procedure Balanced) ®б®ўҐ бЁеа®®Ј® Ў « б®Ј® ०Ё¬ (ABMя-яAsynchronousяBalancedяMode) Їа®в®Є®« HDLC. ‘ҐвҐў®© га®ўҐм ॠ«Ё§гҐвбп б ЁбЇ®«м§®ў ЁҐ¬ 14 а §«Ёз-ле вЁЇ®ў Ї ЄҐв®ў. ЋЎйЁ© д®а¬ в Ї ЄҐв Ї®Є § ЇаҐ¤иҐбвўго饬 аЁбгЄҐ. ЌЁ¦Ґ ЇҐаҐзЁб«Ґл вЁЇл Ї ЄҐв®ў ( Їа ў-«ҐЁҐ ®в Ђ Є ‚): ќ‚Њ ў в®зЄҐ <A> ---- Є « ---- ‘Ґвм ---- Љ « ---- ќ‚Њ ў в®зЄҐ <‚> ЋЄ®Ґз®Ґ ®Ў®аг¤. ЋЎ®аг¤. ЇҐаҐ- ЋЎ®аг¤. ЇҐаҐ- ®Є®Ґз®Ґ ®Ў®аг¤. ¤ ле ¤ зЁ ¤ ле ¤ зЁ ¤ ле ¤ ле ‡ Їа®б ᮥ¤ЁҐЁп ‚室пйЁ© § Їа®б ᮥ¤ЁҐЁп‘®Ј« бЁҐ ᮥ¤ЁҐЁҐ Џ®¤вўҐа¦¤ҐЁҐ ᮥ¤ЁҐЁп‡ Їа®б а §кҐ¤ЁҐЁп “Є § ЁҐ а §кҐ¤ЁҐЁпЏ®¤вўҐа¦¤ҐЁҐ а §кҐ¤ЁҐЁп ®в ®Є®Ґз®Ј® Џ®¤вўҐа¦¤ҐЁҐ а §кҐ¤ЁҐЁп ®в®Ў®а㤮ў Ёп ¤ ле (ЋЋ„) ЇЇ а вгал ЇҐаҐ¤ зЁ ¤ ле (ЂЏ„)„ лҐ ЋЋ„ „ лҐ ЂЏ„ЏаҐалў ЁҐ ЋЋ„ ЏаҐалў ЁҐ ЂЏ„Џ®¤вўҐа¦¤ҐЁҐ ЇаҐалў Ёп ЋЋ„ Џ®¤вўҐа¦¤ҐЁҐ ЇаҐалў Ёп ЂЏ„ѓ®в®ў®бвм Є ЇаЁҐ¬г ЋЋ„ ѓ®в®ў®бвм Є ЇаЁҐ¬г ЂЏ„ЌҐЈ®в®ў®бвм Є ЇаЁҐ¬г ЋЋ„ ЌҐЈ®в®ў®бвм Є ЇаЁҐ¬г ЂЏ„ЋвЄ § ЋЋ„ ‡ Їа®б бЎа®б “Є § ЁҐ бЎа®б Џ®¤вўҐа¦¤ҐЁҐ бЎа®б ЋЋ„ Џ®¤вўҐа¦¤ҐЁҐ бЎа®б ЂЏ„‡ Їа®б аҐбв ав “Є § ЁҐ аҐбв ав Џ®¤вўҐа¦¤ҐЁҐ аҐбв ав ЋЋ„ Џ®¤вўҐа¦¤ҐЁҐ аҐбв ав ЂЏ„ ЏҐаўлҐ зҐвлॠ⨯ Ї ЄҐв®ў ў бЇЁбЄҐ ЁбЇ®«м§говбп ¤«п гбв ®ў«ҐЁп ᮥ¤ЁҐЁп Ё а §кҐ¤ЁҐЁп Є®¬¬гвЁа㥬®Ј® ўЁавг «м®Ј® Є « . ‘«Ґ¤гойЁҐ 3 - ¤«п ®Ў¬Ґ ¤ л¬Ё Ё ЇаҐалў Ё©. ‘«Ґ¤гойЁҐ 5 ®ЎҐбЇҐзЁў ов гЇа ў«ҐЁҐ Ї®в®Є®¬ ¤ ле Ё дгЄжЁЁ бЎа®б , Ї®б«Ґ¤ЁҐ ¤ў - ¤«п аҐбв ав . Џ ЄҐв ¬®¦Ґв Ё¬Ґвм а §«Ёзго ЁвҐаЇаҐв жЁо ў § ўЁбЁ¬®бвЁ ®в в®Ј®, Ї®бвгЇ Ґв «Ё ® ў бҐвм Є®¬¬гв жЁЁ Ї ЄҐв®ў Ё«Ё Ї®ЄЁ¤ Ґв ҐҐ. Ќ ЇаЁ¬Ґа, Ґб«Ё ќ‚Њ ў в®зЄҐ <A> Ї®бл« Ґв Ї ЄҐв <§ Їа®б ᮥ¤ЁҐЁп> ќ‚Њ ў в®зЄҐ <B>, в® ў в®зЄҐ <B> ® ва ЄвгҐвбп Є Є <ўе®¤пйЁ© § Їа®б ᮥ¤ЁҐЁп>. …б«Ё ќ‚Њ ў в®зЄҐ <B> а §аҐи Ґв ᮥ¤ЁҐЁҐ, в® ® Ї®бл« Ґв ў в®зЄг <A> Ї ЄҐв <б®Ј« бЁҐ ᮥ¤ЁҐЁҐ>, Є®в®ал© ў®бЇаЁЁ¬ Ґвбп ќ‚Њ ў в®зЄҐ <A> Є Є <Ї®¤вўҐа¦¤ҐЁҐ ᮥ¤ЁҐЁп>. ”®а¬Ёаў ЁҐ ўЁавг «м®Ј® Є « . ‚Ёавг «мл© Є « ®ЇЁблў Ґвбп ў ®ЎйҐ¬ д®а¬ ⥠Ї ЄҐв (аЁб.2) Є Є "«®ЈЁзҐбЄЁ© Є «". ‹®ЈЁзҐбЄЁ© Є « Ё¬ҐҐв Ё¤ҐвЁдЁЄ в®а, б®бв®пйЁ© Ё§ 12 ЎЁв. ќв®в Ё¤ҐвЁдЁЄ в®а ®Ўлз® б®бв®Ёв Ё§ ®¬Ґа ЈагЇЇл «®ЈЁзҐбЄ®Ј® Є « (4ЎЁв) Ё ®¬Ґа «®ЈЁзҐбЄ®Ј® Є « (8ЎЁв). ‚ ЈагЇЇҐ ¬®¦Ґв Ўлвм ¤® 256 «®ЈЁзҐбЄЁе Є «®ў (§ ЁбЄ«о票Ґ¬ ЈагЇЇл 0, Є®в®а п ¬®¦Ґв Ё¬Ґвм в®«мЄ® 255 «®ЈЁзҐбЄЁе Є «®ў). ‚®§¬®¦®Ґ зЁб«® ЈагЇЇ - ¤® 16, Ї®н⮬г ⥮аҐвЁзҐбЄЁ ў®§¬®¦®Ґ зЁб«® ўЁавг «мле Є «®ў ¤«п Є ¦¤®Ј® ᮥ¤ЁҐЁп X.25 а ў® 4095 (16x256-1). ‚ ‚Ґ«ЁЄ®ЎаЁв ЁЁ бҐвм Є®¬¬гв жЁЁ Ї ЄҐв®ў ®ЎйҐЈ® Ї®«м§®ў Ёп §лў Ґвбп Packet Switchstream (PSS). PSS ЇаҐ¤« Ј Ґв зҐвлॠ⨯ «®ЈЁзҐбЄЁе Є «®ў: Џ®бв®пл© ўЁавг «мл© Є « (Џ‚Љ). „«п ҐЈ® ®Ў®§ 票п PSS ЁбЇ®«м§гҐв бў®о б®Ўб⢥го вҐа¬Ё®«®ЈЁо, ў ᮮ⢥вбвўЁЁ б Є®в®а®© ® §лў Ґвбп "Ї®бв®пл© ®Ў¬Ґ ¤ л¬Ё" (Permanent data Call). Љ®¬¬гвЁагҐ¬л© ўЁавг «мл© Є « (Љ‚Љ) (ў вҐа¬Ё®«®ЈЁЁ PSS- "®Ў¬Ґ ¤ л¬Ё" (Data Call). €¬Ґовбп ваЁ вЁЇ Љ‚Љ, а Ў®в ойЁҐ ў ¤гЇ«ҐЄб®¬ ०Ё¬Ґ, ® ®в«Ёз ойЁҐбп Їа ў«ҐЁҐ¬ гбв ў«Ёў Ґ¬ле ᮥ¤ЁҐЁ©: ўе®¤пйЁ© Љ‚Љ, ¤ўг Їа ў«Ґл© Љ‚Љ Ё ўл室пйЁ© Љ‚Љ. PSS ‚Ґ«ЁЄ®ЎаЁв ЁЁ ЇаҐ¤гб¬ ваЁў Ґв ¤® ў®бм¬Ё ЈагЇЇ «®ЈЁзҐбЄЁе Є «®ў ¤«п Є ¦¤®Ј® дЁ§ЁзҐбЄ®Ј® ᮥ¤ЁҐЁп X.25: ѓагЇЇ ’ЁЇ 0 Џ‚Љ 1 Џ‚Љ 2 Љ‚Љ ’®«мЄ® ўе®¤пйЁҐ ᮥ¤ЁҐЁп 3 Љ‚Љ ’® ¦Ґ 4 Љ‚Љ „ўг Їа ў«ҐлҐ ᮥ¤ЁҐЁп 5 Љ‚Љ ’® ¦Ґ 6 Љ‚Љ ’®«мЄ® ўл室пйЁҐ ᮥ¤ЁҐЁп 7 Љ‚Љ ’® ¦Ґ „«п PSS ⥮аҐвЁзҐбЄЁ ў®§¬®¦®Ґ зЁб«® ўЁавг «мле Є «®ў ®¤® дЁ§ЁзҐбЄ®Ґ бҐвҐў®Ґ ᮥ¤ЁҐЁҐ X.25 (Ї®ав PSS) б®бв ў«пҐв 2047 (8x256-1). Љ Є Ўл«® гбв ®ў«Ґ® а ҐҐ, Џ‚Љ § з овбп Ї®бв®п®, Ё ЇҐаҐ¤ о饩 ќ‚Њ Ё§ўҐбв®, зв® Ї ЄҐв, ¤аҐб㥬л©, ЇаЁ¬Ґа, Є «г 1 ЈагЇЇл 0 бҐвЁ PSS, ўбҐЈ¤ Ўг¤Ґв ЇҐаҐ¤ ќ‚Њ ў в®зЄҐяX. Љ‚Љ Ґ § з овбп Ї®бв®ап®, ®Ё ЁбЇ®«м§говбп в®«мЄ® ўаҐ¬п ᮥ¤ЁҐЁп Ё бв ®ўпвбп ¤®бвгЇл¬Ё ¤«п Ї®ўв®а®Ј® ЁбЇ®«м§®ў Ёп Ї®б«Ґ а §мҐ¤ЁҐЁп. ‚бҐ вЁЇл Ї ЄҐв®ў, § ЁбЄ«о票Ґ¬ Ї ЄҐв®ў "§ Їа®б аҐбв ав ", ᮤҐа¦ в Ё¤ҐвЁдЁЄ в®а «®ЈЁзҐбЄ®Ј® Є « . Џ ЄҐв "§ Їа®б ᮥ¤ЁҐЁп" ў Љ‚Љ пў«пҐвбп Ґ¤ЁбвўҐл¬ вЁЇ®¬ Ї ЄҐв®ў, Є®в®алҐ б®¤Ґа¦ в ¤аҐб ў ᮮ⢥вбвўЁЁ б ४®¬Ґ¤ жЁҐ© X.121. „«п гбв ®ў«ҐЁп ўл室п饣® ᮥ¤ЁҐЁп Ї® Љ‚Љ ќ‚Њ ўлЎЁа Ґв «®ЈЁзҐбЄЁ© Є « б ЁЎ®«миЁ¬ ®¬Ґа®¬ ў ЈагЇЇҐ Ё Ї®бл« Ґв Ї ЄҐв "§ Їа®б ᮥ¤ЁҐЁп", ᮤҐа¦ йЁ© ўлЎа л© ®¬Ґа ЈагЇЇл Є « , ¤аҐб Ї®«гз ⥫п (ў ᮮ⢥бвўЁЁ б ४®¬Ґ¤ жЁҐ© X.121) Ё ў ®в¤Ґ«мле б«гз пе бў®© б®ЎбвўҐл© ¤аҐб (X.121). ЏаЁ гбв ®ў«ҐЁЁ ўе®¤п饣® ᮥ¤ЁҐЁп жҐва Є®¬¬гв жЁЁ Ї ЄҐв®ў (–ЉЏ) ўлЎЁа Ґв бў®Ў®¤л© «®ЈЁзҐбЄЁ© Є « б Ё¬ҐмиЁ¬ ®¬Ґа®¬ ў ЈагЇЇҐ Є «®ў Ї®ав ¤аҐб㥬®© ќ‚Њ Ё Ї®¬Ґй Ґв нв®в «®ЈЁзҐбЄЁ© ®¬Ґа ЈагЇЇл Ё Є « ў Ї ЄҐв "ўе®¤пйЁ© § Їа®б ᮥ¤ЁҐЁп". Џ®б«Ґ в®Ј® Є Є ᮥ¤ЁҐЁҐ Ї® Љ‚Љ гбв ®ў«Ґ®, ќ‚Њ Їа ў«пов бў®Ё Ї ЄҐвл, ЁбЇ®«м§гп ®¬Ґа бў®Ёе «®ЈЁзҐбЄЁе ЈагЇЇ/Є «®ў, –ЏЉ ў бҐвЁ ®бгйҐбвў«пҐв ва бЇ®авЁа®ўЄг Ї ЄҐв®ў Ё ЇаҐ®Ўа §®ў ЁҐ ®¬Ґа®ў «®ЈЁзҐбЄЁе ЈагЇЇ/Є «®ў. Љ Є в®«мЄ® гбв ®ў«Ґ®Ґ Ї® Љ‚Љ «®ЈЁзҐбЄ®Ґ ᮥ¤ЁҐЁҐ а §кҐ¤ЁпҐвбп, ®¬Ґа «®ЈЁзҐбЄЁе ЈагЇЇ/Є «®ў ®Ў®Ёе Є®ж е ᮥ¤ЁҐЁп ®бў®Ў®¦¤ овбп Ё бв ®ўпвбп ¤®бвгЇл¬Ё ¤«п Ї®ўв®а®Ј® ЁбЇ®«м§®ў Ёп. ‘®®вўҐвбвўЁҐ ¬Ґ¦¤г –ЉЏ/Ї®а⮬, ўл¤Ґ«Ґл¬ ¤«п ЋЋ„, ¤аҐб ¬Ё (ў ᮮ⢥вбвўЁЁ б ४®¬Ґ¤ жЁҐ© X.121) Ё ®¬Ґа ¬Ё «®ЈЁзҐбЄЁе Є «®ў Ё§ўҐбв® ў бҐвЁ в®«мЄ® –ЉЏ. ‚лЎ®а ќ‚Њ бў®Ў®¤®Ј® Є « б ЁЎ®«миЁ¬ ®¬Ґа®¬ ЇаЁ Є ¦¤®¬ ўл室п饬 ᮥ¤ЁҐЁЁ Ё ўлЎ®а ў –ЉЏ бў®Ў®¤®Ј® Є « б Ё¬ҐмиЁ¬ ®¬Ґа®¬ ¤«п Є ¦¤®Ј® ўе®¤п饣® Ї®§ў®«пов Ё§ЎҐ¦ вм Є®д«ЁЄв®ў. ‘ нв®© ¦Ґ 楫мо ЁбЇ®«м§говбп ¤ўҐ «®ЈЁзҐбЄЁҐ ЈагЇЇл: ®¤ в®«мЄ® ¤«п ўе®¤пйЁе ᮥ¤ЁҐЁ©, ¤агЈ п в®«мЄ® ¤«п ўл室пйЁе. ЏҐаҐ¤ Ї®¤Є«о票Ґ¬ Є ‘ЉЏ Ї®«м§®ў вҐ«м ¤®«¦Ґ ®ЇаҐ¤Ґ«Ёвм, бЄ®«мЄ® Џ‚Љ Ё Љ‚Љ вॡгҐвбп Є ¦¤го в®зЄг дЁ§ЁзҐбЄ®Ј® ЁвҐа䥩б X.25 (Ї®ав). ЏаЁ Ї®¤Є«о票Ё Є ‘ЉЏ ®ЎйҐЈ® Ї®«м§®ў Ёп § Є ¦¤л© Џ‚Љ Ё Љ‚Љ ў®бЁвбп Ј®¤®ў п । п Ї« в . ‘®Ґ¤ЁҐЁҐ зҐаҐ§ ЏЂ„. ЂбЁеа®лҐ вҐа¬Ё «л Ї®¤Є«оз овбп Є бҐвЁ Є®¬¬гв жЁЁ Ї ЄҐв®ў зҐаҐ§ ўбва®ҐлҐ Ё«Ё г¤ «ҐлҐ Ї ЄҐвлҐ ¤ ЇвҐал ¤ ле (ЏЂ„). ‚бва®Ґл© ЏЂ„ ®Ўлз® а бЇ®«® Ј Ґвбп ў¬ҐбвҐ б –ЉЏ ў ҐЈ® бв®©ЄҐ. ‚ н⮬ б«гз Ґ Є ¦¤л© бЁеа®л© вҐа¬Ё «, а бЇ®«®¦Ґл© ў г¤ «Ґ®¬ ¬ҐбвҐ, Ї®¤Є«оз Ґвбп Є бў®Ґ¬г ўбв஥®¬г ЏЂ„ зҐаҐ§ ®в¤Ґ«мл© Є « бўп§Ё (•.28). ‚ «мвҐа вЁў®¬ б«гз Ґ г¤ «Ґл© ЏЂ„ (ҐЎ®«м讥 ®в¤Ґ«м®Ґ гбва®©бвў®) ¬®¦Ґв Ўлвм а бЇ®«®¦Ґ ў г¤ «Ґ®¬ ¬Ґб⥠Ё Ї®¤Є«оз Ґвбп Є бў®Ґ¬г –ЉЏ зҐаҐ§ ®¤Ё Є « бўп§Ё (X.25). —ҐаҐ§ г¤ «Ґл© ЏЂ„ Є –ЉЏ ®Ўлз® Ї®¤Є«оз Ґвбп ¤® 8 Ё«Ё 16 бЁеа®ле вҐа¬Ё «®ў. ‚бва®Ґл© ЏЂ„ ¬®¦Ґв Ўлвм б®ў¬Ґбв® ЁбЇ®«м§®ў ҐбЄ®«мЄЁ¬Ё вҐа¬Ё « ¬Ё, а бЇ®«®¦Ґл¬Ё ў а §«Ёзле г¤ «Ґле ¬Ґбв е, ў в® ўаҐ¬п Є Є г¤ «Ґл© ЏЂ„ ®Ўб«г¦Ёў Ґв вҐа¬Ё «л, а бЇ®«®¦ҐлҐ ®Ўлз® ў ®¤®¬ ¬ҐбвҐ. ‘гйҐбвўгҐв ҐйҐ ®¤Ё бЇҐЄв а §¬ҐйҐЁп ЏЂ„, бўп§ л© б Ї®¬Ґе ¬Ё ў Є « е бўп§Ё Ё ЁбЇ®«м§®ў ЁҐ¬ Їа®в®Є®«®ў бўп§Ё. “¤ «Ґл© ЏЂ„ Ї®¤Є«оз Ґвбп Є –ЉЏ Є «м®¬ га®ўҐ ў ᮮ⢥вбвўЁЁ б ४®¬Ґ¤ жЁҐ© X.25. ‚ Є зҐб⢥ Їа®в®Є®« Є « ¤ ле ў ४®¬Ґ¤ жЁЁ X.25 ЁбЇ®«м§гҐвбп Ї®¤¬®¦Ґбвў® HDLC, ®ЎҐбЇҐзЁў о饥 ўв®¬ вЁзҐбЄго Ї®ўв®аго ЇҐаҐ¤ зг ¤ ле ў б«гз Ґ Ёе ЁбЄ ¦ҐЁп ўб«Ґ¤бвўЁҐ ў®§ЁЄ®ўҐЁп Ї®¬Ґе ў «ЁЁЁ. ЂбЁеа®л© вҐа¬Ё « ЁбЇ®«м§гҐв ¤«п ¤Ё «®Ј б ЈагЇЇ®ўл¬ ЏЂ„ Їа®жҐ¤гал, ®ЇЁб лҐ ў ४®¬Ґ¤ жЁЁ X.28, ў Є®в®але Ґ ЇаҐ¤гᬮвॠў®§¬®¦®бвм Ї®ўв®а®© ЇҐаҐ¤ зЁ ў б«гз Ґ ®иЁЎЄЁ. Џ®н⮬㠪 « ¬Ґ¦¤г бЁеа®л¬ вҐа¬Ё «®¬ Ё ЈагЇЇ®ўл¬ ЏЂ„ Ґ § йЁйҐ ®в ў®§ЁЄ®ўҐЁп ®иЁЎ®Є ¤ ле ў १г«мв ⥠«ЁҐ©ле Ї®¬Ґе. Џа®жҐ¤гал ЏЂ„. Џа®жҐ¤гал ЏЂ„ ®ЇаҐ¤Ґ«Ґл ў б«Ґ¤гойЁе ४®¬Ґ¤ жЁпе ЊЉЉ’’. я*яђҐЄ®¬Ґ¤ жЁп X.3: "Џ ЄҐвл© ¤ ЇвҐа ¤ ле (ЏЂ„) ў бҐвЁ ЇҐаҐ¤ зЁ ¤ ле ®ЎйҐЈ® Ї®«м§®ў Ёп". я*яђҐЄ®¬Ґ¤ жЁп X.28: "€вҐадҐ©б ¬Ґ¦¤г ЋЋ„ Ё ЂЏ„ ¤«п бв авбв®Ї®Ј® ®Є®Ґз®Ј® ®Ў®а㤮ў Ёп ¤ ле, яяя®бгйҐбвў«по饣® ¤®бвгЇ Є Ї ЄҐв®¬г ¤ ЇвҐаг ¤ ле ў бҐвЁ ЇҐаҐ¤ зЁ ¤ ле ®ЎйҐЈ® Ї®«м§®ў Ёп, яяяа бЇ®«®¦Ґ®© ў ®¤®© бва Ґ". я*яђҐЄ®¬¤ жЁп X.29: "Џа®жҐ¤гал ®Ў¬Ґ гЇа ў«по饩 Ёд®а¬ жЁҐ© Ё ¤ л¬Ё Ї®«м§®ў ⥫Ґ© ¬Ґ¦¤г ЋЋ„ яяяЇ ЄҐв®Ј® вЁЇ Ё Ї ЄҐвл¬ ¤ ЇвҐа®¬ ¤ ле (ЏЂ„)". ”гЄжЁЁ ЏЂ„. Ћб®ўлҐ дгЄжЁЁ ЏЂ„ ў ᮮ⢥вбвўЁЁ б ४®¬Ґ¤ жЁҐ© X.3: я* бЎ®аЄ § Є®ў (Ї®«гзҐле ®в бЁеа®ле вҐа¬Ё «®ў) ў Ї ЄҐвл; я*яа §Ў®аЄ Ї®«Ґ© ¤ ле ў Ї ЄҐв е Ё ўлў®¤ ¤ ле бЁеа®лҐ вҐа¬Ё «л; я*ягЇа ў«ҐЁҐ Їа®жҐ¤га ¬Ё гбв ®ў«ҐЁп ўЁавг «м®Ј® ᮥ¤ЁҐЁп Ё а §мҐ¤ЁҐЁп, бЎа®б Ё ЇаҐалў Ёп; я*я®ЎҐбЇҐзҐЁҐ ¬Ґе Ё§¬ Їа®¤ўЁ¦ҐЁп Ї ЄҐв®ў ЇаЁ «ЁзЁЁ ᮮ⢥вбвўгойЁе гб«®ўЁ©, в ЄЁе Є Є § Ї®«ҐЁҐ яяяЇ ЄҐв , Ї®«г票Ґ § Є (бЁЈ « ) ЇҐаҐ¤ зг Ї ЄҐв , ЁбвҐзҐЁҐ ўаҐ¬ҐЁ ®¦Ё¤ Ёп; я*яЇҐаҐ¤ з § Є®ў,ўЄ«оз ойЁе бв авбв®ЇлҐ бЁЈ «л Ё ЎЁвл Їа®ўҐаЄЁ зҐв®бвм, Ї® вॡ®ў Ёо Ї®¤Є«о祮Ј® яяя бЁеа®®Ј® вҐа¬Ё « ; я*я®Ў а㦥ЁҐ бЁЈ « "а §алў" ®в бЁеа®®Ј® вҐа¬Ё « ; я*я। ЄвЁа®ў ЁҐ Ї®б«Ґ¤®ў ⥫м®б⥩ Є®¬ ¤ ЏЂ„. Џ а ¬ҐваляЏЂ„ (४®¬Ґ¤ жЁп X.3). ‚ Ї®бв®п®¬ § Ї®¬Ё о饬 гбва®©б⢥ ЏЂ„ еа пвбп Ї а ¬Ґвал. ќвЁ Ї а ¬Ґвал ¬®Јгв Ўлвм гбв ®ў«Ґл «ЁЎ® бЁеа®л¬ вҐа¬Ё «®¬, Ї®¤Є«озҐл¬ Є ЏЂ„, «ЁЎ® «оЎ®© ќ‚Њ, Ї®¤Є«о祮© Є бҐвЁ Є®¬¬гв жЁЁ Ї ЄҐв®ў, Є®в®а п 㤮ў«Ґвў®апҐв гб«®ўЁп¬ ४®¬Ґ¤ жЁЁ X.29. ‚ ४®¬Ґ¤ жЁЁ X.29 ЊЉЉ’’ нвЁ Ї а ¬Ґвал §ў л гЇа ў«по饩 Ёд®а¬ жЁҐ©. Џ®н⮬㠥®Ўе®¤Ё¬® Єў «ЁдЁжЁа®ў вм ¤ лҐ, Їа®е®¤пйЁҐ ¬Ґ¦¤г ќ‚Њ Ё ЏЂ„, «ЁЎ® Є Є гЇа ў«пойго Ёд®а¬ жЁо (б®®ЎйҐЁп ЏЂ„), «ЁЎ® Є Є б®Ўб⢥® ¤ лҐ ®в бЁеа®®Ј® вҐа¬Ё « . ќв® ®бгйҐбвў«пҐвбп б Ї®¬®ймо ®в¤Ґ«м®Ј® ЎЁв -Єў «ЁдЁЄ в®а (Q-ЎЁв ), ᮤҐа¦ 饣®бп ў Є ¦¤®¬ Ї ЄҐвҐ. …б«Ё Q-ЎЁв а ўҐ Ґ¤ЁЁжҐ,Ї ЄҐв ᮤҐа¦Ёв б®®ЎйҐЁҐ ЏЂ„, Ґб«Ё ¦Ґ ® а ўҐ г«о, Ї ЄҐв ᮤҐа¦Ёв ¤ лҐ. ‚ Ї ЄҐвҐ гЇа ў«по饩 Ёд®а¬ жЁЁ 4-ЎЁв®ўл© Є®¤ ў ЇҐаў®¬ ®ЄвҐвҐ б®®ЎйҐЁп ЏЂ„ гЄ §лў Ґв вЁЇ б®®ЎйҐЁп: Љ®¤ ‘®®ЎйҐЁҐ ЏЂ„ ЉҐ¬ Ї®б« ® 0001 ЏаҐ¤«®¦ҐЁҐ а §мҐ¤ЁҐЁп ќ‚Њ 0010 “бв ®ўЁвм Ї а ¬Ґвал ќ‚Њ 0011 €¤ЁЄ жЁп а §алў ќ‚Њ Ё«Ё ЏЂ„ 0100 Џа®зЁв вм Ї а ¬Ґвал ќ‚Њ 0101 ЋиЁЎЄ ЏЂ„ 0110 “бв ®ўЁвм Ё Їа®зЁв вм Ї а ¬Ґвал ќ‚Њ ‚ Ї®«Ґ б®®ЎйҐЁп ЏЂ„ ¬®¦Ґв Ўлвм ўЄ«о祮 «оЎ®Ґ зЁб«® Ї а ¬Ґва®ў, Є®в®а®Ґ ¤®ЇгбЄ Ґв ¬ ЄбЁ¬ «мл© а §¬Ґа Ї ЄҐв . Љ ¦¤л© Ї а ¬Ґва ®Ў®§ з Ґвбп ®¬Ґа®¬ Ё§ ЇҐаҐзЁб«Ґле Ё¦Ґ, § Є®в®ал¬ б«Ґ¤гҐв § 票Ґ Ї а ¬Ґва : Џ а ¬Ґва ЋЇЁб ЁҐ 1 ЋЎа 饨Ґ Є ЏЂ„ б ЁбЇ®«м§®ў ЁҐ¬ гЇа ў«по饣® § Є 2 ќе®-Є®ва®«м 3 ‚лЎ®а бЁЈ « Ї®бл«ЄЁ Ї ЄҐв 4 ‚лЎ®а Їа®¤®«¦ЁвҐ«м®бвЁ ®¦Ё¤ Ёп в ©¬Ґа 5 “Їа ў«ҐЁҐ ўбЇ®¬®Ј ⥫мл¬ гбва®©бвў®¬ 6 Џ®¤ ў«ҐЁҐ гЇа ў«пойЁе бЁЈ «®ў ЏЂ„ 7 ‚лЎ®а ¤Ґ©бвўЁ© ЏЂ„ ЇаЁ Ї®«г票Ё бЁЈ « а §алў 8 ‘Ўа®б ўлў®¤ 9 ‡ Ї®«ҐЁҐ Ї®б«Ґ бЁЈ « "ў®§ўа в Є аҐвЄЁ" 10 ЏҐаҐ®б бва®ЄЁ (¤«Ё Є®в®а®© ®Ја ЁзҐ а §¬Ґа ¬Ё нЄа ¤ЁбЇ«Ґп) 11 ‘Є®а®бвм а Ў®вл бв авбв®Ї®Ј® Ћ„„ (вҐа¬Ё « ) 12 “Їа ў«ҐЁҐ Ї®в®Є®¬ ЏЂ„ 13 ‚бв ўЄ бЁ¬ў®« "ЇҐаҐў®¤ бва®ЄЁ" Ї®б«Ґ бЁ¬ў®« "ў®§ўа в Є аҐвЄЁ" 14 ‡ Ї®«ҐЁҐ Ї®б«Ґ бЁЈ « "ЇҐаҐў®¤ бва®ЄЁ" 15 ђҐ¤ ЄвЁа®ў ЁҐ 16 ‘вЁа ЁҐ § Є 17 ‘ваЁ ЁҐ бва®ЄЁ 18 ‚лў®¤ бва®ЄЁ нЄа ¤ЁбЇ«Ґп 19 ђҐ¤ ЄвЁа®ў ЁҐ бЁЈ «®ў гЇа ў«ҐЁп ЏЂ„ 20 Њ ЄбЁа®ў ЁҐ не®-Є®ва®«п 21 ЋЎа Ў®вЄ бЁ¬ў®«®ў Є®ва®«¤п зҐв®бвм 22 Ћ¦Ё¤ ЁҐ бва Ёжл Џа®дЁ«ЁяЏЂ„. PSS ‚Ґ«ЁЄ®ЎаЁв ЁЁ ЇаҐ¤®бв ў«пҐв Ї®«м§®ў ⥫о бв авбв®Ї®Ј® вҐа¬Ё « б।бвў ,Ї®§ў®«по饥 ўлЎа в Ї а ¬Ґвал ЏЂ„ б § а ҐҐ ®ЇаҐ¤Ґ«Ґл¬Ё § 票ﬨ. Џ®«м§®ў вҐ«м Ї®бл« Ґв ў® ўбва®Ґл© ЏЂ„ Є®¬ ¤г ўлЎ®а Їа®дЁ«п, Є®в®а п ўЄ«оз Ґв Ё¤ҐвЁдЁЄ в®а Їа®дЁ«п. ќвЁ¬ ®ЇаҐ¤Ґ«пҐвбп ®¤Ё Ё§ ҐбЄ®«мЄЁе бв ¤ авле Їа®дЁ«Ґ©, еа пйЁебп ў ЏЂ„. €¤ҐвЁдЁЄ в®а Їа®дЁ«п Ё Ї а ¬Ґва 11 ЏЂ„ (бЄ®а®бвм вҐа¬Ё « ) ўЄ«оз овбп ў "Ї®«Ґ ¤ ле Ї®«м§®ў ⥫п" Ї ЄҐв®ў "§ Їа®б ᮥ¤ЁҐЁп", Ї®бл« Ґ¬ле ЏЂ„. ‚л§лў Ґ¬ п ќ‚Њ (ЏЂ„) ЁбЇ®«м§гҐв нв® Ї®«Ґ, Ё§ў«ҐЄ п Ё§ ҐЈ® Ёд®а¬ жЁо ® ўл§лў о饬 бв авбв®Ї®¬ вҐа¬Ё «Ґ. ЋЎа вл©яЏЂ„. ЋЎа вл© ЏЂ„, Ё®Ј¤ §лў Ґ¬л© Ј« ўл¬ ЏЂ„, ЁбЇ®«м§гҐвбп ¤«п ᮥ¤ЁҐЁп Ј« ўле ќ‚Њ, ўҐ¤гйЁе ЇҐаҐ¤ зг ў бЁеа®®¬ ०Ё¬Ґ, б бҐвмо, ᮮ⢥вбвўго饩 вॡ®ў Ёп¬ ४®¬Ґ¤ жЁЁ X.25. Љ ¦¤®Ґ бЁеа®®Ґ ᮥ¤ЁҐЁҐ ®Ўа в®Ј® ЏЂ„ б Ј« ў®© ќ‚Њ Ї®¤¤Ґа¦Ёў Ґв в®«мЄ® ®¤Ё ўЁавг «мл© Є «. ‚®бҐ¬м ўЁавг «мле Є «®ў вॡгов ў®бм¬Ё бЁеа®ле ᮥ¤ЁҐЁ© (Ї®ав®ў) ў ЏЂ„. «о§л ¤«п бҐвҐ© б® бв вЁзҐбЄЁ¬Ё ¬г«мвЁЇ«ҐЄб®а ¬Ё. Ѓ®«миЁбвў® дЁа¬-Їа®Ё§ў®¤ЁвҐ«Ґ© ®Ў®а㤮ў Ёп ¤«п бв вЁзҐбЄЁе ¬г«мвЁЇ«ҐЄб®а®ў ўлЇгбЄ ов "и«о§" ¤«п Ї®¤Є«озҐЁп Ёе ®Ў®а㤮ў Ёп Є бҐвЁ вЁЇ X.25. "«о§" ®Ўлз® б®Ґ¤ЁпҐвбп б бҐвмо вЁЇ X.25 c Ї®¬®ймо Є « X.25 Ё дгЄжЁ®ЁагҐв Ї®¤®Ў® г¤ «Ґ®¬г ЏЂ„, ®ЎҐбЇҐзЁў п ᮥ¤ЁҐЁҐ бЁеа®ле вҐа¬Ё «®ў ў ¬г«мвЁЇ«ҐЄб®а®© бҐвЁ б бҐвмо вЁЇ X.25. ЏаҐ®Ўа §®ў ЁҐ Їа®в®Є®« IBM 3270. ‘гйҐбвўго⠯८Ўа §®ў ⥫Ё ¤«п ЇҐаҐ¤ зЁ Ї® Ї®ав®Є®« ¬ вЁЇ BSC Ё«Ё SNA ¬Ґ¦¤г Ј« ў®© ќ‚Њ Ё ¤ЁбЇ«Ґ©л¬ Є®¬Ї«ҐЄб®¬ IBM 3270 ( Ё«Ё нҐЄўЁў «Ґв®© бЁб⥬®©) зҐаҐ§ бҐвм вЁЇ X.25. „«п Їа ўЁ«м®© а Ў®вл вॡговбп ¤ўҐ ¬®¤Ґ«Ё ЇаҐ®Ўа §®ў вҐ«п Їа®в®Є®«®ў: ®б®ў®Ґ ®Є®Ґз®Ґ гбва®©бвў® ¤«п ᮥ¤ЁҐЁп Ј« ў®© ќ‚Њ б бҐвмо X.25 вҐа¬Ё «м®Ґ ®Є®Ґз®Ґ гбва®©бвў® ¤«п ᮥ¤ЁҐЁп ¤ЁбЇ«Ґ©®Ј® Є®¬Ї«ҐЄб IBM б бҐвмо X.25. ‘«г¦Ў Є®¬¬гв жЁЁ Ї ЄҐв®ў ¤ ле ®ЎйҐЈ® Ї®«м§®ў Ёп (PSS) ‚Ґ«ЁЄ®ЎаЁв ЁЁ. PSS (Packet Switchstream) пў«пҐвбп ўЁ¤®¬ ®Ўб«г¦Ёў Ёп Ї® ЇҐаҐ¤ зҐ ¤ ле, ЇаҐ¤« Ј Ґ¬л¬ British Telecom. ќв® жЁ® «мл© ®ЎйҐ¤®бвгЇл© ўЁ¤ ®Ўб«г¦Ёў Ёп Ї ЄҐв®© ®Ўа Ў®вЄЁ ¤ ле, ў Є®в®а®¬ ®ЎҐбЇҐзЁў Ґвбп ЇҐаҐ¤ з ¤ ле ў ¤гЇ«ҐЄб®¬ ०Ё¬Ґ б® бЄ®а®бвп¬Ё ®в 110ЎЁв/c ¤® 48 ЉЎЁв/б. British Telekom ®ЇаҐ¤Ґ«пҐв ¤ў вЁЇ вҐа¬Ё «®ў ¤«п Ї®¤Є«озҐЁп Є бҐвЁ PSS: "Ї ЄҐвл© вҐа¬Ё «" Ё«Ё ЋЋ„-Џ Ё "§ Є®ўл© ( «д ўЁв®-жЁда®ў®©) вҐа¬Ё «" Ё«Ё ЋЋ„-3Ќ. PSS ®ЎҐбЇҐзЁў Ґв Є « бўп§Ё ¬Ґ¦¤г "вҐа¬Ё « ¬Ё", а Ў®в ойЁ¬Ё б а §«Ёзл¬Ё бЄ®а®бвп¬Ё. Ќ ЇаЁ¬Ґа, Ї ЄҐвл© вҐа¬Ё « (ЋЋ„-Џ), а Ў®в ойЁ© бЁеа®® б® бЄ®а®бвмо 2400-4800 ЎЁв/б, ¬®¦Ґв ®Ў¬ҐЁў вмбп б бЁеа®л¬ вҐа¬Ё «®¬ (Ћ„„-3Ќ), а Ў®в ойЁ¬ б® бЄ®а®бвмо 110-1200 ЎЁв/б. Џ ЄҐвл©явҐа¬Ё «. Џ ЄҐвл© вҐа¬Ё « пў«пҐвбп ЁвҐ««ҐЄвг «мл¬ гбва®©бвў®¬ ( ЇаЁ¬Ґа, ќ‚Њ, ¬ЁЁќ‚Њ, ќ‚Њ Ё«Ё ўҐиЁ© ЏЂ„), Є®в®ал© бЁеа®® ®Ў¬ҐЁў Ґвбп б PSS б® бЄ®а®бвп¬Ё 2400, 4800, 9600 ЎЁв/c Ё«Ё 48 ЉЎЁв/б, ЁбЇ®«м§гп ваҐега®ўҐўл© Їа®в®Є®« (X.25) PSS. ’ Є®Ґ бЁеа®®Ґ ᮥ¤ЁҐЁҐ б PSS, Ё§ўҐб⮥ Ї®¤ §ў ЁҐ¬ "Dataline", ¬®¦Ґв ®ЎҐбЇҐзЁў вмбп в®«мЄ® British Telekom. Џ« в § Ї®«м§®ў ЁҐ Dataline ўЄ«оз Ґв бв®Ё¬®бвм ¬®¤Ґ¬ Ї ЄҐвле вҐа¬Ё «®ў, ўл¤Ґ«Ґ®© «ЁЁЁ ¤® Є®¬¬гв в®а PSS, в Є¦Ґ ¬®¤Ґ¬ Ё ўл¤Ґ«Ґ®Ј® Ї®ав ў Є®¬¬гв в®аҐ PSS. ‚ ¦л¬ ®в«ЁзЁҐ¬ Dataline ®в ®Ўлз®© ўл¤Ґ«Ґ®© «ЁЁЁ пў«пҐвбп в®, зв® бв®Ё¬®бвм Dataline Ґ § ўЁбЁв ®в а ббв®пЁп ¬Ґ¦¤г Ї ЄҐвл¬ вҐа¬Ё «®¬ Ё Ў«Ё¦ ©иЁ¬ Є®¬¬гв в®а®¬ PSS. ‡ Є®ўл© вҐа¬Ё «. ‚ Є зҐб⢥ § Є®ў®Ј® вҐа¬Ё « а бб¬ ваЁў овбп в ЄЁҐ гбва®©бвў Є Є б®ў¬ҐбвЁ¬л© б ⥫Ґв ©Ї®¬ ўЁ¤Ґ®вҐа¬Ё « Ё«Ё ⥫Ґв ©Ї, а Ў®в ойЁ© ў бЁеа®®¬ ०Ё¬Ґ ®Ў¬Ґ б PSS б® бЄ®а®бвп¬Ё ЇҐаҐ¤ зЁ 110, 300, 75/120 Ё«Ё 1200 ЎЁв/б, ЁбЇ®«м§гойЁ© Їа®жҐ¤гал ЏЂ„ (X.28). ‡ Є®ўл© вҐа¬Ё « б® бЄ®а®бвмо ЇҐаҐ¤ зЁ 75/1200 ЎЁв/c ЇҐаҐ¤ Ґв б® бЄ®а®бвмо 75 ЎЁв/б, ЇаЁЁ¬ Ґв б® бЄ®а®бвмо 1200 ЎЁв/б. ‡ Є®ўлҐ вҐа¬Ё «л Ї®¤Є«оз овбп Є ўбва®Ґл¬ Ї ЄҐвл¬ ¤ ЇвҐа ¬ ¤ ле, а бЇ®«®¦Ґл¬ ў Є ¦¤®¬ жҐвॠЄ®¬¬гв жЁЁ PSS. ЂбЁеа®®Ґ ¤ўгЇ«ҐЄб®Ґ ᮥ¤ЁҐЁҐ б ЏЂ„ ¬®¦Ґв Ўлвм Є®¬¬гвЁагҐ¬л¬ б® бЄ®а®бвп¬Ё ЇҐаҐ¤ зЁ 110, 300, 75/1200 Ё«Ё 1200 ЎЁв/б, «ЁЎ® ᮥ¤ЁҐЁҐ¬ вЁЇ Dataline (ўл¤Ґ«Ґл© Є «) б® бЄ®а®бвп¬Ё 300 Ё«Ё 1200 ЎЁв/б. ‚ б«гз Ґ Є®¬¬гвЁа㥬®Ј® ᮥ¤ЁҐЁп б® § Є®ўл¬ вҐа¬Ё «®¬ ЁбЇ®«м§гҐвбп ¬®¤Ґ¬ вЁЇ V.21, V.22 Ё«Ё V.23. „®Ї®«ЁвҐ«мл¬ вॡ®ў ЁҐ¬ ў б«гз Ґ Є®¬¬гвЁа㥬®Ј® ᮥ¤ЁҐЁп пў«пҐвбп ўлЇ®«пҐ¬®Ґ British Telekom § ®в¤Ґ«мго Ї« вг ЇаЁбў®ҐЁҐ Ї®«м§®ў ⥫о бҐвҐў®Ј® Ё¤ҐвЁдЁЄ в®а (‘€Џ). Џ®¤Є«о票Ґ § Є®ў®Ј® вҐа¬Ё « . ‘гиҐбвўгҐв иҐбвм ў®§¬®¦ле бЇ®б®Ў®ў Ї®¤Є«озҐЁп § Є®ў®Ј® вҐа¬Ё « Є ўбв஥®¬г ЏЂ„ бҐвЁ PSS (аЁб.3): я*яDataline 300 (V.21) - ᮥ¤ЁҐЁҐ зҐаҐ§ ўл¤Ґ«Ґл© Є « (300 ЎЁв/б); я*яDataline 1200 (V.23) - ᮥ¤ЁҐЁҐ зҐаҐ§ ўл¤Ґ«Ґл© Є « (1200 ЎЁв/б); я*яЉ®¬¬гвЁа㥬®Ґ ᮥ¤ЁҐЁҐ (300 ЎЁв/б) зҐаҐ§ ¬®¤Ґ¬ (V.21); я*яЉ®¬¬гвЁа㥬®Ґ ᮥ¤ЁҐЁҐ (75/1200 ЎЁв/б) зҐаҐ§ ¬®¤Ґ¬ (V.23); я*яЉ®¬¬гвЁа㥬®Ґ ᮥ¤ЁҐЁҐ (1200 ЎЁв/б) зҐаҐ§ ¬®¤Ґ¬ (V.22); я*яЉ®¬¬гвЁа㥬®Ґ ᮥ¤ЁҐЁҐ (300 ЎЁв/б) зҐаҐ§ ЄгбвЁзҐбЄЁ© ᮥ¤ЁЁвҐ«м (V.21). ‡ Є®ўл© вҐа¬Ё « ®Ўлз® б®бв®Ёв Ё§ ®в¤Ґ«м®Ј® ўЁ¤Ґ®гбва®©бвў (Ё«Ё Ё®Ј® § Є®ў®Ј® гбва®©бвў ) Ё ЇҐз -в о饣® гбва®©бвў . ‚лў®¤ ЇҐз вм ᮤҐа¦Ё¬®Ј® нЄа ®бгйҐбвў«пҐвбп ®ЇҐа в®а®¬ ЇаЁ ¦ вЁЁ Є®ЇЄЁ ЇҐз вЁ. ‘в®Ё¬®бвм Dataline Ґ § ўЁбЁв ®в а ббв®пЁп ¬Ґ¦¤г Ї®¬ҐйҐЁҐ¬, ў Є®в®а®¬ 室Ёвбп вҐа¬Ё «, Ё Ў«Ё¦ ©иЁ¬ ЏЂ„. ‘в®Ё¬®бвм § Є ¦¤л© з б ЁбЇ®«м§®ў Ёп Є®¬¬гвЁа㥬ле ᮥ¤ЁҐЁ© зҐаҐ§ ’”ЋЏ ўлиҐ, 祬 § ᮥ¤ЁҐЁп вЁЇ Dataline, Ё, Єа®¬Ґ в®Ј®, бв®Ё¬®бвм ᮥ¤ЁҐЁп зҐаҐ§ ’”ЋЏ § ўЁбЁв ®в а ббв®пЁп ¬Ґ¦¤г вҐа¬Ё «®¬ Ё ЏЂ„, в Є¦Ґ ®в ўаҐ¬ҐЁ бгв®Є. ђ §аҐиҐл б«Ґ¤гойЁҐ ᮥ¤ЁҐЁп зҐаҐ§ ўбва®Ґл© ЏЂ„ бҐвЁ PSS: я*яDataline ЋЋ„-3H ᮥ¤ЁпҐвбп б Dataline ЋЋ„-3 Ё¤Ё c Dataline ЋЋ„-Џ; я*яЋЋ„-3H зҐаҐ§ бҐвм ‘ЉЏ ᮥ¤ЁпҐвбп б Dataline ЋЋ„-3H Ё«Ё c Dataline ЋЋ„-Џ; я*яDataline ЋЋ„-Џ ᮥ¤ЁпҐвбп б Dataline ЋЋ„-3H. „«п ЋЋ„-3H, Ї®¤Є«о祮Ј® зҐаҐ§ Dataline, ®ЇҐа в®а гбв ў«Ёў Ґв вॡ㥬®Ґ бҐвҐў®Ґ ᮥ¤ЁҐЁҐ, ЎЁа п "бҐвҐў®© ¤аҐб Ї®«м§®ў ⥫п" (‘ЂЏ). ‚ ‚Ґ«ЁЄ®ЎаЁв ЁЁ ® б®бв®Ёв Ё§ 9-11 жЁда. „«п ¬Ґ¦¤г த®Ј® ᮥ¤ЁҐЁп Ґ®Ўе®¤Ё¬® гЄ § вм Є®¤ бва л Ё§ ваҐе жЁда, в Є¦Ґ Ўа вм ®¤г жЁдаг 9 ЇҐаҐ¤ ‘ЂЏ. ’ ЄЁ¬ ®Ўа §®¬, ўбҐЈ® вॡгҐвбп Ґ Ў®«ҐҐ 15 жЁда®ўле § Є®ў. „«п гбв ®ў«ҐЁп Є®¬¬гвЁа㥬®Ј® ᮥ¤ЁҐЁп ®ЇҐав®а ў з «Ґ ўагзго ЎЁа Ґв ®¬Ґа ЏЂ„ Ё ¦¤Ґв Ї®¤вўҐа¦¤ҐЁп ᮥ¤ЁҐЁп б ’”ЋЏ. Є Є в®«мЄ® ᮥ¤ЁҐЁҐ гбв ®ў«Ґ®, ®ЇҐа в®а ЎЁа Ґв 12-бЁ¬ў®«мл© Є®¤ "cҐвҐў®Ј® Ё¤ҐвЁдЁЄ в®а Ї®«м§®ў ⥫п" (C€Џ) Ё Їа®¤®«¦ Ґв ¤Ґ©бвў®ў вм, Є Є ЇаЁ гбв ®ў«ҐЁЁ ᮥ¤ЁҐЁп вЁЇ Dataline. ЏЂ„ ®ЎҐбЇҐзЁў Ґв ®ЇҐа жЁо не®-Є®ва®«п, Є®в®а п Ї®§ў®«пҐв ®ЇҐа в®аг вҐа¬Ё « ўЁ§г «м® Їа®ўҐапвм ¤ лҐ, Ї®бл« Ґ¬лҐ ў ЏЂ„. Ќ ЁЎ®«ҐҐ бҐамҐ§л¬ Ґ¤®бв вЄ®¬ ўбв஥®Ј® ЏЂ„ бҐвЁ PSS пў«пҐвбп ®вбгвбвўЁҐ Є Є®Ј®-«ЁЎ® «ЁҐ©®Ј® Їа®в®Є®« , ЇаҐ¤гб¬ ваЁў о饣® гбва ҐЁҐ ®иЁЎ®Є ў ¤ ле, Ї®бл« Ґ¬ле ®в ЏЂ„ Є вҐа¬Ё «г. ‚ г¤ «Ґ®¬ ЏЂ„ ЇаҐ¤гᬮвॠЇа®жҐ¤га ў®ббв ®ў«ҐЁп ®иЁЎ®зле ¤ ле, ®¤ Є® ® Ї®¤Є«оз Ґвбп Є PSS Є Є "Ї ЄҐвл© вҐа¬Ё «" (ЋЋ„-Џ). Џ®¤Є«о票Ґ Ї ЄҐв®Ј® вҐа¬Ё « (ЋЋ„-Џ). Ќ аЁб.4 Ї®Є § л ваЁ ЇаЁ¬Ґа Ї®¤Є«о票п "Ї ЄҐв®Ј® вҐа¬Ё « " Є PSS. „«п 㤮Ўбвў ба ўҐЁп б аЁб. 3 ў Є зҐб⢥ Ї®¤Є«оз Ґ¬®Ј® гбва®©бвў ўлЎа ўЁ¤Ґ®вҐа¬Ё «. ЏҐаў п Є®дЁЈга жЁп Ї®Є §лў Ґв ®в¤Ґ«мл© ўЁ¤Ґ®вҐа¬Ё «, § Їа®Ја ¬¬Ёа®ў л© ¤«п Ї®¤¤Ґа¦ЄЁ Їа®в®Є®« X.25. ‚Ё¤Ґ®вҐаўЁ «л б в ЄЁ¬Ё дгЄжЁп¬Ё Ё¬Ґовбп ў Їа®¤ ¦Ґ. ‚в®а п Є®дЁЈга жЁп Ї®Є §лў Ґв ҐбЄ®«мЄ® бЁеа®ле ўЁ¤Ґ®вҐа¬Ё «®ў, Ї®¤Є«озҐле Є г¤ «Ґ®¬г ЏЂ„, ЇаЁ н⮬ ЏЂ„ ®ЎҐбЇҐзЁў Ґв ўлЇ®«ҐЁҐ Їа®в®Є®« X.25. Љ г¤ «Ґ®¬г ЏЂ„ ®Ўлз® ¬®¦® Ї®¤Є«озЁвм ¤® 8 Ё«Ё 16 бЁеа®ле ўЁ¤Ґ®вҐа¬Ё «®ў. ’аҐвмп Є®дЁЈга жЁп Ї®Є §лў Ґв ўлзЁб«ЁвҐ«мго бЁб⥬г б ¤ЁбЄ®ў®© Ї ¬пвмо, б ЁвҐадҐ©б ¬Ё бўп§Ё ¤«п Ї®¤Є«озҐЁп «®Є «мле Ё/Ё«Ё г¤ «Ґле ®в¤Ґ«мле Ё«Ё ЈагЇЇ®ўле ўЁ¤Ґ®вҐа¬Ё «мле бЁб⥬. Ќ б奬Ґ Ї®Є § ® в Є¦Ґ ў®§¬®¦®Ґ Ї®¤Є«о票Ґ Є ¤агЈ®¬г Є®¬¬гв в®аг, Є®в®а®Ґ ®ЎҐбЇҐзЁў Ґв १Ґаўл© Їгвм ¤®бвгЇ Є бҐвЁ PSS ў б«гз Ґ ®вЄ § ®б®ў®Ј® ᮥ¤ЁҐЁп Ё«Ё Є®¬¬гв в®а PSS. ‡ ва вл в Є®Ґ Ї®¤Є«о票Ґ б 楫мо ®ЎҐбЇҐзҐЁп гбв®©зЁў®© а Ў®вл ¬®Јгв Ўлвм ўЇ®«Ґ ®Ў®б®ў л¬Ё, ®б®ЎҐ® ў б«гз Ґ, Є®Ј¤ Ў®«м讥 Є®«ЁзҐбвў® ўЁ¤Ґ®вҐа¬Ё «®ў Ї®¤Є«о祮 Є PSS зҐаҐ§ ¬ЁЁќ‚Њ. TCP/IP Ћб®ўлҐ Ї®пвЁп •®вп вҐе®«®ЈЁп Internet Ї®¤¤Ґа¦Ёў Ґв ¬®Ј® а §«Ёзле б। ЇҐаҐ¤ зЁ ¤ ле, ¤ «ҐҐ ¤«п ®ЇаҐ¤Ґ«Ґ®бвЁ Ўг¤Ґв ЇаҐ¤Ї®« Ј вмбп ЁбЇ®«м§®ў ЁҐ б।л Ethernet. ЏаЁЄ« ¤лҐ Їа®жҐббл ЪДДДДДДДДДДДДї ЪДДДДДДДДДДДДїі TCP і і UDP іАДДДДДДВДДДДДЩ АДДДДДДВДДДДДЩЪДДДДДДБДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДБДДДДДїі IP іАДДДДДДДДДДДДДДДДДДДДДДД * ДДДДДДДДДДДДДДДДДДДДДДЩЪДДДДДДДДДДДДї іі ARP і іАДДДДДДДВДДДДЩ і ЪДБДДДДДДДДДДДДДДД # ДДДДДДДДДДДДДДДї і ENET і АДДДДДДДДДДДДДДДДДДВДДДДДДДДДДДДДДДДЩ Є ЎҐ«м ETHERNET Ё«Ё і Ё п ЇҐаҐ¤ ой п б। ДДДДДДДДДДДДДДДДДДДДДДДДяO ДДДДДДДДДДДДДДДДДДДДДДД O - ва бЁўҐа # - ¤аҐб ¬ иЁл ў бҐвЁ (§¤Ґбм - ў ETHETNET) * - IP ¤аҐб. Ќ §ў ЁҐ Ў«®Є ¤ ле, ЇҐаҐ¤ ў Ґ¬®Ј® Ї® бҐвЁ, § ўЁбЁв ®в в®Ј®, Є Є®¬ га®ўҐ б⥪ Їа®в®Є®«®ў ® 室Ёвбп. Ѓ«®Є ¤ ле, б Є®в®ал¬ Ё¬ҐҐв ¤Ґ«® бҐвҐў®© ¤ ЇвҐа, §лў Ґвбп Є ¤а®¬; Ґб«Ё Ў«®Є ¤ ле 室Ёвбп ¬Ґ¦¤г ¤а ©ўҐа®¬ Ё ¬®¤г«Ґ¬ IP, в® ® §лў Ґвбп IP-Ї ЄҐв®¬; Ґб«Ё ® ¬Ґ¦¤г ¬®¤г«Ґ¬ IP Ё ¬®¤г«Ґ¬ UDP, в® - UDP-¤Ґ©в®Ја ¬¬®©; Ґб«Ё ® ¬Ґ¦¤г ¬®¤г«п¬Ё IP Ё TCP, в® - TCP-ᥣ¬Ґв®¬ (Ё«Ё ва бЇ®авл¬ б®®ЎйҐЁҐ¬); Є®Ґж, Ґб«Ё Ў«®Є ¤ ле 室Ёвбп га®ўҐ бҐвҐўле ЇаЁЄ« ¤ле Їа®жҐбб®ў, в® ® §лў Ґвбп ЇаЁЄ« ¤л¬ б®®ЎйҐЁҐ¬. Љ®Ј¤ Ethernet-Є ¤а Ї®Ї ¤ Ґв ў ¤а ©ўҐа бҐвҐў®Ј® ЁвҐа䥩б Ethernet, ® ¬®¦Ґв Ўлвм Їа ў«Ґ «ЁЎ® ў ¬®¤г«м ARP «ЁЎ® ў ¬®¤г«м IP. Љг¤ Ўг¤Ґв Їаў«Ґ Ethernet-Є ¤а гЄ §лў Ґв § 票Ґ Ї«п вЁЇ ў § Ј®«®ўЄҐ Є ¤а . …б«Ё IP-Ї ЄҐв Ї®Ї ¤ Ґв ў ¬®¤г«м IP, ⮠ᮤҐа¦ йЁҐбп ў Ґ¬ ¤ лҐ ¬®Јгв Ўлвм ЇҐаҐ¤ л «ЁЎ® ¬®¤г«о TCP, «ЁЎ® UDP, зв® ®ЇаҐ¤Ґ«пҐвбп Ї®«Ґ¬ "Їа®в®Є®«" ў § Ј®«®ўЄҐ IP-Ї ЄҐв . …б«Ё UDP-¤Ґ©в Ја ¬¬ Ї®Ї ¤ Ґв ў ¬®¤г«м UDP, в® § 票Ґ Ї®«п "Ї®ав" ў § Ј®«®ўЄҐ ¤Ґ©в Ја ¬¬л ®ЇаҐ¤Ґ«пҐв ЇаЁЄ« ¤го Їа®Ја ¬¬г, Є®в®а®© ¤®«¦® Ўлвм ЇҐаҐ¤ ® б®®ЎйҐЁҐ. …б«Ё TCP-б®®ЎйҐЁҐ Ї®Ї ¤ Ґв ў ¬®¤г«м TCP, в® § 票Ґ Ї®«п "Ї®ав" ў § Ј®«®ўЄҐ б®®ЎйҐЁп ®ЇаҐ¤Ґ«пҐв ЇаЁЄ« ¤го Їа®Ја ¬¬г, Є®в®а®© ¤®«¦® Ўлвм ЇҐаҐ¤ ® б®®ЎйҐЁҐ. IP- ¤аҐб жЁп Ї®¤¤Ґа¦Ёў Ґв ваЁ а §«Ёзле Є« бб®ў бҐвҐ©. Љ« бб Ђ ЇаҐ¤ § зҐ ў ®б®ў®¬ ¤«п ҐЎ®«ми®Ј® зЁб« ®зҐм Ў®«миЁе бҐвҐ©. ‡¤Ґбм ¤«п Є®¤ бҐвЁ ўл¤Ґ«Ґ® в®«мЄ® 7 ЎЁв. Љ« бб B ўл¤Ґ«пҐв 14 ЎЁв ¤«п Є®¤ бҐвЁ, Є« бб ‘ - 22 ЎЁв . ‚ Є« бᥠC ¤«п Є®¤ Host ЇаҐ¤ § 祮 8 ЎЁв, Ї®н⮬г зЁб«® Host ў бҐвЁ ®Ја ЁзҐ®. ‘ ¬л© «Ґўл© ЎЁв(ЎЁвл) ¤аҐб ЇаҐ¤ § зҐл ¤«п Є®¤ Є« бб . 0 1 8 16 24 31 ЪДВДДДДДДДДДДВДДДДДДДДДДДДДДДДДДДДДДДДДДДДДїЉ« бб A і0і NetID і HostID і АДБДДДДДДДДДДБДДДДДДДДДДДДДДДДДДДДДДДДДДДДДЩ < network > <ДДДДДДДДДД Host ДДДДДДДДДДДД> ЪДВДВДДДДДДДДДДДДДДДДДДВДДДДДДДДДДДДДДДДДДДїЉ« бб B і1і0і NetID і HostID і АДБДБДДДДДДДДДДДДДДДДДДБДДДДДДДДДДДДДДДДДДДЩ <ДДД network ДДДД> <ДДДДД Host ДДДДДДД> ЪДВДВДВДДДДДДДДДДДДДДДДДДДДДДДДДВДДДДДДДДДДїЉ« бб C і1і1і0і NetID і HostID і АДБДБДБДДДДДДДДДДДДДДДДДДДДДДДДДБДДДДДДДДДДЩ <ДДДДДД network ДДДДДДДДД> <Д Host Д> ЪДВДВДВДВДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДїЉ« бб D і1і1і1і0і Multicast Address і АДБДБДБДБДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДЩ ЪДВДВДВДВДВДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДїЉ« бб E і1і1і1і1і0і Reserved for future use і АДБДБДБДБДБДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДЩ By convention, the network address has HostID with all bits 0. The broadcast address has HostID with all 1. If Host moves from network to another, its address must be changed. The routing uses only network part of the IP-address. The class A network address 127.0.0.0 is reserved for loopback and is designed fortesting and inter-process communication on the local machine. The internet standard for byte order specifies that integers are sent most significant byte first. Џа®в®Є®« ARP Џа®в®Є®« ARP б«г¦Ёв ¤«п ЇаҐ®Ўа §®ў Ёп IP- ¤аҐб®ў ў Ethernet- ¤аҐб . 6-ЎЁв®ўл© Ethernet- ¤аҐб ўлЎЁа Ґв Ё§Ј®в®ўЁвҐ«м бҐвҐў®Ј® ЁвҐа䥩ᮣ® ®Ў®а㤮ў Ёп Ё§ ўл¤Ґ«Ґ®Ј® ¤«п ҐЈ® Ї® «ЁжҐ§ЁЁ ¤аҐб®Ј® Їа®бва бвў . …б«Ё г ¬ иЁл ¬ҐпҐвбп бҐвҐў®© ¤ ЇвҐа, в® ¬ҐпҐвбп Ё ҐҐ Ethernet- ¤аҐб. 4-Ў ©в®ўл© IP- ¤аҐб Є§ з Ґв ¬ҐҐ¤¦Ґа бҐвЁ б гзҐв®¬ Ї®«®¦ҐЁп ¬ иЁл ў бҐвЁ Internet. …б«Ё ¬ иЁ ЇҐаҐ¬Ґй Ґвбп ў ¤агЈго з бвм бҐвЁ Internet, в® ҐҐ IP- ¤аҐб ¤®«¦Ґ Ўлвм Ё§¬ҐҐ. ЏаҐ®Ўа §®ў ЁҐ ўлЇ®«пҐвбп б Ї®¬®ймо ARP-в Ў«Ёжл. Љ ¦¤ п ¬ иЁ бҐвЁ Ё¬ҐҐв ®в¤Ґ«мго ARP-в Ў«Ёжг ¤«п Є ¦¤®Ј® бў®ҐЈ® бҐвҐў®Ј® ¤ ЇвҐа . ђ бᬮваЁ¬ Їа®жҐ¤га㠯८Ўа §®ў Ёп ¤аҐб®ў ЇаЁ ®вЇа ў«ҐЁЁ б®®ЎйҐЁп. Џгбвм ЇаЁЄ« ¤ п Їа®Ја ¬¬ ®¤®© ќ‚Њ ®вЇа ў«пҐв б®®ЎйҐЁҐ ў ¤агЈго. ЏаЁ н⮬ ® ®Ўлз® ЇҐаҐ¤ Ґв ЇаЁЄ« ¤®Ґ б®®ЎйҐЁҐ ¬®¤г«о TCP, Є®в®ал© Ї®бл« Ґв ᮮ⢥вбвўго饥 ва бЇ®а⮥ б®®ЎйҐЁҐ ¬®¤г«о IP. ЏаЁЄ« ¤®© Їа®Ја ¬¬Ґ, ¬®¤г«о TCP Ё ¬®¤г«о IP IP- ¤аҐб ¬Ґбв § зҐЁп Ё§ўҐбвҐ. ЏаЁ Ї®бл«ЄҐ б®®ЎйҐЁп вॡгҐвбп ®ЇаҐ¤Ґ«Ёвм Ethernet- ¤аҐб § 票п. „«п ҐЈ® ®ЇаҐ¤Ґ«ҐЁп Їа®б¬ ваЁў Ґвбп ARP-в Ў«Ёж . …б«Ё ¤«п вॡ㥬®Ј® IP- ¤аҐб ў Ґ© ЇаЁбгвбвўгҐв Ethernet- ¤аҐб, в® д®а¬ЁагҐвбп Ё Ї®бл« Ґвбп ᮮ⢥вбвўгойЁ© Ї ЄҐв. …б«Ё ¦Ґ б Ї®¬®ймо ᮮ⢥вбвўго饩 ARP-в Ў«Ёжл Ґ г¤ Ґвбп ЇаҐ®Ўа §®ў вм ¤аҐб, в® ўлЇ®«пҐвбп б«Ґ¤го饥: 1. Љ ¦¤®© ¬ иЁҐ ў бҐвЁ Ї®бл« Ґвбп Ї ЄҐв б ARP-§ Їа®б®¬ б иЁа®Є®ўҐй ⥫мл¬ Ethernet- ¤аҐб®¬. 2. €б室пйЁ© IP-Ї ЄҐв бв ўЁвбп ў ®зҐаҐ¤м. Љ ¦¤ п ¬ иЁ , ЇаЁпўи п ARP-§ Їа®б, ў бў®Ґ¬ ARP-¬®¤г«Ґ ба ўЁў Ґв б®ЎбвўҐл© IP- ¤аҐб б IP- ¤аҐб®¬ ў § Їа®бҐ. …б«Ё IP- ¤аҐб б®ўЇ «, в® Їаאַ Ї® Ethernet- ¤аҐбг ®вЇа ўЁвҐ«п § Їа®б Ї®бл« Ґвбп ®вўҐв, ᮤҐа¦ йЁ© Є Є IP- ¤аҐб ®вўҐвЁўиҐ© ¬ иЁл, в Є Ё ҐҐ Ethernet- ¤аҐб. Џ®б«Ґ Ї®«гзҐЁп ®вўҐв бў®© ARP-§ Їа®б ¬ иЁ Ё¬ҐҐв вॡ㥬го Ёд®а¬ жЁо ® ᮮ⢥вбвўЁЁ IP Ё Ethernet- ¤аҐб®ў, д®а¬ЁагҐв ᮮ⢥вбвўгойЁ© н«Ґ¬Ґв ARP-в Ў«Ёжл Ё ®вЇа ў«пҐв IP-Ї ЄҐв, а ҐҐ Ї®бв ў«Ґл© ў ®зҐаҐ¤м. …б«Ё ¦Ґ ў бҐвЁ Ґв ¬ иЁл б ЁбЄ®¬л¬ IP- ¤аҐб®¬, в® ARP-®вўҐв Ґ Ўг¤Ґв Ё Ґ Ўг¤Ґв § ЇЁбЁ ў ARP-в Ў«Ёжг. Џа®в®Є®« IP Ўг¤Ґв гЁз⮦ вм IP-Ї ЄҐвл, ®вЇа ў«ҐлҐ Ї® н⮬㠤аҐбг. Џа®в®Є®«л ўҐа奣® га®ўп Ґ ¬®Јгв ®в«ЁзЁвм б«гз © Ї®ўаҐ¦¤ҐЁп ў б।Ґ Ethernet ®в б«гз п ®вбгвбвўЁп ¬ иЁл б ЁбЄ®¬л¬ IP- ¤аҐб®¬. ”гЄжЁ® «м®, ARP ¤Ґ«Ёвбп ¤ўҐ з бвЁ. Ћ¤ - ®ЇаҐ¤Ґ«пҐв дЁ§ЁзҐбЄЁ© ¤аҐб ЇаЁ Ї®бл«ЄҐ Ї ЄҐв , ¤агЈ п ®вўҐз Ґв § Їа®бл ¤агЈЁе ¬ иЁ. ”®а¬ в Їа®в®Є®« ARP 0 8 16 24 31ЪДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДВДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДїі Hardware type і Protocol type іГДДДДДДДДДДДДДДДДДВДДДДДДДДДДДДДДДЕДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДґі HLEN і PLEN і Operation іГДДДДДДДДДДДДДДДДДБДДДДДДДДДДДДДДДБДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДґі Sender HA (octets 0-3) іГДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДВДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДґі Sender HA (octets 4-5) і Sender IP (octets 0-1) іГДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДЕДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДґі Sender IP (octets 2-3) і Target HA (octets 0-1) іГДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДБДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДґі Target HA (octets 2-5) іГДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДґі Target HA (octets 0-3) іАДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДЩ HA - Hardware address. Hardware type is an interface type for which the sender seeks the address; it contains 1 fot Ethernet. Protocol type specifies the type of high level protocol address the sender has supplied, it contains 0800H for IP-address. Operation specifies an ARP request (1), ARP response (2) RARP-request (3), or RARP-response (4). HLEN and PLEN allow ARP to be usedwith arbitrary networks, as they specify the length of hardware address and IP-address. When making the request sender also supplies the target IP-address (ARP), or target hardware address (RARP, e.g. for diskless systems), using fields Target HA and Target IP. The Internet Datagram 0 4 8 16 19 24 31ЪДДДДДДДДВДДДДДДДДВДДДДДДДДДДДДДДВДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДїі VERS і HLEN і Service type і Total Length іГДДДДДДДДБДДДДДДДДБДДДДДДДДДДДДДДЕДДДДДДДВДДДДДДДДДДДДДДДДДДДДДДДДДґі Identification і Flags і Fragment Offset іГДДДДДДДДДДДДДДДДДВДДДДДДДДДДДДДДЕДДДДДДДБДДДДДДДДДДДДДДДДДДДДДДДДДґі Time To Live і Protocol і Header Checksum іГДДДДДДДДДДДДДДДДДБДДДДДДДДДДДДДДБДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДґі Source IP Address іГДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДґі Destination IP Address іГДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДВДДДДДДДДДДДДДДДДґі IP-options (if any) і Padding іГДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДБДДДДДДДДДДДДДДДДґі DATA іГДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДґі ... іАДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДДЩ VERS - version of IP-protocol; HLEN - Header length in 32-bit words. Usually heading has 20 octets (no options nor padding) and HLEN=5. Total Length field is 16 bit long, the maximum size of IP-datagram is 65535 octets. The 8 bit Service type field specifies how the datagram should be handled and is broken into 5 subfields: я0 1 2 3 4 5 6 7ЪДДДДДДДДДДДДДДДДДДВДДДДДВДДДДДВДДДДДВДДДДДДДДДДДїі Precedence і D і T і R і Unused іАДДДДДДДДДДДДДДДДДДБДДДДДБДДДДДБДДДДДБДДДДДДДДДДДЩ Precedence bits specify datagram precedence, with value ranging from 0 (normal precedence) through 7 (network control, allowing sender to indicate the importance of each datagram. Bits D,T and R specify the transport the datagram desire. When set, the D bit requests the low delay, the T - high throughput and the R - high reliability. ЊҐ¦бҐвҐў®© Їа®в®Є®« IP Ѓ §®ўл¬ н«Ґ¬Ґв®¬ вҐе®«®ЈЁЁ Internet пў«пҐвбп ¬®¤г«м IP. …Ј® жҐва «м®© з бвмо пў«пҐвбп в Ў«Ёж ¬ аиагв®ў, ЁбЇ®«м§гҐ¬ п ¤«п ЇаЁпвЁп аҐиҐЁп ® ¬ аиагвЁ§ жЁЁ IP-Ї ЄҐв®ў. ‘®¤Ґа¦ ЁҐ в Ў«Ёжл ¬ аиагв®ў ®ЇаҐ¤Ґ«пҐв ¤¬ЁЁбва в®а бҐвЁ. Џап¬ п ¬ аиагвЁ§ жЁп Ё¬ҐҐв ¬Ґбв® ЇаЁ ®Ў¬ҐҐ Ї ЄҐв ¬Ё ¬Ґ¦¤г ¬ иЁ ¬Ё, ўе®¤пйЁ¬Ё ў ®¤г бҐвм. Џгбвм ¬ иЁ Ђ ®вЇа ў«пҐв IP-Ї ЄҐв ¬ иЁҐ ‚. ‚ н⮬ б«гз Ґ § Ј®«®ў®Є IP-Ї ЄҐв ᮤҐа¦Ёв ў Ї®«Ґ ®вЇа ўЁвҐ«п IP- ¤аҐб ¬ иЁл A, ў Ї®«Ґ Ї®«гз ⥫п - IP- ¤аҐб ¬ иЁл B. ‡ Ј®«®ў®Є Ethernet-Є ¤а ᮤҐа¦Ёв ў Ї®«Ґ ®вЇа ўЁвҐ«п Ethernet- ¤аҐб ¬ иЁл Ђ, ў Ї®«Ґ Ї®«гз ⥫п - Ethernet- ¤аҐб ¬ иЁл B. Љ®Ј¤ ў ¬ иЁҐ ‚ ¬®¤г«м IP Ї®«гз Ґв IP-Ї ЄҐв ®в ¬ иЁл Ђ, ® ба ўЁў Ґв ¤аҐб Ї®«гз ⥫п б® бў®Ё¬ Ё, Ґб«Ё ¤аҐб б®ўЇ «Ё, в® ЇҐаҐ¤ Ґв ¤Ґ©в Ја ¬¬г Їа®в®Є®«г ўҐа奣® га®ўп. Љ®бўҐ п ¬ аиагвЁ§ жЁп Ё¬ҐҐв ¬Ґбв® ЇаЁ ®Ў¬ҐҐ Ї ЄҐв ¬Ё ¬Ґ¦¤г ¬ иЁ ¬Ё, ўе®¤пйЁ¬Ё ў а §«ЁзлҐ бҐвЁ, ®ЎкҐ¤ЁпҐ¬лҐ ¬ иЁ ¬Ё-и«о§ ¬Ё. ЋЎлзлҐ ¬ иЁл бҐвЁ Ё¬Ґов б⥪ Їа®в®Є®«®ў, «®ЈЁзл© Ї®Є § ®¬г аЁб. ўлиҐ. Њ иЁл-и«о§л Ё¬Ґов бв®«мЄ® IP Ё Ethernet- ¤аҐб®ў, ў® бЄ®«мЄ® бҐвҐ© ®Ё ўе®¤пв. ЏаЁ н⮬ ў Ёе Ё¬ҐҐвбп бв®«мЄ® ¦Ґ ¤а ©ўҐа®ў Ethernet Ё ¬®¤г«Ґ© ARP, ® Ґ¤ЁбвўҐл© ¬®¤г«м IP. Џгбвм ¬ иЁ Ђ, ўе®¤пй п ў бҐвм 1, ®вЇа ў«пҐв IP-Ї ЄҐв ¬ иЁҐ ‘, ўе®¤п饩 ў бҐвм 2, зҐаҐ§ и«о§ B, ўе®¤пйЁ© ў ®ЎҐ нвЁ бҐвЁ. ‚ н⮬ б«гз Ґ IP Ё Ethernet- ¤аҐб ®вЇа ўЁвҐ«п - ¤аҐб ¬ иЁл Ђ, IP- ¤аҐб Ї®«гз ⥫п а ўҐ IP- ¤аҐбг ¬ иЁл ‘, Ethernet- ¤аҐб Ї®«гз ⥫п а ўҐ Ethernet- ¤аҐбг ¬ иЁл-и«о§ B. Њ®¤г«м IP ¬ иЁл-и«о§ B, ЇаЁпў IP-Ї ЄҐв, Їа®ўҐапҐвIP- ¤аҐб ¬Ґбв § зҐЁп Ё, в.Є. нв® Ґ ҐЈ® IP- ¤аҐб, ЇҐаҐбл« Ґв Ї ЄҐв ¬ иЁҐ C. Џа ўЁ« ¬ аиагвЁ§ жЁЁ ў ¬®¤г«Ґ IP. ЏаЁ ®вЇа ў«ҐЁЁ IP-Ї ЄҐв®ў, Ї®бвгЇ ойЁе ®в ¬®¤г«Ґ© ўҐа奣® га®ўп, IP-¬®¤г«м б Ї®¬®ймо в Ў«Ёжл ¬ аиагв®ў ўлЎЁа Ґв бЇ®б®Ў ¤®бв ўЄЁ (Їаאַ© Ё«Ё Є®бўҐл©) Ё ваҐЎгҐ¬л© бҐвҐў®© ¤ ЇвҐа. „«п Ї ЄҐв®ў, Ї®бвгЇ ойЁе ®в бҐвҐўле ¤а ©ўҐа®ў, IP-¬®¤г«м аҐи Ґв - аҐва б«Ёа®ў вм «Ё Ї ЄҐв Ї® ¤агЈ®© бҐвЁ Ё«Ё ¦Ґ ЇҐаҐ¤ вм ҐЈ® ¬®¤г«о ўҐа奣® га®ўп. …б«Ё ¬®¤г«м ¤®«¦Ґ Ўлвм аҐва б«Ёа®ў , в® ¤ «мҐ©иЁҐ ¤Ґ©бвўЁп б Ё¬ в ЄЁҐ ¦Ґ Є Є Ё б ®вЇа ў«пҐ¬л¬. ’ Ў«Ёж ¬ аиагв®ў ᮧ¤ Ґвбп ¬ҐҐ¤¦Ґа®¬ бҐвЁ Ё ᮤҐа¦Ёв Ї® ®¤®© бва®ЄҐ ¤«п Є ¦¤®Ј® ¬ аиагв . Ћб®ўл¬Ё Ї®«п¬Ё бва®ЄЁ пў«повбп: ®¬Ґа IP-бҐвЁ; д« Ј Їаאַ© Ё«Ё Є®бўҐ®© ¬ аиагвЁ§ жЁЁ; IP- ¤аҐб и«о§ Ё ®¬Ґа бҐвҐў®Ј® ¤ ЇвҐа . Љ Є 㦥 ®в¬Ґз «®бм, IP- ¤аҐб, е а ЄвҐаЁ§гойЁ© в®зЄг Ї®¤Є«озҐЁп ¬ иЁл Є бҐвЁ, § Ё¬ Ґв 4 Ў ©в . …Ј® бв аиЁҐ ЎЁвл ®ЇаҐ¤Ґ«пов ®¬Ґа Ї®¤бҐвЁ, ®бв «млҐ ЎЁвл § ¤ ов ®¬Ґа 㧫 (е®бв-®¬Ґа). ЏаҐ¤гᬮв८ 5 Є« бб®ў IP-®¬Ґа®ў, ®в«Ёз ойЁебп а бЇаҐ¤Ґ«ҐЁҐ¬ ЎЁв. ‚ в Ў«ЁжҐ ЇаЁўҐ¤Ґ® ᮮ⢥вбвўЁҐ Є« бб®ў ¤аҐб®ў§ зҐЁп¬ ЇҐаў®Ј® ®ЄвҐв ¤аҐб Ё гЄ § ® Є®«ЁзҐбвў® ў®§¬®¦ле IP- ¤аҐб®ў Є ¦¤®Ј® Є« бб . • а ЄвҐаЁбвЁЄЁ Є« бб®ў ¤аҐб®ўЪДДДДДВДДДДДДДДДДДДДДДДДВДДДДДДДДДДДДДДДДВДДДДДДДДДДДДДДДДїіЉ« ббі„Ё Ї §® § 票©і‚®§¬®¦®Ґ Є®«-ў®і‚®§¬®¦®Ґ Є®«-ў®іі іЇҐаў®Ј® ®ЄвҐв ібҐвҐ© іг§«®ў іГДДДДДЕДДДДДДДДДДДДДДДДДЕДДДДДДДДДДДДДДДДЕДДДДДДДДДДДДДДДДґі A і 001 - 126 і 128 і 16777214 іі B і 128 - 191 і 16382 і 65534 іі C і 192 - 223 і 2097150 і 254 іі D і 224 - 239 і - і 2**28 іі E і 240 - 247 і - і 2**27 іАДДДДДБДДДДДДДДДДДДДДДДДБДДДДДДДДДДДДДДДДБДДДДДДДДДДДДДДДДЩ “бв ®ўЄ ¬ аиагв®ў ’ Ў«Ёж ¬ аиагв®ў ¬®¦Ґв ᮧ¤ ў вмбп ўагзго ЇаЁ § ЇгбЄҐ бЁбвҐ¬л Їг⥬ ЁбЇ®«ҐЁп бЇҐжЁ «мле Є®¬ ¤. ’ Є®© бЇ®б®Ў ЇаЁҐ¬«Ґ¬ ¤«п ҐЎ®«миЁе бҐвҐ© б ।Є® Ё§¬Ґпо饩бп ¬ аиагвЁ§ жЁҐ©. Ќ Їа ЄвЁЄҐ в Ў«Ёж ¬ аиагв®ў з йҐ д®а¬ЁагҐвбп ўв®¬ вЁзҐбЄЁ, ЇаЁ¬Ґа, ЇаЁ ЁбЇ®«ҐЁЁ бв ав®ў®Ј® д ©« бЁб⥬л. ђҐЄ®¬Ґ¤гҐвбп аҐи вм § ¤ зг ¬ аиагвЁ§ жЁЁ га®ўҐ и«о§®ў. ‚ н⮬ б«гз Ґ Ґ вॡгҐвбп ¤Ґа¦ вм Є ¦¤®© ¬ иЁҐ Ў®«миго дЁЄбЁа®ў го в Ў«Ёжг ¬ аиагвЁ§ жЁЁ. Џа®в®Є®« UDP Џа®в®Є®« UDP (User Datagram Protocol) пў«пҐвбп ®¤Ё¬ Ё§ ®б®ўле Їа®в®Є®«®ў, а бЇ®«®¦Ґле ҐЇ®б।б⢥® ¤ IP. ЋЇ ЇаҐ¤®бв ў«пҐв ЇаЁЄ« ¤л¬ Їа®жҐбб ¬ ва бЇ®авлҐ гб«гЈЁ, Ґ¬®ЈЁ¬ ®в«Ёз ойЁҐбп ®в гб«гЈ, ЇаҐ¤®бв ў«пҐ¬ле Їа®в®Є®«®¬ IP. Џа®в®Є®« UDP ®ЎҐбЇҐзЁў Ґв ¤®бв ўЄг ¤Ґ©в Ја ¬¬ Ё Ґ Ј а вЁагҐв Ёе ЁбЇ®«ҐЁп. Џа®в®Є®« UDP Ґ Ї®¤¤Ґа¦Ёў Ґв ᮥ¤ЁҐЁп б г¤ «Ґл¬ ¬®¤г«Ґ¬ UDP. Љ § Ј®«®ўЄг IP-Ї ЄҐв ® ¤®Ў ў«пҐв ¤ў Ї®«п, ®¤® Ё§ Є®в®але, Ї®«Ґ "Ї®ав", ®ЎҐбЇҐзЁў Ґв ¬г«мвЁЇ«ҐЄбЁа®ў ЁҐ Ёд®а¬ жЁЁ ¬Ґ¦¤г а §«Ёзл¬Ё ЇаЁЄ« ¤л¬Ё Їа®жҐбб ¬Ё, ¤агЈ®Ґ Ї®«Ґ - "Є®ва®«м п б㬬 " - Ї®§ў®«пҐв Ї®¤¤Ґа¦Ёў вм 楫®бв®бвм ¤ ле. ЏаЁ¬Ґа ¬Ё бҐвҐўле ЇаЁ«®¦ҐЁ©, ЁбЇ®«м§гойЁе UDP, пў«повбп NSF (Network File System) Ё SNMP (Simple Network Management Protocol). Џ®авл. ЏаЁЄ« ¤лҐ Їа®жҐббл Ё ¬®¤г«Ё UDP ў§ Ё¬®¤Ґ©бвўгов зҐаҐ§ UDP-Ї®авл. ќвЁ Ї®авл 㬥аговбп, зЁ п б г«п. ЏаЁЄ« ¤®© Їа®жҐбб, ЇаҐ¤®бв ў«пойЁ© ҐЄ®в®алҐ гб«гЈЁ (бҐаўҐа), ®¦Ё¤ Ґв б®®ЎйҐЁ© ў Ї®ав, cЇҐжЁ «м® ўл¤Ґ«Ґл© ¤«п нвЁе гб«гЈ. Џа®Ја ¬¬ -бҐаўҐа ¦¤Ґв, Є®Ј¤ Є Є п-ЁЎг¤м Їа®Ја ¬¬ -Є«ЁҐв § Їа®бЁв гб«гЈг. H ЇаЁ¬Ґа, бҐаўҐа SNMP, §лў Ґ¬л© ЈҐв®¬ SNMP, ўбҐЈ¤ ®¦Ё¤ Ґв б®®ЎйҐЁп ў Ї®ав 161. …б«Ё Є«ЁҐв SNMP ¦Ґ« Ґв Ї®«гзЁвм гб«гЈг, ® Ї®бл« Ґв § Їа®б ў UDP-Ї®ав 161 ¬ иЁг, Ј¤Ґ а Ў®в Ґв бҐаўҐа. Ќ Є ¦¤®© ¬ иЁҐ ¬®¦Ґв Ўлвм в®«мЄ® ®¤Ё ЈҐв SNMP, в.Є. бгйҐбвўгҐв в®«мЄ® ®¤Ё Ї®ав 161. „ л© ®¬Ґа Ї®ав пў«пҐвбп ®ЎйҐЁ§ўҐбвл¬, в.Ґ. дЁЄбЁа®ў л¬ ®¬Ґа®¬, ®дЁжЁ «м® ўл¤Ґ«Ґл¬ ў бҐвЁ Internet ¤«п гб«гЈ SNMP. ЋЎйҐЁ§ўҐбвлҐ ¤аҐб ®ЇаҐ¤Ґ«повбп бв ¤ ав ¬Ё Internet. „ лҐ, ®вЇа ў«пҐ¬лҐ ЇаЁЄ« ¤л¬ Їа®жҐбᮬ зҐаҐ§ ¬®¤г«м UDP, ¤®бвЁЈ ов ¬Ґбв § ЄзҐЁп Є Є Ґ¤Ё®Ґ 楫®Ґ. Ќ ЇаЁ¬Ґа, Ґб«Ё Їа®жҐбб-®вЇа ўЁвҐ«м Їа®Ё§ў®¤Ёв 5 § ЇЁбҐ© ў Ї®ав, в® Їа®жҐбб Ї®«гз вҐ«м ¤®«¦Ґ Ўг¤Ґв ᤥ« вм 5 з⥨©. ђ §¬Ґа Є ¦¤®Ј® § ЇЁб ®Ј® б®®ЎйҐЁп Ўг¤Ґв б®ўЇ ¤ вм б а §¬Ґа®¬ Є ¦¤®Ј® Їа®зЁв ®Ј®. Џа®в®Є®« UDP б®еа пҐв Ја Ёжл б®®ЎйҐЁ©, ®ЇаҐ¤Ґ«пҐ¬лҐ ЇаЁЄ« ¤л¬ Їа®жҐбᮬ. Ћ ЁЄ®Ј¤ Ґ ®ЎкҐ¤ЁпҐв ҐбЄ®«мЄ® б®®ЎйҐЁ© ў ®¤® Ё Ґ ¤Ґ«Ёв ®¤® б®®ЎйҐЁҐ з бвЁ. Љ®ва®«м п б㬬 . Њ®¤г«м IP ЇҐаҐ¤ Ґв Ї®бвгЇ ойЁ© IP-Ї ЄҐв ¬®¤г«о UDP, Ґб«Ё ў § Ј®«®ўЄҐ нв®Ј® Ї ЄҐв гЄ § ® "UDP". Љ®Ј¤ ¬®¤г«м UDP Ї®«гз Ґв ¤Ґ©в Ја ¬¬г ®в ¬®¤г«п IP, ® Їа®ўҐапҐв Є®ва®«мго б㬬г, ᮤҐа¦ йгобп ў ҐҐ § Ј®«®ўЄҐ. …б«Ё Є®ва®«м п б㬬 а ў г«о, в® нв® ®§ з Ґв, зв® ®вЇа ўЁвҐ«м ҐҐ Ґ Ї®¤бзЁв «. …б«Ё Є®ва®«м п б㬬 Їа ўЁ«м п (Ё«Ё а ў 0), в® Їа®ўҐапҐвбп Ї®ав § 票п, гЄ § л© ў § Ј®«®ўЄҐ ¤Ґ©в Ја ¬¬л. …б«Ё ЇаЁЄ« ¤®© Їа®жҐбб Ї®¤Є«озҐ Є н⮬㠯®авг, в® ЇаЁЄ« ¤®Ґ б®®ЎйҐЁҐ, ᮤҐа¦ йЁҐбп ў ¤Ґ©в Ја ¬¬Ґ, бв ®ўЁвбп ў ®зҐаҐ¤м Є ЇаЁЄ« ¤®¬г Їа®жҐббг ¤«п Їа®з⥨п. ‚ ®бв «мле б«гз пе ¤Ґ©в Ја ¬¬ ®вЎа блў Ґвбп. …б«Ё ¤Ґ©в Ја ¬¬л Ї®бвгЇ ов Ўлбв॥, 祬 Ёе гбЇҐў Ґв ®Ўа Ў влў вм ЇаЁЄ« ¤®© Їа®жҐбб, в® ЇаЁ ЇҐаҐЇ®«ҐЁЁ ®зҐаҐ¤Ё б®®ЎйҐЁ© Ї®бвгЇ ойЁҐ ¤Ґ©в Ја ¬¬л ®вЎа блў овбп ¬®¤г«Ґ¬ UDP. Џа®в®Є®« TCP Џа®в®Є®« TCP ЇаҐ¤®бв ў«пҐв гб«гЈЁ, ®в«Ёз ойЁҐбп ®в гб«гЈ Їа®в®Є®« UDP. ‚¬Ґбв® ¤®бв ўЄЁ ¤Ґ©в Ја ¬¬ ЎҐ§ гбв ®ў«ҐЁп ᮥ¤ЁҐЁп, ® ®ЎҐбЇҐзЁў Ґв ¤®бв ўЄг б гбв ®ў«ҐЁҐ¬ ᮥ¤ЁҐЁп ў ўЁ¤Ґ Ў ©в®ўле Ї®в®Є®ў. Џа®в®Є®« TCP ЁбЇ®«м§гҐвбп ў вҐе б«гз пе, Є®Ј¤ вॡгҐвбп Ј а вЁа®ў п ¤®бв ўЄ б®®ЎйҐЁ©. Ћ ®бў®Ў®¦¤ Ґв ЇаЁЄ« ¤лҐ Їа®жҐббл ®в Ґ®Ўе®¤Ё¬®бвЁ ЁбЇ®«м§®ў вм в ©¬ гвл Ё Ї®ўв®алҐ ЇҐаҐ¤ зЁ ¤«п ®ЎҐбЇҐзҐЁп ¤Ґ¦®бвЁ. Ќ ЁЎ®«ҐҐ вЁЇЁзл¬Ё ЇаЁЄ« ¤л¬Ё Їа®жҐбб ¬Ё, ЁбЇ®«м§гойЁ¬Ё TCP, пў«повбп FTP (File Transfer Protocol - Їа®в®Є®« ЇҐаҐ¤ зЁ д ©«®ў) Ё TELNET. Ља®¬Ґ в®Ј®, TCP ЁбЇ®«м§гҐв бЁб⥬ X-Window, RCP (Remote Copy) Ё ¤агЈЁҐ "r"-Є®¬ ¤л. ђҐ «Ё§ жЁп TCP вॡгҐв Ў®«ми®© Їа®Ё§ў®¤ЁвҐ«м®бвЁ Їа®жҐбб®а Ё Ў®«ми®© Їа®ЇгбЄ®© бЇ®б®Ў®бвЁ бҐвЁ. ‚гваҐпп бвагЄвга ¬®¤г«п TCP Ј®а §¤® б«®¦ҐҐ бвагЄвгал ¬®¤г«п UDP. Џ®¤®Ў® ¬®¤г«о UDP ЇаЁЄ« ¤лҐ Їа®жҐббл ў§ Ё¬®¤Ґ©бвўгов б ¬®¤г«Ґ¬ TCP зҐаҐ§ Ї®авл. „«п ®в¤Ґ«мле ЇаЁ«®¦ҐЁ© ўл¤Ґ«повбп ®ЎйҐЁ§ўҐбвлҐ ®¬Ґа Ї®ав®ў. Ќ ЇаЁ¬Ґа, бҐаўҐа TELNET ЁбЇ®«м§гҐв Ї®ав 23. Џа®в®Є®«л ЇаЁЄ« ¤®Ј® га®ўп Џа®в®Є®«л ЇаЁЄ« ¤ле Їа®Ја ¬¬ ®ЇаҐ¤Ґ«пов, Є Є Їа®жҐ¤гал Ї® ®аЈ Ё§ жЁЁ ў§ Ё¬®¤Ґ©бвўЁп ®ЇаҐ¤Ґ«Ґ®Ј® вЁЇ , в Є Ё д®а¬г ЇаҐ¤бв ў«ҐЁп Ёд®а¬ жЁЁ ЇаЁ в Є®¬ ў§ Ё¬®¤Ґ©бвўЁЁ. Џа®в®Є®« TELNET Ї®§ў®«пҐв ®Ўб«г¦Ёў о饩 ¬ иЁҐ а бб¬ ваЁў вм ўбҐ г¤ «ҐлҐ вҐа¬Ё «л Є Є бв ¤ авлҐ "бҐвҐўлҐ ўЁавг «млҐ вҐа¬Ё «л" бва®з®Ј® вЁЇ , а Ў®в ойЁҐ ў Є®¤ е ASCII, в Є¦Ґ ®ЎҐбЇҐзЁў Ґв ў®§¬®¦®бвм б®Ј« б®ў Ёп Ў®«ҐҐ б«®¦ле дгЄжЁ© ( ЇаЁ¬Ґа, «®Є «мл© Ё«Ё г¤ «Ґл© не®-Є®ва®«м, бва Ёзл© аҐ¦Ё¬, ўлб®в Ё иЁаЁ нЄа Ё в. ¤.). TELNET а Ў®в Ґв Ў §Ґ Їа®в®Є®« TCP. Ќ ЇаЁЄ« ¤®¬ га®ўҐ ¤ TELNET 室Ёвбп «ЁЎ® Їа®Ја ¬¬ Ї®¤¤Ґа¦ЄЁ ॠ«м®Ј® вҐа¬Ё « , «ЁЎ® ЇаЁЄ« ¤®© Їа®жҐбб ў ®Ўб«г¦Ёў о饩 ¬ иЁҐ, Є Є®в®а®¬г ®бгйҐбвў«пҐвбп ¤®бвгЇ б вҐа¬Ё « . CгйҐбвўгҐв ¬®¦Ґбвў® ॠ«Ё§ жЁ© ¤«п а §«Ёзле ®ЇҐа жЁ®ле бЁб⥬, Є®в®алҐ е®а®и® ў§ ¬®¤Ґ©бвўгов ¤агЈ б ¤агЈ®¬. Џа®в®Є®« FTP (File Transfer Protocol - Їа®в®Є®« ЇҐаҐ¤ зЁ д ©«®ў) в Є¦Ґ Ї®«м§гҐвбп ва бЇ®авл¬Ё гб«гЈ ¬Ё TCP. Џ®«м§®ў ⥫м FTP ¬®¦Ґвўл§лў вм ҐбЄ®«мЄ® Є®¬ ¤, Є®в®алҐ Ї®§ў®«пов Ґ¬г Ї®б¬®ваҐвм Є в «®Ј г¤ «Ґ®© ¬ иЁл, ЇҐаҐ©вЁ Ё§ ®¤®Ј® Є в «®Ј ў ¤агЈ®©, в Є¦Ґ бЄ®ЇЁа®ў вм ®¤Ё Ё«Ё ҐбЄ®«мЄ® д ©«®ў. Џа®в®Є®« SMTP (Simple Mail Transfer Protocol) Ї®¤¤Ґа¦Ёў Ґв ЇҐаҐ¤ зг б®®ЎйҐЁ© (н«ҐЄва®®© Ї®звл) ¬Ґ¦¤г Їа®Ё§ў®«мл¬Ё 㧫 ¬Ё бҐвЁ Internet. €¬Ґп ¬Ґе Ё§¬л Їа®¬Ґ¦гв®з®Ј® еа ҐЁп Ї®звл Ё ¬Ґе Ё§¬л Ї®ўлиҐЁп ¤Ґ¦®бвЁ ¤®бв ўЄЁ, Їа®в®Є®« SMTP ¤®ЇгбЄ Ґв ЁбЇ®«м§®ў ЁҐ а §«Ёзле ва бЇ®авле б«г¦Ў. Ћ ¬®¦Ґв а Ў®в вм ¤ ¦Ґ ў бҐвпе, Ґ ЁбЇ®«м§гойЁе Їа®в®Є®«л TCP/IP. Џа®в®Є®« SMTP ®ЎҐбЇҐзЁў Ґв Є Є ва бЇ®вЁа®ўЄг б®®ЎйҐЁ© ®¦®¬г Ї®«гз ⥫о, в Є Ё а §¬®¦ҐЁҐ ҐбЄ®«мЄЁе Є®ЇЁ© б®®ЎйҐЁп ¤«п ЇҐаҐ¤ зЁ ў а §лҐ ¤аҐб . Ќ ¤ SMTP а бЇ®« Ј Ґвбп Ї®зв®ў п б«г¦Ў Є®ЄаҐвле ўлзЁб«ЁвҐ«мле бЁб⥬. r-Є®¬ ¤л (®в remout). ‘гйҐбвўгҐв 楫 п бҐаЁп Є®¬ ¤, Є®в®алҐ ўЇҐаўлҐ Ї®пўЁ«Ёбм ў Ћ‘ UNIX. ЋЁ пў«повбп «®Ј ¬Ё ®Ўлзле Є®¬ ¤ UNIX, ® ЇаҐ¤ § зҐл ¤«п а Ў®вл б г¤ «Ґл¬Ё ¬ иЁ ¬Ё. Љ®¬ ¤л "r" ЁбЇ®«м§говбп Ј« ўл¬ ®Ўа §®¬ ў бЁб⥬ е, а Ў®в ойЁе Ї®¤ гЇа ў«ҐЁҐ¬ Ћ‘ UNIX. ‘гйҐбвўгов ўҐабЁЁ Ё ¤«п MS-DOS. Љ®¬ ¤л Ё§Ў ў«пов Ї®«м§®ў вҐ«п ®в Ґ®Ўе®¤Ё¬®бвЁ ЎЁа вм Ї а®«Ё ЇаЁ ўе®¤Ґ ў г¤ «Ґго бЁб⥬㠨 бгйҐб⢥® ®Ў«ҐЈз ов а Ў®вг. NFS (Network File System) ўЇҐаўлҐ Ўл« а §а Ў®в Є®¬Ї ЁҐ© SUN Microsystem Inc. NFS вбЇ®«м§гҐв ва бЇ®авлҐ гб«гЈЁ UDP Ё Ї®§ў®«пҐв ¬®вЁа®ў вм ў Ґ¤Ё®Ґ 楫®Ґ д ©«®ўлҐ бЁбвҐ¬л ҐбЄ®«мЄЁе ¬ иЁ б Ћ‘ UNIX. ЃҐ§¤ЁбЄ®ўлҐ а Ў®зЁҐ бв жЁЁ Ї®«гз ов ¤®бвгЇ Є ¤ЁбЄ ¬ д ©« бҐаўҐа в Є, Є Є Ўг¤в® нв® Ёе «®Є «млҐ ¤ЁбЄЁ. NFS § зЁвҐ«м® 㢥«ЁзЁў Ґв Јаг§Єг бҐвм. …б«Ё ў бҐвЁ ЁбЇ®«м§говбп ¬Ґ¤«ҐлҐ «ЁЁЁ бўп§Ё, в® ®в NFS ¬ «® в®«Єг. Ћ¤ Є®, Ґб«Ё Їа®ЇгбЄ п бЇ®б®Ў®бвм бҐвЁ Ї®§ў®«пҐв NFS ®а¬ «м® а Ў®в вм, в® Ї®«м§®ў ⥫Ё Ї®«гз ов Ў®«миЁҐ ЇаҐЁ¬гйҐбвў . ’ Є Є Є бҐаўҐа Ё Є«ЁҐв NFS ॠ«Ё§говбп ў п¤аҐ Ћ‘, ўбҐ ®ЎлзлҐ ҐбҐвҐўлҐ Їа®Ја ¬¬л Ї®«гз ов ў®§¬®¦®бвм а Ў®в вм б г¤ «Ґл¬Ё д ©« ¬Ё, а §¬ҐйҐл¬Ё Ї®¤¬®вЁа®ў ле NFS-¤ЁбЄ е в Є¦Ґ Є Є б «®Є «мл¬Ё д ©« ¬Ё. Џа®в®Є®« SNMP (Simple Network Management Protocol) а Ў®в Ґв Ў §Ґ UDP Ё ЇаҐ¤ § зҐ ¤«п ЁбЇ®«м§®ў Ёп бҐвҐўл¬Ё гЇа ў«пойЁ¬Ё бв жЁп¬Ё. Ћ Ї®§ў®«пҐв гЇа ў«пойЁ¬ бв жЁп¬ б®ЎЁа вм Ёд®а¬ жЁо ® Ї®«®¦ҐЁЁ ў бҐвЁ Internet. Џа®в®Є®« ®ЇаҐ¤Ґ«пҐв д®а¬ в ¤ ле, Ёе ®Ўа Ў®вЄ Ё ЁвҐаЇаҐв жЁп ®бв овбп гᬮв२Ґ гЇа ў«пойЁе бв жЁ© Ё«Ё ¬ҐҐ¦¤Ґа бҐвЁ. ‘а ўҐЁҐ TCP/IP б ¬®¤Ґ«мо бҐвҐў®© аеЁвҐЄвгал ISO ‘ ҐЎ®«миЁ¬Ё вп¦Є ¬Ё ¬®¤Ґ«м ISO OSI ¬®¦Ґв Ўлвм ЇаЁ¬ҐҐ ¤«п ®ЇЁб Ёп б奬л га®ўҐ© Їа®в®Є®«®ў TCP/IP, ® Ёе ®б®ў®Ї®« Ј ойЁҐ ЇаЁжЁЇл бгйҐб⢥® а §«Ёз овбп, зв® бўп§ ® б а §«ЁзЁҐ¬ Ёе ¬®¤г«Ґ©. Џа®Ја ¬¬®Ґ ®ЎҐбЇҐзҐЁҐ TCP/IP ¬®¦® ЇаҐ¤бв ўЁвм ў ўЁ¤Ґ зҐвлаҐе Є®жҐЇвг «мле га®ўҐ©, Є®в®алҐ ¤бва®Ґл ¤ ЇЇ а вга®©. Љ®жҐЇвг «млҐ га®ўЁ TCP/IP Ё ўЁ¤л Ў«®Є®ў ¤ ле, ЇҐаҐ¤ ў Ґ¬ле ¬Ґ¦¤г Ё¬Ё Љ®жҐЇвг «мл© га®ўҐм „ лҐ, ЇҐаҐ¤ ў Ґ¬лҐ ¬Ґ¦¤г га®ўп¬Ё ЪДДДДДДДДДДДДДДДДДДДДДДДї і ЏаЁЄ« ¤®© га®ўҐм і АДДДДДДДДДДДДДДДДДДДДДДДЩ ЏаЁЄ« ¤лҐ б®®ЎйҐЁп ЪДДДДДДДДДДДДДДДДДДДДДДДї і ’а бЇ®авл© га®ўҐм і АДДДДДДДДДДДДДДДДДДДДДДДЩ ’а бЇ®авлҐ б®®ЎйҐЁп ЪДДДДДДДДДДДДДДДДДДДДДДДї і ЊҐ¦бҐвҐў®© га®ўҐм і АДДДДДДДДДДДДДДДДДДДДДДДЩ IP-Ї ЄҐвл ЪДДДДДДДДДДДДДДДДДДДДДДДї і ‘ҐвҐў®© ЁвҐадҐ©б і АДДДДДДДДДДДДДДДДДДДДДДДЩ Љ ¤ал баҐ¤л ЇҐаҐ¤ зЁ ¤ ле ЪДДДДДДДДДДДДДДДДДДДДДДДї і ”Ё§ЁзҐбЄ п б। і і ЇҐаҐ¤ зЁ ¤ ле і АДДДДДДДДДДДДДДДДДДДДДДДЩ ЏаЁЄ« ¤®© га®ўҐм Ќ б ¬®¬ ўҐа奬 га®ўҐ Ї®«м§®ў ⥫Ё ўл§лў ов ЇаЁЄ« ¤лҐ Їа®Ја ¬¬л, Є®в®алҐ Ї®«м§говбп гб«гЈ ¬Ё, ¤®бвгЇл¬Ё зҐаҐ§ Internet. ЏаЁЄ« ¤лҐ Їа®жҐббл ®Ўа й овбп Є ¬®¤г«п¬ Їа®в®Є®«®ў ва бЇ®ав®Ј® га®ўп ¤«п ЇҐаҐ¤ зЁ Ё Ї®«гзҐЁп ¤ ле. Љ ¦¤ п ЇаЁЄ« ¤ п Їа®Ја ¬¬ ўлЎЁа Ґв в®в бЇ®б®Ў ЇҐаҐ¤ зЁ ¤ ле, Є®в®ал© Ґ© 㦥. „ лҐ ¬®Јгв ЇҐаҐ¤ ў вмбп ў ўЁ¤Ґ Ї®б«Ґ¤®ў ⥫м®бвЁ ®в¤Ґ«мле б®®ЎйҐЁ© Ё«Ё ҐЇаҐалўл¬ Ї®в®Є®¬ Ў ©в. ЏаЁЄ« ¤ п Їа®Ја ¬¬ ЇҐаҐ¤ Ґв ¤ лҐ ў вॡ㥬®¬ ўЁ¤Ґ ва бЇ®авл© га®ўҐм ¤«п ¤®бв ўЄЁ. ’а бЇ®авл© га®ўҐм Ћб®ў п ®Ўп§ ®бвм ва бЇ®ав®Ј® га®ўп § Є«оз Ґвбп ў ®аЈ Ё§ жЁЁ ®Ў¬Ґ б®®ЎйҐЁп¬Ё ¬Ґ¦¤г а §«Ёзл¬Ё ЇаЁЄ« ¤л¬Ё Їа®жҐбб ¬Ё. ’ Є®Ґ ў§ Ё¬®¤Ґ©бвўЁҐ з бв® §лў Ґвбп бўп§мо "в®зЄ -в®зЄ ". ’а бЇ®авл© га®ўҐм ¬®¦Ґв ॣ㫨஢ вм Ї®в®Є Ёд®а¬ жЁЁ. Ћ в Є¦Ґ ¬®¦Ґв ®ЎҐбЇҐзЁў вм ¤Ґ¦®бвм ЇҐаҐ¤ зЁ, Їа®ўҐапп ЇаЁе®¤пйЁҐ ¤ лҐ ®вбгвбвўЁҐ ®иЁЎ®Є Ё Ёе Їа ўЁ«мго Ї®б«Ґ¤®ў ⥫м®бвм. „«п нв®Ј® ® ¤®«¦Ґ Ї®бл« вм ЇҐаҐ¤ о饩 бв®а®Ґ Ї®¤вўҐа¦¤ҐЁп, ® ¤®«¦ Ї®ўв®апвм Ї®вҐаплҐ Ї ЄҐвл. ’а бЇ®авл© га®ўҐм ¤Ґ«Ёв ЇҐаҐ¤ ў Ґ¬лҐ Ї®в®ЄЁ ¤ ле ҐЎ®«миЁҐ Ї®ажЁЁ (ў вҐа¬Ё®«®ЈЁЁ ISO - Ї ЄҐвл) Ё ЇҐаҐ¤ Ґв Ё§ Ї® ®в¤Ґ«м®бвЁ, б Ў¦ п ¤аҐб®¬ § 票п б«Ґ¤гойЁ© га®ўҐм ¤«п ЇҐаҐ¤ зЁ. Љ®¬ЇмовҐал б ¬®Ј®Їа®жҐбб®а®© ®ЇҐа жЁ®®© бЁб⥬®© ¬®Јгв ЁбЇ®«пвм ҐбЄ®«мЄ® ЇаЁЄ« ¤ле Їа®Ја ¬¬, ЁбЇ®«м§гойЁе бҐвм Internet. ’а бЇ®авл© га®ўҐм ¤®«¦Ґ 㬥вм ЇаЁЁ¬ вм ¤ лҐ Ё§ ¬®ЈЁе ЇаЁЄ« ¤ле Їа®Ја ¬¬ Ё ЇҐаҐ¤ ў вм Ёе ў Ё¦Ґа бЇ®«®¦Ґл© га®ўҐм. ЏаЁ н⮬ ® ¤®Ў ў«пҐв Ёд®а¬ жЁо ў Є ¦¤л© Ї ЄҐв, ўЄ«оз ойго ў бҐЎп Ё¤ҐвЁдЁЄ жЁо ®вЇа ўЁвҐ«п Ё Ї®«гз ⥫п, в Є¦Ґ Є®ва®«мго б㬬г. ЏаЁЁ¬ ой п бв®а® ЁбЇ®«м§гҐв Є®ва®«мго б㬬㠤«п Їа®ўҐаЄЁ Їа ўЁ«м®бвЁ Ї ЄҐв , Ё¤ҐвЁдЁЄ жЁо ¤«п ®ЇаҐ¤Ґ«ҐЁп ЇаЁЄ« ¤®© Їа®Ја ¬¬л, Є®в®а®© б«Ґ¤гҐв ЇҐаҐ¤ вм Ёд®а¬ жЁо. ЊҐ¦бҐвҐў®© га®ўҐм ЊҐ¦бҐвҐў®© га®ўҐм гЇа ў«пҐв ®Ў¬Ґ®¬ б®®ЎйҐЁп¬Ё ¬Ґ¦¤г ¬ иЁ ¬Ё. Ћ ЇаЁЁ¬ Ґв § Їа®б ЇҐаҐбл«Єг б®®ЎйҐЁп б ва бЇ®ав®Ј® га®ўп ў¬ҐбвҐ б ¤аҐб®¬ ¬ иЁл, Є®в®аго ¤®«¦Ґ Ўлвм ЇҐаҐ¤ нв®в Ї ЄҐв. Ћ гЇ Є®ўлў Ґв б®®ЎйҐЁҐ ў IP-Ї ЄҐв, § Ї®«пҐв ҐЈ® § Ј®«®ў®Є, ЁбЇ®«м§гҐв в Ў«Ёжг ¬ аиагвЁ§ жЁЁ, зв®Ўл ®ЇаҐ¤Ґ«Ёвм, б«Ґ¤гҐв «Ё ®вЇа ў«пвм ҐЈ® Їаאַ Ё«Ё зҐаҐ§ и«о§, Ё ЇҐаҐ¤ Ґв IP-Ї ЄҐв зҐаҐ§ Ї®¤е®¤пйЁ© бҐвҐў®© ЁвҐа䥩б. ЊҐ¦бҐвҐў®© га®ўҐм ®Ўа Ў влў Ґв ЇаЁЁ¬ Ґ¬лҐ IP-Ї ЄҐвл, Їа®ўҐапҐв Ёе Їа ўЁ«м®бвм Ё б Ї®¬®ймо «Ј®аЁв¬®ў ¬ аиагвЁ§ жЁЁ ўлпбпҐв, б«Ґ¤гҐв «Ё ®Ўа Ў влў вм б®®ЎйҐЁҐ ¬Ґб⥠Ё«Ё аҐва б«Ёа®ў вм. ‚ IP-Ї ЄҐв е, ¤аҐб®ў ле ¤ ®© ¬ иЁҐ Їа®Ја ¬¬®Ґ ®ЎҐбЇҐзҐЁҐ ¬Ґ¦бҐвҐў®Ј® га®ўп г¤ «пҐв IP-§ Ј®«®ў®Є Ё ўлЎЁа Ґв ᮮ⢥вбвўгойЁ© ва бЇ®авл© Їа®в®Є®«. ЊҐ¦бҐвҐў®© Їа®в®Є®« Ї®бл« Ґв Ё ®Ўа Ў влў Ґв ICMP-Ї ЄҐвл, ᮤҐа¦ йЁҐ б®®ЎйҐЁп ®Ў ®иЁЎЄ е Ё гЇа ў«пойго Ёд®а¬ жЁо. ‘ҐвҐў®© ЁвҐадҐ©б ‘ ¬л© Ё¦Ё© га®ўҐм б।Ё Їа®в®Є®«®ў TCP/IP - бҐвҐў®© ЁвҐа䥩б, ЇаҐ¤ § зҐл© ¤«п ЇаЁҐ¬ Ё ЇҐаҐ¤ зЁ IP-Ї ЄҐв®ў зҐаҐ§ дЁ§ЁзҐбЄго бҐвм. ‘ҐвҐў®© ЁвҐадҐ©б ¬®¦Ґв б®бв®пвм Ё§ ¤а ©ўҐа гбва®©бвў , «ЁЎ® ЇаҐ¤бв ў«пвм б«®¦го Ї®¤бЁб⥬г, Є®в®а п ЁбЇ®«м§гҐв бў®Ё б®ЎбвўҐлҐ Їа®в®Є®«л ЇҐаҐ¤ зЁ ¤ ле. ђ §«ЁзЁп ¬Ґ¦¤г га®ўп¬Ё ў X.25 Ё TCP/IP …бвм ¤ў бгйҐб⢥ле Ё ў ¦ле ®в«ЁзЁп ¬Ґ¦¤г б奬®© га®ўҐ© Їа®в®Є®«®ў TCP/IP Ё ¬®¤Ґ«мо X.25. ЏҐаў®Ґ ®в«ЁзЁҐ Є б Ґвбп а бЇ®«®¦ҐЁп га®ўҐ©, Ј¤Ґ б®б।®в зЁў овбп гбЁ«Ёп Ї® ®ЎҐбЇҐзҐЁо ¤Ґ¦®бвЁ ЇҐаҐ¤ зЁ ¤ ле. ‚в®а®Ґ - § Є«оз Ґвбп ў а §®¬ а бЇаҐ¤Ґ«ҐЁЁ ЁвҐ««ҐЄв ў бЁб⥬Ґ. Љ «мл© га®ўҐм vs ᮥ¤ЁҐЁҐ "в®зЄ -в®зЄ " Ћ¤® Ё§ а §«ЁзЁ© TCP/IP Ё X.25 § Є«оз Ґвбп ў Ёе Ї®¤е®¤ е Є ®ЎҐбЇҐзҐЁо ¤Ґ¦®© ЇҐаҐ¤ зЁ ¤ ле. ‚ ¬®¤Ґ«Ё X.25 Їа®Ја ¬¬®Ґ ®ЎҐбЇҐзҐЁҐ Їа®в®Є®« ®Ў аг¦Ёў Ґв Ё ®Ўа Ў влў Ґв ®иЁЎЄЁ ўбҐе га®ўпе. Ќ Є «м®¬ га®ўҐ б«®¦л© Їа®в®Є®« Ј а вЁагҐв, зв® ЇҐаҐ¤ з ¬Ґ¦¤г ¬ иЁ®© Ё Є®¬¬гв в®а®¬ Ї ЄҐв®ў, Є Є®в®а®¬г ® Ї®¤Є«озҐ , Ўг¤Ґв Є®а४⮩. Љ®ва®«млҐ бг¬¬л ®еў влў ов Є ¦¤го ЇҐаҐ¤ ў Ґ¬го з бвм Ёд®а¬ жЁЁ, Ї®«гз вҐ«м Ї®¤вўҐа¦¤ Ґв Є ¦¤го Ї®«гзҐго з бвм. Џа®в®Є®«л Є «м®Ј® га®ўп ўЄ«оз ов «Ј®аЁв¬л ®Ўа Ў®вЄЁ в ©¬-®гв®ў Ё Ї®ўв®але ЇҐаҐ¤ з, зв® ЇаҐ¤®вўа й Ґв Ї®вҐао ¤ ле Ё ®ЎҐбЇҐзЁў Ґв ўв®¬ вЁзҐбЄ®Ґ ў®ббв ®ў«ҐЁҐ Ї®б«Ґ ЇЇ а вле бЎ®Ґў Ё аҐбв ав®ў. Љ ¦¤л© га®ўҐм Їа®в®Є®« X.25 б ¬ ®ЎҐбЇҐзЁў Ґв ᥡҐ ¤Ґ¦®бвм. Ќ га®ўҐ 3 X.25 в Є¦Ґ ®ЎҐбЇҐзЁў Ґв ®Ў а㦥ЁҐ ®иЁЎ®Є Ё ў®ббв ®ў«ҐЁҐ Ї ЄҐв®ў, ЇҐаҐ¤ ў Ґ¬ле Ї® бҐвЁ, ЁбЇ®«м§гп Є®ва®«млҐ б㬬л, в ©¬-®гвл Ё Ї®ўв®алҐ ЇҐаҐ¤ зЁ Ї ЄҐв®ў. “а®ўҐм 4 ¤®«¦Ґ ®ЎҐбЇҐзЁў вм ¤Ґ¦®бвм Ё§ Є®ж ў Є®Ґж. ‚ Їа®вЁў®Ї®«®¦®бвм нв®© б奬Ґ ў TCP/IP а §ЎЁҐЁҐ Їа®в®Є®«®ў га®ўЁ ®б®ў ® ⮬, зв® ў ¦® ®ЎҐбЇҐзЁвм ¤Ґ¦®бвм ЇҐаҐ¤ зЁ ¤«п ᮥ¤ЁҐЁп в®зЄ -в®зЄ . €¤Ґ®«®ЈЁп аеЁвҐЄвгал Їа®бв : Ї®бва®Ё¬ бҐвм, Є®в®а п Ўг¤Ґв бЇа ў«пвмбп б ®¦Ё¤ Ґ¬®© Јаг§Є®©, ® Ўг¤Ґв ¤®ЇгбЄ вм Ї®вҐао Ё«Ё Ї®азг Ї ЄҐв®ў ®в¤Ґ«мле ¬ иЁ е Ё«Ё ᮥ¤ЁҐЁпе ЎҐ§ Ї®ЇлвЄЁ Ёе ў®ббв ®ў«ҐЁп. ” ЄвЁзҐбЄЁ Ў®«миЁбвў® бҐвҐўле ЁвҐа䥩ᮢ TCP/IP Ґ ®ЎҐбЇҐзЁў ов ¤Ґ¦®бвм ЇҐаҐ¤ зЁ ¤ ле. ‚¬Ґбв® нв®Ј® ва бЇ®авл© га®ўҐм ®Ў аг¦Ёў Ґв Ў®«миЁбвў® ®иЁЎ®Є Ё Їа®Ё§ў®¤Ёв ў®ббв ®ў«ҐЁҐ Ї®б«Ґ Ёе. ’ Є п Ґ§ ўЁбЁ¬®бвм Є зҐбвў бҐвҐў®Ј® ЁвҐадҐ©б ¤Ґ« Ґв Їа®Ја ¬¬®Ґ ®ЎҐбЇҐзҐЁҐ TCP/IP Ў®«ҐҐ Їа®бвл¬ ¤«п Ї®Ё¬ Ёп. Џа®¬Ґ¦гв®злҐ и«о§л ¬®Јгв ЁЈ®аЁа®ў вм IP-Ї ЄҐвл, Є®в®алҐ Ўл«Ё ЁбЇ®азҐл ў Їа®жҐбᥠЇҐаҐ¤ зЁ. ЋЁ ¬®Јгв ЁЈ®ава®ў вм Ї ЄҐвл, Ґб«Ё бЄ®а®бвм Ёе Ї®бвгЇ«ҐЁп ЇаҐўли Ґв бЄ®а®бвм ®Ўа Ў®вЄЁ Ё«Ё Є®в®алҐ Ґ ¬®Јгв Ўлвм ¤®бв ў«Ґл. Ќ Є®Ґж, ®Ё ¬®Јгв ЇҐаҐ Їа ў«пвм IP-Ї ЄҐвл Ї® Ў®«ҐҐ ¤«Ёл¬ Ё«Ё Є®а®вЄЁ¬ ¬ аиагв ¬, Ґ 㢥¤®¬«пп ®Ў н⮬ Ё ®вЇа ўЁвҐ«п, Ё Ї®«гз ⥫п. Ќ «ЁзЁҐ Ґ ¤Ґ¦ле Є «®ў ®§ з Ґв, зв® ҐЄ®в®алҐ б®®ЎйҐЁп Ґ Ўг¤гв ¤®бв ў«Ґл. ЋЎ а㦥ЁҐ Ї®вҐаЁ Ё ў®ббв ®ў«ҐЁҐ Ї®вҐапле б®®ЎйҐЁ© ®бгйҐбвў«пҐвбп б®ў¬Ґбвл¬Ё гбЁ«Ёп¬Ё ®вЇа ўЁвҐ«п Ё Ї®«гз вҐ«п Ё §лў овбп Їа®ўҐаЄ®© Ё§ Є®ж ў Є®Ґж. ЋЄ®ҐзлҐ ¬®¤г«Ё Їа®Ја ¬¬®Ј® ®ЎҐбЇҐзҐЁп, ॠ«Ё§гойЁҐ ᮥ¤ЁҐЁп, б®б।®в®зҐл ў ва бЇ®а⮬ га®ўҐ. ЋЁ ЁбЇ®«м§гов Є®ва®«млҐ б㬬л, Ї®¤вўҐа¦¤ҐЁп Ё в ©¬-®гвл ¤«п гЇа ў«ҐЁп ЇҐаҐ¤ 祩. ‚ ®в«ЁзЁЁ ®в га®ўҐ© Їа®в®Є®« X.25, ®аЁҐвЁа®ў ле ҐЇаҐалў®Ґ ᮥ¤ЁҐЁҐ, ў TCP/IP ®ЎҐбЇҐзҐЁҐ ¤Ґ¦®бвЁ б®б।®в®зҐ® ®¤®¬ га®ўҐ. ђ бЇаҐ¤Ґ«ҐЁҐ ЁвҐ««ҐЄв Ё ЇаЁпвЁҐ аҐиҐЁ© Љ Є Їа ўЁ«® бҐвЁ, ЁбЇ®«м§гойЁҐ X.25, ®б®ў л ЇаҐ¤Ї®«®¦ҐЁЁ, зв® бҐвм - нв® б«г¦Ў , ЇаҐ¤ § зҐ п ¤«п ®ЎҐбЇҐбЇҐзҐЁп ва бЇ®авле гб«гЈ. €§Ј®в®ўЁвҐ«Ё, Є®в®алҐ ЇаҐ¤« Ј ов бҐвҐў®© бҐаўЁб, Є®ва®«Ёагов ¤®бвгЇ Є бҐвп¬ Ё Ё§¬Ґапов ва дЁЄ ¤«п бЎ®а Ёд®а¬ жЁЁ ®Ў ЁбЇ®«м§гҐ¬ле аҐбгаб е. ЋЁ аҐи ов в ЄЁҐ § ¤ зЁ, Є Є ॠ«Ё§ жЁп «Ј®аЁв¬®ў ¬ аиагвЁ§ жЁЁ, гЇа ў«ҐЁп Ї®в®Є ¬Ё Ё ¬Ґе Ё§¬ Ї®¤вўҐа¦¤ҐЁп ¤«п ®ЎҐбЇҐзҐЁп ¤Ґ¦®© ЇҐаҐ¤ зЁ. ’ Є®© бЇ®б®Ў ЇаҐ¤бв ў«ҐЁп бҐвҐ© ЁзҐЈ® Ґ Ј®ў®аЁв ® а®«Ё ®в¤Ґ«мле ¬ иЁ. ‘Ґвм - нв® б«®¦ п Ґ§ ўЁбЁ¬ п б। , Є Є®в®а®© ¬®¦® Ї®¤Є«озЁвм ®в®бЁвҐ«м® Їа®бвго ¬ иЁг. ‘«Ґ¤®ў ⥫м®, ¬ иЁл б ¬Ё Ї® ᥡҐ ®в®бЁвҐ«м® ¬ «® гз бвўгов ў а Ў®вҐ бҐвЁ. ‚ Їа®вЁў®Ї®«®¦®бвм н⮬㠬®¤Ґ«м TCP/IP вॡгҐв гз бвЁп Є ¦¤®© ¬ иЁл ў а Ў®вҐ бҐвЁ. Љ Є 㦥 Ўл«® ®в¬ҐзҐ®, ¬ иЁл ЄвЁў® гз бвўгов ў ®ЎҐбЇҐзҐЁЁ ¤Ґ¦®бвЁ, ®Ў а㦥ЁЁ ®иЁЎ®Є Ё ў®ббв ®ў«ҐЁЁ ᮥ¤ЁҐЁп в®зЄ -в®зЄ . “з бвўгов ®Ё Ё ў ¬ аиагвЁ§ жЁЁ, в Є Є Є ¤®«¦л ўлЎЁа вм и«о§л ЇаЁ ЇҐаҐ¤ зҐ Ї ЄҐв®ў. Њ иЁл ЇаЁЁ¬ ов гз бвЁҐ ў гЇа ў«ҐЁЁ бҐвп¬Ё, Ї®бЄ®«мЄг ®Ё ¤®«¦л ®Ўа Ў влў вм Ї ЄҐвл ICMP. ’ ЄЁ¬ ®Ўа §®¬, Ї® ба ўҐЁо б бҐвмо X.25 бҐвм TCP/IP ¬®¦® а бб¬ ваЁў вм Є Є ®в®бЁвҐ«м® Їа®бвго бЁб⥬㠤®бв ўЄЁ Ї ЄҐв®ў, Є Є®в®а®© Ї®¤Є«озҐл ®в®бЁвҐ«м® ЁвҐ««ҐЄвг «млҐ ¬ иЁл. Џа®ҐЄв •Ґ®Їб (CHEOPS) CHEOPS §ў ЁҐ Їа®ҐЄв , ЁЁжЁЁа®ў ®Ј® HEP (Cern-Helsinki-Ellas-Olympus-Portugal-Spain). European Space Agency (ESA) ЇаҐ¤«®¦Ё«® HEP з бвм аҐбгаб нЄбЇҐаЁ¬Ґв «м®Ј® бЇгвЁЄ Olympus c Їа®ЇгбЄ®© бЇ®б®Ў®бвмо Є « 8 ЊЎЁв/б. Ќ §Ґ¬ п бв жЁп (Nokia Telecom) Ё¬ҐҐв вҐг ¤Ё ¬Ґв஬ 3.1¬ (¬®¤Ґ«м EDLS 30/1214 EC), P=8W (16W - ¤«п Є®¬¬ҐазҐбЄЁе 楫Ґ© б® бЇгв-ЁЄ®¬ EutelSat), G.703 ¬®¤Ґ¬л, бЇ®б®ЎлҐ ЇҐаҐ¤ ў вм ¤ лҐ б® бЄ®а®бвмо 8.442ЊЎЁв/б ЇаЁ ўҐа®-пв®бвЁ ®иЁЎ®Є 10-9 (¬л а Ў®в Ґ¬ ⥫Ґд®ле «ЁЁпе б ўҐа®пв®бвп¬Ё ®иЁЎЄЁ е㦥 10-3). — бв®в 12/14 ѓѓж (Ku-band). ‘ЇгвЁЄ OLYMPUS 室Ёвбп ЈҐ®бв жЁ® а®© ®аЎЁвҐ ўлб®вҐ 36000Є¬. ‚аҐ¬п ¦Ё§Ё 5 «Ґв. Ѓ §®ў п ќ‚Њ SUN (SPARC 4/470) б Ї ¬пвмо 32 MB, ¤ЁбЄ ¬Ё 2x911+644MB, бваЁ¬Ґа®¬ 150MB+Exabyte-2.4MB, VME-ЁвҐа䥩ᮬ ¤«п бўп§Ё б §Ґ¬л¬ Є®¬Ї-«ҐЄб®¬, ®ЇҐа жЁ®®© бЁб⥬®© UNIX (Total=91295$). Џа®Ја ¬¬®Ґ ®ЎҐбЇҐзҐЁҐ ~ 30000 бва®Є ⥪бв п§лЄҐ ‘€. €бЇ®«м§говбп в Є¦Ґ 4 ЇаҐ®Ўа §®ў вҐ«п Є®¤®ў PARADISE DATACOM (5280 дгв®ў бвҐа«ЁЈ®ў) Ё ¬г«мвЁЇ«ҐЄб®а Є ¬®¤Ґ¬г (NOKIA, жҐ =6169FIM), бЇгвЁЄ®ўл© ¬®¤Ґ¬ 17500$ Ё вҐл© Є®¬Ї«ҐЄб 59600$ {16W} (Ґ пб®, ўе®¤Ёв «Ё бо¤ бв®Ё¬®бвм ЇаЁҐ¬®Ј® ®Ў®а㤮ў Ёп). .G.D:\PICTURES\SUOMI.PCX;16 cm;4.556 cm;PCX ‘в®Ё¬®бвм гбв ®ўЄЁ ®Ў®а㤮ў Ёп б®бв ў«пҐв 10 祫®ўҐЄ®-¤Ґ©+Є®¬ ¤Ёа®ў®злҐ Ё ¤®а®Ј ). „®а®Ј®ўЁ§ бўп§ б Ґ®Ўе®¤Ё¬®бвмо ЇЁб вм ¤ лҐ ¤ЁбЄ б® бЄ®а®бвмо 8MB/c. PTT-б«г¦Ўл вॡгов, зв®Ўл в ЄЁҐ бЁбвҐ¬л Ўл«Ё Ё§®«Ёа®ў л ®в ⥫Ґд®®© бҐвЁ бва л. Џ®б«Ґ ЇҐаҐе®¤ Їа®ҐЄв CHEOPS Ё§ бв ¤ЁЁ нЄбЇҐаЁ¬Ґв ў нЄбЇ«г в жЁо ¬®Јгв Ї®вॡ®ў вмбп ¤ҐмЈЁ ®Ї« вг бЇгвЁЄ (Ї®Є нв® ЎҐбЇ« в®). .G.D:\PICTURES\IMAGE1.PCX;17 cm;14.713 cm;PCX Cв®Ё¬®бвм ¬®¤Ґ¬ SM-290 ~ 20000$. –Ґ ЄЁ«®¬Ґва ў®«®Є®®-®ЇвЁзҐбЄ®Ј® Є ЎҐ«п - 200000 агЎ«Ґ©. „«п ‚Ћ‹‘ Ґ®Ўе®¤Ё¬л аҐва б«пв®ал Є ¦¤лҐ 40 Є¬. ‚ з «Ґ Ў®а Ёд®а¬ жЁЁ L3 ®Ў¬Ґ CERN-USA б®бв ў«п« 1010 ЎЁв/¤Ґм. ЏҐаҐ¤ з 3 108 ЎЁв ЇаЁ бЄ®а®бвЁ ®Ў¬Ґ 56ЄЎЁв/б б®бв ў«пҐв 2 з б . ‘।Ё© Ї®в®Є н«ҐЄва®®© Ї®звл бзЁв Ґвбп а ўл¬ 20 бва Ёж ¬ Ї® 2000 бЁ¬ў®« ў ¤Ґм 祫®ўҐЄ . ѓагЇЇ®ў®© Ї®в®Є жЁда®ў®© Ёд®а¬ жЁЁ ¬Ґ¦¤г §Ґ¬®© бв жЁҐ© (Ќ‘) Ё жҐв஬ бҐвҐ-ў®Ј® ¤®бвгЇ (–‘„) б®бв ў«пҐв г бгйҐбвўгойЁе Є®¬¬ҐазҐбЄЁе бЁб⥬ ў ‘Ђ ®в 12 ¤® 48 ЊЎЁв/б (ў ЇҐабЇҐЄвЁўҐ 300ЊЎЁв/б). ‚ ”Ґа¬Ё« Ў ®Ў¬Ґ Ї® «ЁЁп¬ ⥫ҐЄ®¬¬гЁЄ жЁ© б®бв ў«пҐв 4800 ѓЁЈ ЎЁв/Ј®¤. ЪДДДДДДДї ЪДДДДДДДї ДДґ і і ГДДДД ДДґ і T1 Trunk і ГДДДД 24*56kbps ДДґ TDM ГДДД>ДДДДДДДД<ДДДґ TDM ГДДДД 24*56 kbps ДДґ і 1.544Mbps і ГДДДД ДДґ і і ГДДДД АДДДДДДДЩ АДДДДДДДЩ ЏаЁ¬Ґа ЁбЇ®«м§®ў Ёп ¬ ЈЁбва «Ё ’1 б TDM. T1 - 50 ¬ЁЄа®®Ґ ®¤®¬®¤®ў®Ґ ®Їв®ў®«®Є®. ЪДДДДДДДї ЪДДДДДДДї і ГДДДДДДДДДДДДДДДДДДДДДДДґ і T1 Trunk і ГДДДДДДДДДДДДДДДДДДДДДДДґ і T1 Trunk ДДДД<ДДДДДДДґ і і ГДДД>ДД і ГДДДДДДДДДї ЪДДДДДДДДДґ і і ГДДДДДДДї і і ЪДДДДДДДґ і АДДДДДДДЩ і і і і224kbpsАДДДДДДДЩ ЪДДДДБДБДДДБДБДДДДї і DECNet router і АДДДДДДДДВДДДДДДДДЩ і ДДДДДДДДДДДДДДДДБДДДДДДДДДДДДДДДД Local Ethernet ’ аЁдл (INMARSAT) –Ґва бҐвҐў®Ј® ¤®бвгЇ –‘ гЇа ў«ҐЁп 2.5 ¬«.¤®«Ѓ §®ў п бв жЁп 1.0 ¬«.¤®«ЂаҐ¤ –‘ (Ј®¤) 18 влб.¤®«ЂаҐ¤ Ѓ‘ (Ј®¤) ў ЇҐаҐбзҐвҐ ®¤Ё ⥫Ґд®л© Є ЎҐ«м (®¤®Ј® Ў®Ґв ) влб.¤®«. гбв ®ўЄЁ 2 ЇаЁҐ¬®ЇҐаҐ¤ о饩 ‡‘ 3.5 ЇҐаҐ¤ о饩 ‡‘ 2.5 ЇаЁҐ¬®© ‡‘ 1.5ЂаҐ¤ вҐа¬Ё « Ї®«м§®ў вҐ«п ЇаЁ аҐ¦Ё¬ е ¤®бвгЇ : ЄагЈ«®бгв®з®¬ (Ј®¤) 2.5 влб.¤®«. ў а Ў®зЁҐ ¤Ё (Ј®¤) 2.25 Ї® § Їа®бг (¬Ё) 1 ¤®«ЂаҐ¤ гбва®©бвў а биЁаҐЁп Їа®ЇгбЄ®© бЇ®б®Ў®бвЁ ¤«п Ї®¤Є«о票пҐбЄ®«мЄЁе ‡‘ Є –‘ (Ј®¤) 5.7 влб.¤®«.ЂаҐ¤ ¬®¤Ґ¬ (Ј®¤) ЇаЁ бЄ®а®бвЁ ЇҐаҐ¤ зЁ, ЄЎЁв/б, ¤®«. 2.4 150 4.8 250 9.6 350 56 700 1544 2500 3088 3000ЂаҐ¤ гбва®©бвў ¬®Ј®аҐва б«пжЁ®®Ј® ¤®бвгЇ (Ј®¤), влб.¤®«.: Є ¤ўг¬ ђ’ђ 14.2 Є в६ ђ’ђ 15.8 Є зҐвл६ ђ’ђ 17.4ЂаҐ¤ Ў«®Є ЈагЇЇ®ў®Ј® ‡Ђ‘ (Ј®¤) 10влб.¤®«.Ћ¤®Є «м п ‡‘ б гбв ®ўЄ®© 85.5влб.¤®«.ЂаҐ¤ (Ј®¤) влб.¤®«. ®¤®Є «м®© ‡‘ 12.7 ў®бм¬ЁЄ «м®© 15ЂЎ®ҐвбЄ п бв жЁп (ЎҐ§ гбв ®ўЄЁ), влб.¤®«. TVRO (Є®««ҐЄвЁў п ’‚-бв жЁп) 3-100 StA ¤«п Ї®¤ўЁ¦ле ®ЎкҐЄв®ў (ЏЋ) 25-40 StC ¤«п ЏЋ ¤® 10 OmniTracs ¤«п ЏЋ 4.1 RDSS ¤«п ЏЋ 4.5 б।пп ‡‘ 30-250 StB IntelSat 1500 StA Intelsat 2600ЂаҐ¤ (Ј®¤)/Ї®ЄгЇЄ бв ¤ авле ђ’ђ, ¬«.¤®«. ¤«п ¤Ё Ї §®®ў: ‘ (Ј«®Ў «мл© Ё«Ё ॣЁ® «мл© «гз) 72 Њѓж 1.8/9.4 36 Њѓж 1.2/6.4 Ku 72¬Јж 2.7/14.1 150Њѓж 5/26.5ЂаҐ¤ (Ј®¤) ђ’ђ €‘‡ Spacenet (¤ лҐ 1984Ј®¤), ¬«.¤®«.,¤«п ¤Ё Ї §®®ў: C (8.5‚в) б иЁаЁ®© Ї®«®бл 36Њѓж 2.1 C (16‚в) c иЁаЁ®© Ї®«®бл 72Њѓж 3.84 Ku (16‚в) c иЁаЁ®© Ї®«®бл 72Њѓж 4.2’Ґ«Ґд®л© а §Ј®ў®а б ЏЋ (¬Ё) 4.5 ¤®«.ЏҐаҐ¤ з ⥫ҐЄб ЏЋ (¬Ё) 2.2 ¤®«.ЏҐаҐ¤ з ⥫ҐЄб ЈагЇЇҐ б㤮ў (¬Ё)ЏҐаҐ¤ з ¤ ле (¬Ё) ЏЋ, ¤®«., б® бЄ®а®бвмо: 56ЉЎЁв/б 6.8 ¤® 1ЊЎЁв/б 22.5ЂаҐ¤ (¬Ґб) ®¤®Ј® ⥫Ґд®®Ј® Є « Џ®, влб. ¤®«.: 24 з 15 2 з ў бгвЄЁ 6.1 1 з ў бгвЄЁ 5.1’Ґ«Ґд® п Ї бб ¦ЁабЄ п ўЁ жЁ® п бўп§м Ё бўп§м ў бЁб⥬Ґ гЇа ў«ҐЁпў®§¤гил¬ ¤ўЁ¦ҐЁҐ¬ (“‚„) [¬Ё] 2.5-3 ¤®«.Џ®«м§®ў ЁҐ §Ґ¬®© бҐвмо бўп§Ё Ї бб ¦Ёа ¬Ё Ё “‚„ Airforne (Їа®ҐЄв) ⥫Ґд® § ЇҐаўлҐ 3 ¬Ёгвл 7.5+1.25 § Є ¦¤го ¤®Ї®«ЁвҐ«мго‘ўп§м (¬Ё) c бге®Їгвл¬Ё ЏЋ (Їа®ҐЄв), ¤®«.: ⥫Ґд® п 5.25 ⥫Ґд Єб п 1.5 ЇҐаҐ¤ з ¤ ле б® бЄ®а®бвмо 2.4 ЉЎЁв 0.5-1’Ґ«Ґд® п бўп§м §Ґ¬ле б®в®ўле бЁб⥬ бўп§Ё б ЏЋ, ¤®«.: 1 ¬Ё. 0.34 1 ¬Ґб 35‹ЁжҐ§Ёп гбв ®ўЄг VSAT (¬Ґб) вҐа¬Ё « , ¤®«.: ЇаЁҐ¬®Ј® 80-85 ЁвҐа ЄвЁў®Ј® 150ЂЎ®ҐвбЄ п Ї« в § Ї®«м§®ў ЁҐ Є « ¬Ё €‘‡ Ё Ў §®ў®© бв жЁҐ© ¤«пVSAT (¬Ґб) 500-600 ¤®«ЏаЁҐ¬ЁЄ ҐЇ®б।б⢥®Ј® ⥫ҐўЁ¤ҐЁп (Ќ’‚) 500-1500 ¤®«“бв ®ўЄ вҐл ЇаЁҐ¬ЁЄ Ќ’‚ 400-600 ¤®«‘Єа ¬Ў«Ґа 200 ¤®«. ‘а ўҐЁҐ DecNet Ё TCP/IP Џ® ба ўҐЁо б TCP/IP DecNet ®аЁҐвЁа®ў DEC-Є®¬ЇмовҐал, Ё ҐбЇ®б®Ў ЁбЇ®«м§®ў вм ¤®бвгЇлҐ бЄ®а®бвЁ ®Ў¬Ґ . Џ®б«Ґ¤го饥 ба ўҐЁҐ ЇаҐ¤Ї®« Ј Ґв, зв® Ў §®ў п ќ‚Њ ЁбЇ®«м§гҐв ®ЇҐа жЁ®го бЁб⥬г VMS. ЊҐ¦§ ¤ злҐ Є®¬¬гЁЄ жЁЁ DecNetЏ®¤¤Ґа¦Ёў Ґв ®Ў¬Ґ ¬Ґ¦¤г § ¤ з ¬Ё. Ћ¤ Ё§ § ¤ з ®Ўкпў«пҐв бҐЎп ®ЎкҐЄв®¬ DecNet (ЇаЁ н⮬ Ё¬п ®ЎкҐЄв ўЄ«оз Ґв ў бҐЎп Ё¬п 㧫 Ё Ї®б«Ґ¤®ў ⥫м®бвм бЁ¬ў®«®ў Ё«Ё зЁб«®) Ё гбв ў«Ёў Ґвбп бўп§м б нвЁ¬ ®ЎкҐЄв®¬. ЊҐ¦§ ¤ з п бўп§м ЇаҐ¤бв ў«пҐв б®Ў®© ўҐаеЁ© га®ўҐм бўп§Ё. TCP/IP’ Є п ў®§¬®¦®бвм ॠ§Ё§гҐ¬ Ё §¤Ґбм. „«п нв®Ј® ®¤ Ё§ § ¤ з ®бгйҐбвў«пҐв Ї ббЁўго бўп§м, ®ЇаҐ¤Ґ«пп ®¬Ґа Ї®ав . „агЈ п § ¤ з ўлЇ®«пҐв ЄвЁўго бўп§м б нвЁ¬ Ї®а⮬. „®бвгЇ Є д ©« ¬ DecNetќв®в Їа®жҐбб ॣ㫨агҐвбп ваҐ¬п ¬Ґе Ё§¬ ¬Ё. 1. Џ® 㬮«з Ёо DecNet ЇаҐ¤®бв ў«пҐв «оЎ®¬г «ҐЈ «м®¬г б®®ЎйҐЁо ¤®бвгЇ Є Їа®жҐбб®аг. 2. …б«Ё б®®ЎйҐЁҐ Ё¬ҐҐв ID Ї®«м§®ў вҐ«п Ё Їа®ЇгбЄ (password), «ҐЈ «млҐ ¤«п ¤ ®Ј® Їа®жҐбб®а , в® бЇЁб®Є ЄЄаҐ¤Ёв жЁЁ Ї®«м§®ў ⥫п (account) ®ЇаҐ¤Ґ«пҐв Їа ў Ї®«м§®ў ⥫п. 3. …б«Ё Ёбв®зЁЄ б®®ЎйҐЁп (㧥« Ё ID-Ї®«м§®ў ⥫п) ᮮ⢥вбвўгов бЇЁбЄг, ᮤҐа¦ 饬гбп ў Їа®Ја ¬¬Ґ гЇа ў«ҐЁп бҐвмо Їа®жҐбб®а , в® ® ЇаҐ¤®бвўЁв ¤®бвг¬ ў ᮮ⢥вбвўЁЁ «®Є «мл¬Ё Їа ўЁ« ¬Ё. TCP/IP„«п ¤®бвгЇ Є д ©«г Ї®«м§®ў вҐ«м ¤®«¦Ґ Ё¬Ґвм «ҐЈ «м®Ґ USER NAME Ё Їа ўЁ«мл© PASSWORD. ЌҐ бгйҐбвўгҐв бв ¤ ав®Ј® Їа®Ја ¬¬®Ј® ®ЎҐбЇҐзҐЁп ¤«п а бЇ®§ ў Ёп Ёбв®зЁЄ б®®ЎйҐЁп Ё, б«Ґ¤®ў ⥫м®, ¬Ґе Ё§¬ ЇаҐ¤®бв ў«ҐЁп ЇаЁ®аЁвҐв®Ј® ¤®бвгЇ . Remote LOGIN DecNetЉ®¬ ¤ Set Host "NODE_NAME" Ї®§ў®«пҐв ў®©вЁ ў г¤ «Ґго ќ‚Њ, ўе®¤пйго ў бҐвм. TCP/IPЉ®¬ ¤ TELNET в Є¦Ґ Ї®§ў®«пҐв ўлЇ®«Ёвм нвг Їа®жҐ¤гаг. ЏҐаҐбл«Є д ©«®ў DecNetЉ®¬ ¤ COPY Ї®§ў®«пҐв ЇҐаҐб« вм «оЎ®© д ©« Ё§ «оЎ®© ¤ЁаҐЄв®аЁЁ ў ЇаҐ¤Ґ« е DecNet ў «оЎго ¤ЁаҐЄв®аЁо ў ЇаҐ¤Ґ« е нв®© бҐвЁ ў ᮮ⢥вбвўЁЁ б® бЇЁбЄ®¬ ЇаЁўЁ«ҐЈЁ© (account). ќв® ЇаҐ¤Ї®« Ј Ґв Ё Є®ЇЁа®ў ЁҐ д ©« Ё§ г¤ «Ґ®© ќ‚Њ ў «®Є «мго ќ‚Њ Ё ®Ў®а®в, в Є¦Ґ Ё§ ®¤®© г¤ «Ґ®© ќ‚Њ ў ¤агЈго. COPY ¬®¦Ґв Ё ЇҐаҐ¤ вм Є бЇЁбЄ®Є д ©«®ў. TCP/IP“вЁ«Ёв FTP (File Transfer Protocol) Ї®¤¤Ґа¦Ёў Ґв ЇҐаҐбл«Єг д ©«®ў Ї®б।бвў®¬ GET Ё PUT, Є®в®алҐ Ї®§ў®«пов Ї®«гзЁвм д ©« Ё§ г¤ «Ґ®Ј® Їа®жҐбб®а Ё«Ё § б« вм ҐЈ® ў г¤ «Ґго ќ‚Њ. FTP-гвЁ«Ёв а Ў®в Ґв в®«мЄ® Ї®б«Ґ Їа ўЁ«м®Ј® LOGON Ї®«м§®ў ⥫п г¤ «Ґ®© ќ‚Њ. Њ®Ј®д ©«®ўл© ®Ў¬Ґ, Є Є ў DECnet Ґў®§¬®¦Ґ. Mail DECnetDECmail Ї®¤¤Ґа¦Ёў Ґв бЇЁбЄЁ а ббл«ЄЁ, ЇҐз вм б®®ЎйҐ-Ё©, Є®бўҐго ¤аҐб жЁо Є 㧫 ¬, «®Є «м® ҐЁ§ўҐбв-л¬ Ё в.¤. DECmail Їа®§а з ¤«п бўп§Ё б BITNET ќ‚Њ, Ё¬ҐойЁе Їа®Ја ¬¬®Ґ ®ЎҐбЇҐзҐЁҐ BITNET. TCP/IP“вЁ«Ёв SMTP (Simple Mail Transfer Protocol) ॠ«Ё§гҐв ўбҐ дгЄжЁЁ, ¤®бвгЇлҐ ў DECmail, Ё Єа®¬Ґ в®Ј® Ј а -вЁагҐв § ¤Ґа¦ го ЇҐаҐ¤ зг б®®ЎйҐЁп, Ґб«Ё ќ‚Њ- ¤аҐб в ў ¤ л© ¬®¬Ґв Ґ¤®бвгЇ . Phone DECnetDECnet Ї®¤¤Ґа¦Ёў Ґв дгЄжЁо PHONE, Ї®§ў®«пойго ¤ўг¬ Ї®«м§®ў вҐ«п¬ а §¤Ґ«пвм нЄа вҐа¬Ё « ЇаЁ ®Ў¬ҐҐ б®®ЎйҐЁп¬Ё (Є ¦¤л© ЇҐз в Ґв бў®Ґ© Ї®«®-ўЁҐ нЄа ) ў ॠ«м®¬ ¬ бив ЎҐ ўаҐ¬ҐЁ. ‡¤Ґбм бг-йҐбвўгҐв ¤ЁаҐЄв®аЁп, Є®в®а п Ї®§ў®«пҐв ®ЇаҐ¤Ґ«Ёвм, бЇЁб®Є Ї®«м§®ў ⥫Ґ©, ¤®бвгЇле ¤«п PHONE, ў Є ¦¤®¬ Є®ЄаҐв®¬ 㧫Ґ. TCP/IP’ Є®© дгЄжЁЁ Ґв. Remote Directory DECnetDECnet Ї®¤¤Ґа¦Ёў Ґв бв ¤ авго Є®¬ ¤г DIR, Є®в®-а п ¬®¦Ґв а Ў®в вм ¤«п «оЎ®Ј® 㧫 бҐвЁ (а §г¬ҐҐвбп ЇаЁ б®®вўҐвбвўго饬 а §аҐиҐЁЁ). TCP/IP”гЄжЁп ¤®бвгЇ ў а ¬Є е FTP ђҐ¤ ЄвЁа®ў ЁҐ DECnetђҐ¤ Єв®ал ¬®Јгв гЄ §лў вм «оЎлҐ д ©«л, ¤®бвгЇлҐ ў бҐвЁ (а §г¬ҐҐвбп ЇаЁ «ЁзЁЁ г¦ле ЇаЁўЁ«ҐЈЁ©). TCP/IP‡¤Ґбм Ґ ЇаҐ¤гᬮв८ ў®§¬®¦®б⨠। ЄвЁа®ў Ёп д ©«®ў Ё§ г¤ «Ґле ќ‚Њ. €¬ҐҐвбп ў®§¬®¦®бвм ў®©вЁ ў г¤ «Ґл© 㧥« зҐаҐ§ TELNET Ё । ЄвЁа®ў вм в ¬, Ё«Ё ЇҐаҐб« вм д ©« Ї®б।бвў®¬ FTP. Џа®Ја ¬¬л© ¤®бвгЇ Є д ©« ¬ DECnetЏа®Ја ¬¬ , Є®в®а п Ё¬ҐҐв ¤®бвгЇ Є д ©« ¬ «®Є «м®© ќ‚Њ, Ўг¤Ґв Ё¬Ґвм ¤®бвгЇ Є «оЎл¬ д ©« ¬ г¤ «Ґ®© ќ‚Њ, ¤®бв в®з® ЇҐаҐ¤ Ё¬ҐҐ¬ д ©« Їа®бв ўЁвм Ё¬п 㧫 б Ї®б«Ґ¤гойЁ¬ ¤ў®Ґв®зЁҐ¬. ’ॡ®ў ЁҐ г¦ле ЇаЁўЁ«ҐЈЁ© ®бв Ґвбп ў бЁ«Ґ. TCP/IP‡¤Ґбм Ґв бв ¤ авле Їа®Ја ¬¬ле б।бвў ¤®бвгЇ Є г¤ «Ґл¬ д ©« ¬. Њ®¦® ЁбЇ®«м§®ў вм FTP ¤«п ЇҐаҐбл«ЄЁ д ©« ў «®Є «мго ¤ЁаҐЄв®аЁо, Ё«Ё ЇЁб вм бЇҐжЁ «мго Їа®Ја ¬¬г, Є®в®а п аҐиЁв § ¤ зг, ЁбЇ®«м§гп ⥫ҐЄ®¬¬гЁЄ жЁо § ¤ з -§ ¤ з . „®бвгЇ Є Ў § ¬ ¤ ле DECnetЃ §л ¤ ле, а §а Ў®в лҐ DEC, Їа®§а зл ¤«п ¤®-бвгЇ Є «оЎл¬ г¤ «Ґл¬ 㧫 ¬. TCP/IPЌҐв бв ¤ ав®Ј® ¬Ґе Ё§¬ ¤®бвгЇ Є Ў § ¬ ¤ ле. Remote submissions DECnetЏаҐ¤гᬮв८ ўлЇ®«ҐЁҐ Їа®жҐ¤га г¤ «Ґле ўҐиЁе гбва®©бвў е (batch Ё«Ё ЇаЁвҐа), ЁбЇ®«м§гп ®ЇжЁо /REMOTE. TCP/IP…б«Ё Ё¬ҐҐвбп १Ґаўл© Ї®ав ¤«п ўе®¤ г¤ «Ґ®© § ¤ зЁ (RJE), ў б«гз Ґ EXCELAN нв гвЁ«Ёв Ґ ЇаЁ¬ҐЁ¬ . Remote Task Evocation (ўл§®ў) DECnetЏаҐ¤гᬮвॠбв ¤ ав п Їа®жҐ¤га § ЇгбЄ Їа®Ја ¬-¬л г¤ «Ґ®¬ 㧫Ґ. ЏаҐ¤гб¬ ваЁў Ґвбп Є®¬ ¤л© д ©«, Є®в®ал© ¬®¦Ґв ЄвЁўЁа®ў вм б।Ё Їа®зҐЈ® Ё Їа®Ја ¬¬г Ї®«м§®ў ⥫п. TCP/IP‚ а ¬Є е FTP-гвЁ«Ёвл бгйҐбвўгҐв Є®¬ ¤ EXEC, Є®-в®а п б«г¦Ёв ЇаЁ¬Ґа® ¤«п вҐе ¦Ґ 楫Ґ©. Ћ¤ Є®, ® Ґ ЇаЁ¬ҐЁ¬ ¤«п Ї®бвгЇ ойЁе Є®¬ ¤ ¤«п Їа®¤гЄв EXCELAN. ЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЬЂ���“���x�—���t����p�±���l�П���h�У���d�ф���`�ш���\���X���T���P� ��L�ЬЬЬЬ������������ ��D��w�H��s�o��o�s��k�Ћ��g�’��c�Є��_�®��[�Н��W�С��S���O���K�ЬЬЬ��������������*��w�0��s�D��o�J��k�_��g�c��c�x��_�y��[�}��W�—��S�њ��O�В��K�ЬЬЬ������������В��И��w�ф��s�ш��o���k���g�*��c�.��_�J��[�N��W�n��S�w��O�x��K�ЬЬЬ������������x��Ђ��w�‚��s�†��o�ќ��k�Ў��g�Ѕ��c�Б��_�л��[�п��W���S���O�;��K�ЬЬЬ������������;��?��w�^��s�c��o�€��k�Њ��g�¬��c�°��_�Ш��[�Э��W�е��S�ж��O���K�ЬЬЬ����������������w�-��s�1��o�K��k�P��g�l��c�m��_�q��[�Њ��W�ђ��S�«��O�¬��K�ЬЬЬ������������¬��µ��w�¶��s�»��o�з��k�и��g���c���_���[� ��W�$��S�@��O�A��K�ЬЬЬ������������A��E��w�`��s�a��o�g��k�љ��g�ћ��c�є��_�ї��[�з��W�и��S�м��O���K�ЬЬЬ�������������� ��w�)��s�*��o�/��k�S��g�X��c�~��_�‚��[�њ��W� ��S�Ж��O�К��K�ЬЬЬ������������К��д��w�е��s�й��o���k���g�.��c�4��_�c��[�g��W�{��S�|��O�Ђ��K�ЬЬЬ������������Ђ��•��w�–��s�љ��o�Ї��k�°��g�ґ��c�Й��_�Н��[�Я��W�г��S� ��O� ��K�ЬЬЬ������������ ��: ��w�> ��s�f ��o�j ��k�~ ��g�ѓ ��c�ќ ��_�Ј ��[�Т ��W�Щ ��S�ъ ��O� ��K�ЬЬЬ������������ ��- ��w�. ��s�W ��o�\ ��k�p ��g�u ��c�› ��_�џ ��[�ґ ��W�ё ��S�Ж ��O�З ��K�ЬЬЬ������������З ��Л ��w�Я ��s�б ��o�д ��k�о ��g�т ��c���_���[���W�6��S�9��O�n��K�ЬЬЬ������������n��r��w�€��s�Њ��o�§��k�¬��g�Ь��c�а��_���[���W�A��S�E��O�[��K�ЬЬЬ������������[��`��w�„��s�‰��o�Ї��k�і��g�Ы��c�Ю��_�л��[�п��W���S���O�5��K�ЬЬЬ������������5��6��w�R��s�S��o�W��k�n��g�r��c�—��_�›��[�ґ��W�µ��S�№��O�Ь��K�ЬЬЬ������������Ь��Я��w�п��s�р��o�х��k���g���c�?��_�E��[�c��W�h��S�‡��O�Њ��K�ЬЬЬ������������Њ��¬��w�°��s�Л��o�П��k�к��g�л��c�р��_���[���W���S�3��O�7��K�ЬЬЬ������������7��W��w�\��s�}��o�Ѓ��k�–��g�›��c�є��_�»��[�А��W�Ч��S�Ш��O�а��K�ЬЬЬ������������а��б��w�ж��s�щ��o�ю��k�&��g�1��c�2��_�6��[�T��W�h��S�l��O�Њ��K�ЬЬЬ������������Њ��‘��w�ґ��s�ё��o�з��k�н��g���c���_�7��[�8��W�<��S�X��O�`��K�ЬЬЬ������������`��‰��w�’��s�“��o�—��k�І��g�№��c�з��_�м��[���W�#��S�;��O�>��K�ЬЬЬ������������>��N��w�R��s�t��o�y��k�Є��g�°��c�Ь��_�д��[�#��W�)��S�B��O�H��K�ЬЬЬ������������H��m��w�r��s�џ��o�Ґ��k�А��g�Ю��c�а��_�д��[�с��W�ц��S���O���K�ЬЬЬ��������������%��w�*��s�R��o�V��k�k��g�q��c�™��_�ћ��[�°��W�¶��S�Р��O�Т��K�ЬЬЬ������������Т��Ц��w���s���o�.��k�2��g�C��c�H��_�]��[�b��W�†��S�‡��O�™��K�ЬЬЬ������������™��ћ��w�¶��s�·��o�Ѕ��k�Б��g�Ч��c�Ь��_�ы��[����W���S�#��O�7��K�ЬЬЬ������������7��<��w�h��s�l��o�Љ��k�Ћ��g�ў��c�§��_�ї��[�Д��W�Ю��S�е��O���K�ЬЬЬ����������������w���s�!��o�E��k�J��g�r��c�w��_�”��[���W�¬��S�±��O�М��K�ЬЬЬ������������М��У��w�х��s�ъ��o���k���g�,��c�0��_�B��[�F��W�`��S�d��O�{��K�ЬЬЬ������������{����w�”��s�™��o�¶��k�є��g�Щ��c�а��_�у��[�ш��W���S���O�1��K�ЬЬЬ������������1��5��w�G��s�H��o�X��k�\��g�w��c�x��_�|��[�›��W�џ��S�К��O�Л��K�ЬЬЬ������������Л��П��w���s���o�'��k�+��g�=��c�>��_�C��[�f��W�k��S�~��O�ѓ��K�ЬЬЬ������������ѓ��“��w�Д��s�е��o�й��k����g���c���_���[���W���S� ��O�4��K�ЬЬЬ������������4��5��w�9��s�G��o�H��k�Y��g�Z��c�^��_�p��[�t��W�‡��S�‹��O�ў��K�ЬЬЬ������������ў��Ј��w�§��s�є��o�»��k�М��g�Н��c�С��_�ш��[�ь��W���S���O�/��K�ЬЬЬ������������/��5��w�u��s�z��o�±��k�¶��g�Ъ��c�Ы��_�ж��[�м��W�с��S�щ��O�ъ��K�ЬЬЬ������������ъ����w�%��s�+��o�,��k�W��g�X��c�]��_�b��[�c��W�f��S�x��O�|��K�ЬЬЬ������������|��‘��w�—��s�В��o�З��k�г��g�и��c���_� ��[�%��W�)��S�D��O�H��K�ЬЬЬ������������H��d��w�h��s�‚��o�†��k�®��g�І��c�У��_�Ш��[�э��W�ю��S����O���K�ЬЬЬ��������������!��w�"��s�<��o�A��k�a��g�f��c�„��_�€��[� ��W�¤��S�П��O�У��K�ЬЬЬ������������У��ж��w�з��s�л��o� ��k� ��g�& ��c�* ��_�B ��[�E ��W�^ ��S�b ��O�w ��K�ЬЬЬ������������w ��| ��w�Ґ ��s�Є ��o�К ��k�О ��g�й ��c�п ��_�!��[�!��W�"!��S�E!��O�F!��K�ЬЬЬ������������F!��X!��w�Y!��s�]!��o�Ќ!��k�‘!��g�!��c�і!��_�µ!��[�Ъ!��W�г!��S�д!��O�"��K�ЬЬЬ������������"��"��w�"��s�3"��o�9"��k�X"��g�["��c�ѓ"��_�€"��[�©"��W�®"��S�Ж"��O�З"��K�ЬЬЬ������������З"��С"��w�Ч"��s�#��o�#��k�<#��g�B#��c�e#��_�k#��[�Ґ#��W�«#��S�і#��O�ґ#��K�ЬЬЬ������������ґ#��б#��w�з#��s�4$��o�:$��k�m$��g�s$��c�А$��_�З$��[�%��W�%��S�b%��O�h%��K�ЬЬЬ������������h%��Ж%��w�М%��s�&��o�&��k�8&��g�<&��c�R&��_�V&��[� &��W�¤&��S�·&��O�»&��K�ЬЬЬ������������»&��Ы&��w�а&��s�&'��o�*'��k�+'��g�K'��c�L'��_�Q'��[�r'��W�s'��S�|'��O�Ѓ'��K�ЬЬЬ������������Ѓ'��™'��w�љ'��s�џ'��o�Ё'��k�'��g�Б'��c�Ж'��_�Т'��[�Ш'��W�щ'��S�ю'��O�(��K�ЬЬЬ������������(��#(��w�C(��s�G(��o�Q(��k�U(��g�m(��c�r(��_�Ћ(��[�”(��W�•(��S�Б(��O�В(��K�ЬЬЬ������������В(��С(��w�Т(��s�Ь(��o�б(��k� )��g�)��c�.)��_�2)��[�M)��W�Q)��S�e)��O�j)��K�ЬЬЬ������������j)��‚)��w�€)��s�®)��o�Ї)��k�Д)��g�Й)��c�Э)��_�в)��[�ш)��W�щ)��S�*��O�*��K�ЬЬЬ������������*��;*��w�A*��s�]*��o�a*��k�z*��g�*��c�µ*��_�№*��[�Х*��W�Ъ*��S�ш*��O�э*��K�ЬЬЬ������������э*��+��w�+��s�1+��o�6+��k�=+��g�A+��c�P+��_�V+��[�p+��W�w+��S�ў+��O�«+��K�ЬЬЬ������������«+��¬+��w�Ї+��s�Д+��o�И+��k�з+��g�л+��c�,��_� ,��[�+,��W�>,��S�B,��O�V,��K�ЬЬЬ������������V,��W,��w�a,��s�e,��o�x,��k�},��g�™,��c�џ,��_�±,��[�·,��W�Э,��S�в,��O�-��K�ЬЬЬ������������-��-��w�/-��s�4-��o�D-��k�I-��g�Њ-��c�ђ-��_�Ґ-��[�©-��W�№-��S�Ѕ-��O�Ф-��K�ЬЬЬ������������Ф-��Ъ-��w�.��s�.��o�*.��k�..��g�E.��c�F.��_�J.��[�[.��W�a.��S�€.��O�Ќ.��K�ЬЬЬ������������Ќ.��ґ.��w�ё.��s�З.��o�М.��k�у.��g�ъ.��c�/��_�/��[�0/��W�4/��S�X/��O�\/��K�ЬЬЬ������������\/��/��w�„/��s�Ј/��o�§/��k�Е/��g�Й/��c�Ъ/��_�Я/��[�0��W�0��S�0��O�0��K�ЬЬЬ������������0��20��w�60��s�P0��o�U0��k�0��g�„0��c�¦0��_�Є0��[�»0��W�А0��S�с0��O�ц0��K�ЬЬЬ������������ц0��%1��w�*1��s�J1��o�O1��k�x1��g�y1��c�}1��_�Ў1��[�ў1��W�§1��S�С1��O�Ц1��K�ЬЬЬ������������Ц1���2��w�2��s� 2��o�2��k�2��g�(2��c�U2��_�V2��[�[2��W�€2��S�‰2��O�‘2��K�ЬЬЬ������������‘2��’2��w�—2��s�№2��o�В2��k�м2��g�н2��c�щ2��_�ъ2��[�3��W�03��S�13��O�43��K�ЬЬЬ������������43��b3��w�c3��s�“3��o�3��k�Ж3��g�О3��c�у3��_�ш3��[�4��W�4��S�B4��O�C4��K�ЬЬЬ������������C4��H4��w�[4��s�_4��o�x4��k�|4��g�Ќ4��c�’4��_�Ї4��[�і4��W�Э4��S�Ю4��O�г4��K�ЬЬЬ������������г4��5��w� 5��s�95��o�>5��k�a5��g�b5��c�f5��_�Њ5��[�’5��W�Ѕ5��S�ѕ5��O�Щ5��K�ЬЬЬ������������Щ5��Ъ5��w�Ю5��s�я5��o�6��k�6��g�#6��c�F6��_�G6��[�M6��W�t6��S�y6��O�љ6��K�ЬЬЬ������������љ6��ћ6��w�Д6��s�З6��o�Ц6��k�Ь6��g�7��c�7��_�7��[�)7��W�.7��S�N7��O�R7��K�ЬЬЬ������������R7��k7��w�p7��s�‡7��o�Њ7��k�Ё7��g�7��c�Г7��_�Д7��[�И7��W�Ы7��S�б7��O�8��K�ЬЬЬ������������8��8��w�8��s�!8��o�%8��k�<8��g�@8��c�U8��_�Z8��[�q8��W�t8��S�~8��O�ѓ8��K�ЬЬЬ������������ѓ8��ћ8��w�Ј8��s�Г8��o�И8��k�ъ8��g�ю8��c�9��_�$9��[�J9��W�O9��S�i9��O�m9��K�ЬЬЬ������������m9��‡9��w�Њ9��s�Є9��o�¶9��k�№9��g�Б9��c�В9��_�И9��[�п9��W�т9��S�:��O�:��K�ЬЬЬ������������:��<:��w�@:��s�]:��o�a:��k�w:��g�}:��c�—:��_�›:��[�¬:��W�°:��S�ѕ:��O�В:��K�ЬЬЬ������������В:��к:��w�п:��s�;��o�;��k�(;��g�,;��c�N;��_�S;��[�„;��W�€;��S�Ў;��O�Ґ;��K�ЬЬЬ������������Ґ;��А;��w�Е;��s�п;��o�у;��k� <��g�$<��c�F<��_�J<��[�a<��W�e<��S�Ѓ<��O�€<��K�ЬЬЬ������������€<��¦<��w�«<��s�Й<��o�Н<��k�л<��g�м<��c�р<��_�=��[�=��W�(=��S�-=��O�E=��K�ЬЬЬ������������E=��J=��w�o=��s�v=��o�‡=��k�Њ=��g�«=��c�¬=��_�±=��[�Ц=��W�Ь=��S�ь=��O�>��K�ЬЬЬ������������>��>��w�>��s�7>��o�;>��k�Y>��g�^>��c�z>��_�}>��[�•>��W�›>��S�А>��O�Е>��K�ЬЬЬ������������Е>��Щ>��w�Э>��s�ф>��o�ш>��k�?��g�?��c�?��_�D?��[�H?��W�l?��S�o?��O�z?��K�ЬЬЬ������������z?��{?��w�Ђ?��s�њ?��o� ?��k�і?��g�ґ?��c�·?��_�В?��[�И?��W�Ь?��S�г?��O�@��K�ЬЬЬ������������@��@��w�@��s�@��o�5@��k�:@��g�T@��c�U@��_�Z@��[�m@��W�r@��S�‡@��O�Њ@��K�ЬЬЬ������������Њ@��Ў@��w�¦@��s�Г@��o�З@��k�Я@��g�а@��c�ж@��_�й@��[�ч@��W�ь@��S�'A��O�+A��K�ЬЬЬ������������+A��BA��w�CA��s�GA��o�fA��k�jA��g�ЊA��c�‘A��_�°A��[�ґA��W�ПA��S�ФA��O�сA��K�ЬЬЬ������������сA��цA��w�B��s�!B��o�:B��k�>B��g�VB��c�ZB��_�sB��[�xB��W�§B��S�«B��O�КB��K�ЬЬЬ������������КB��ТB��w�цB��s�чB��o�C��k�C��g�=C��c�EC��_�hC��[�iC��W�‡C��S�‘C��O�№C��K�ЬЬЬ������������№C��єC��w�ЬC��s�вC��o�D��k�D��g�D��c�D��_�9D��[�:D��W�?D��S�nD��O�rD��K�ЬЬЬ������������rD��ЌD��w�“D��s�ГD��o�ИD��k�еD��g�йD��c�,E��_�0E��[�DE��W�HE��S�hE��O�oE��K�ЬЬЬ������������oE��џE��w� E��s�ЛE��o�РE��k�щE��g�эE��c�F��_�F��[�@F��W�DF��S�YF��O�]F��K�ЬЬЬ������������]F��vF��w�{F��s�”F��o�™F��k�ІF��g�єF��c�ХF��_�ЪF��[�G��W� G��S�(G��O�,G��K�ЬЬЬ������������,G��DG��w�IG��s�qG��o�uG��k�ЎG��g�¦G��c�ГG��_�ЗG��[�H��W� H��S� H��O�$H��K�ЬЬЬ������������$H��=H��w�AH��s�XH��o�[H��k�oH��g�sH��c�”H��_�™H��[�ѕH��W�ГH��S�‰I��O�ЌI��K�ЬЬЬ������������ЌI��I��w�ІI��s�ЪI��o�ЮI��k�J��g� J��c�'J��_�-J��[�]J��W�bJ��S�ЉJ��O�‹J��K�ЬЬЬ������������‹J��§J��w�¬J��s�ДJ��o�ЕJ��k�ЗJ��g�ЛJ��c�лJ��_�пJ��[�K��W�K��S�>K��O�?K��K�ЬЬЬ������������?K��CK��w�ZK��s�^K��o�yK��k�}K��g�“K��c�”K��_�K��[�ґK��W�ёK��S�ФK��O�ШK��K�ЬЬЬ������������ШK��хK��w�шK��s� L��o�L��k�%L��g�*L��c�GL��_�PL��[�}L��W�‚L��S�©L��O�®L��K�ЬЬЬ������������®L��жL��w�йL��s�M��o�M��k�;M��g�<M��c�@M��_�WM��[�[M��W�xM��S�yM��O�zM��K�ЬЬЬ������������zM��ЉM��w�ЏM��s�УM��o�ЧM��k�N��g�N��c�3N��_�7N��[�IN��W�MN��S�|N��O�ЂN��K�ЬЬЬ������������ЂN��ЈN��w�¤N��s�ЅN��o�БN��k�ШN��g�ЯN��c�O��_�-O��[�.O��W�2O��S�PO��O�QO��K�ЬЬЬ������������QO��UO��w�pO��s�tO��o�–O��k�љO��g�µO��c�№O��_�ЛO��[�РO��W�мO��S�сO��O�P��K�ЬЬЬ������������P��P��w�P��s�P��o�HP��k�LP��g�[P��c�aP��_�™P��[�ќP��W�µP��S�№P��O�УP��K�ЬЬЬ������������УP��ЧP��w�кP��s�пP��o�Q��k�Q��g� Q��c� Q��_�$Q��[�6Q��W�:Q��S�JQ��O�OQ��K�ЬЬЬ������������OQ��gQ��w�kQ��s�ЉQ��o�ЋQ��k�ЈQ��g�ЁQ��c�УQ��_�ЩQ��[�(R��W�-R��S�IR��O�MR��K�ЬЬЬ������������MR��dR��w�eR��s�zR��o�R��k�ћR��g�¤R��c�МR��_�ТR��[�сR��W�фR��S��S��O�S��K�ЬЬЬ������������S��!S��w�&S��s�AS��o�FS��k�cS��g�eS��c�fS��_�}S��[�‚S��W�—S��S� S��O�¤S��K�ЬЬЬ������������¤S��ЩS��w�ЯS��s�T��o�T��k�T��g�"T��c�CT��_�DT��[�HT��W�uT��S�yT��O�њT��K�ЬЬЬ������������њT��џT��w�®T��s�ІT��o�ЛT��k�СT��g�тT��c�шT��_�*U��[�0U��W�mU��S�sU��O�ћU��K�ЬЬЬ������������ћU��ҐU��w�ПU��s�ФU��o�V��k� V��g�0V��c�5V��_�bV��[�gV��W�€V��S�ЌV��O�іV��K�ЬЬЬ������������іV��·V��w�ЫV��s�ЬV��o�аV��k�хV��g�щV��c�/W��_�4W��[�XW��W�fW��S�jW��O�}W��K�ЬЬЬ������������}W��‚W��w�іW��s�·W��o�ОW��k�ТW��g�ыW��c�яW��_�+X��[�/X��W�AX��S�BX��O�HX��K�ЬЬЬ������������HX��kX��w�pX��s�‘X��o�•X��k�·X��g�»X��c�вX��_�гX��[�хX��W�цX��S�ыX��O�Y��K�ЬЬЬ������������Y��!Y��w�AY��s�DY��o�RY��k�SY��g�kY��c�oY��_�§Y��[�¬Y��W�НY��S�СY��O�дY��K�ЬЬЬ������������дY��йY��w�ъY��s�юY��o�Z��k�Z��g�6Z��c�:Z��_�_Z��[�cZ��W�~Z��S�‚Z��O�”Z��K�ЬЬЬ������������”Z��љZ��w�ЕZ��s�ЖZ��o�ЩZ��k�ЭZ��g�тZ��c�уZ��_�[��[�[��W�3[��S�7[��O�G[��K�ЬЬЬ������������G[��K[��w�c[��s�h[��o�–[��k�љ[��g�±[��c�µ[��_�Ч[��[�Ы[��W�\��S� \��O�\��K�ЬЬЬ������������\��\��w�g\��s�k\��o�Ѓ\��k�…\��g�–\��c�љ\��_�©\��[�®\��W�б\��S�е\��O�я\��K�ЬЬЬ������������я\��]��w�/]��s�3]��o�E]��k�J]��g�u]��c�z]��_�ў]��[�Ј]��W�»]��S�А]��O�б]��K�ЬЬЬ������������б]��з]��w�^��s�^��o�(^��k�)^��g�-^��c�R^��_�X^��[�‚^��W�ѓ^��S�Ї^��O�°^��K�ЬЬЬ������������°^��µ^��w�Ф^��s�Ш^��o�п^��k�у^��g�_��c�_��_�;_��[�A_��W�b_��S�g_��O�ѓ_��K�ЬЬЬ������������ѓ_��€_��w�ћ_��s�¤_��o�і_��k�ё_��g�Ю_��c�в_��_�щ_��[�ю_��W�!`��S�"`��O�(`��K�ЬЬЬ������������(`��@`��w�D`��s�l`��o�p`��k�‡`��g�‹`��c�ґ`��_�µ`��[�є`��W�Ч`��S�Ш`��O�з`��K�ЬЬЬ������������з`��и`��w�м`��s� a��o�a��k�,a��g�2a��c�Pa��_�Ta��[�qa��W�va��S�a��O�™a��K�ЬЬЬ������������™a��¦a��w�«a��s�Уa��o�Чa��k�оa��g�тa��c�b��_�b��[�'b��W�+b��S�1b��O�6b��K�ЬЬЬ������������6b��Tb��w�Ub��s�[b��o�{b��k�Ђb��g�Ґb��c�©b��_�Жb��[�Кb��W�дb��S�йb��O�c��K�ЬЬЬ������������c�� c��w�*c��s�/c��o�Jc��k�Oc��g�qc��c�uc��_�Љc��[�Ћc��W�§c��S�Ёc��O�¬c��K�ЬЬЬ������������¬c��Мc��w�Сc��s�нc��o�тc��k�d��g�d��c�8d��_�<d��[�Pd��W�Td��S�kd��O�rd��K�ЬЬЬ������������rd��sd��w�¤d��s�Ёd��o�»d��k�Гd��g�Дd��c�Ыd��_�аd��[�цd��W�ъd��S�e��O�e��K�ЬЬЬ������������e��e��w�5e��s�9e��o�Fe��k�Ge��g�Ke��c�de��_�ie��[�…e��W�Љe��S�Їe��O�ґe��K�ЬЬЬ������������ґe��Лe��w�Мe��s�Рe��o�щe��k�эe��g�f��c�f��_�#f��[�>f��W�Bf��S�[f��O�_f��K�ЬЬЬ������������_f��Ѓf��w�†f��s�«f��o�Їf��k�Уf��g�Фf��c�цf��_�ыf��[�$g��W�%g��S�Gg��O�Hg��K�ЬЬЬ������������Hg��Qg��w�Rg��s�Wg��o�}g��k�Ѓg��g�›g��c�њg��_� g��[�єg��W�Ѕg��S�Рg��O�Чg��K�ЬЬЬ������������Чg�� h��w�h��s�%h��o�)h��k�Mh��g�Sh��c�hh��_�mh��[�•h��W�–h��S�љh��O�Вh��K�ЬЬЬ������������Вh��Жh��w�нh��s�тh��o�i��k�i��g�+i��c�1i��_�Ii��[�Mi��W�gi��S�ki��O�Љi��K�ЬЬЬ������������Љi��Ћi��w�§i��s�«i��o�Оi��k�Тi��g�мi��c�рi��_�j��[�j��W� j��S�$j��O�7j��K�ЬЬЬ������������7j��;j��w�Oj��s�Tj��o�}j��k�Ѓj��g�ќj��c�Еj��_�Зj��[�Лj��W�нj��S�тj��O�k��K�ЬЬЬ������������k��k��w�Bk��s�Ek��o�sk��k�|k��g�}k��c�Ѓk��_�іk��[�·k��W�иk��S�мk��O�чk��K�ЬЬЬ������������чk��ыk��w�l��s�!l��o�Ml��k�Ql��g�ql��c�vl��_�Њl��[�ђl��W�Ґl��S�©l��O�Ѕl��K�ЬЬЬ������������Ѕl��Вl��w�вl��s�гl��o�зl��k�ыl��g�яl��c�m��_�m��[�9m��W�>m��S�]m��O�am��K�ЬЬЬ������������am��|m��w�Ѓm��s�Јm��o�Ёm��k�Тm��g�Чm��c�n��_�n��[�0n��W�5n��S�Pn��O�Tn��K�ЬЬЬ������������Tn��rn��w�vn��s�Њn��o�‘n��k�Гn��g�Иn��c�жn��_�кn��[�o��W�o��S�o��O�%o��K�ЬЬЬ������������%o��)o��w�@o��s�Co��o�Po��k�Uo��g�Єo��c�Їo��_�Ъo��[�гo��W�p��S�p��O�3p��K�ЬЬЬ������������3p��4p��w�:p��s�?p��o�Ѓp��k�†p��g�¦p��c�«p��_�Еp��[�Жp��W�Мp��S�Фp��O�q��K�ЬЬЬ������������q�� q��w�"q��s�'q��o�Aq��k�Bq��g�bq��c�gq��_�®q��[�іq��W�йq��S�оq��O�r��K�ЬЬЬ������������r��r��w�Er��s�Ir��o�ir��k�mr��g�r��c�ѓr��_�r��[�њr��W�Іr��S�¶r��O�Лr��K�ЬЬЬ������������Лr��Рr��w�шr��s�ьr��o�+s��k�0s��g�Ys��c�]s��_�os��[�ss��W�„s��S�€s��O�ґs��K�ЬЬЬ������������ґs��ёs��w�Уs��s�Щs��o�t��k�t��g�0t��c�5t��_�dt��[�ht��W�xt��S�}t��O�Ґt��K�ЬЬЬ������������Ґt��Єt��w�Ъt��s�Юt��o�u��k�u��g�<u��c�@u��_�^u��[�bu��W�wu��S�{u��O�¤u��K�ЬЬЬ������������¤u��Ёu��w�дu��s�йu��o�v��k�v��g�Lv��c�Mv��_�fv��[�kv��W�v��S�њv��O�ќv��K�ЬЬЬ������������ќv��ўv��w�лv��s�рv��o�Ew��k�Jw��g�…w��c�Љw��_�Ыw��[�бw��W�уw��S�фw��O� x��K�ЬЬЬ������������ x��&x��w�Tx��s�Zx��o�ѓx��k�‰x��g�Ёx��c�®x��_�Мx��[�Нx��W�кx��S�рx��O�-y��K�ЬЬЬ������������-y��3y��w�qy��s�xy��o�ёy��k�їy��g�эy��c�z��_�>z��[�Ez��W�…z��S�Њz��O�»z��K�ЬЬЬ������������»z��Бz��w�{��s�{��o�V{��k�\{��g�{��c�і{��_�ф{��[�ъ{��W�|��S�|��O�6|��K�ЬЬЬ������������6|��<|��w�q|��s�w|��o�Б|��k�З|��g�}��c�}��_�?}��[�@}��W�o}��S�p}��O�}}��K�ЬЬЬ������������}}��ѓ}��w�©}��s�Є}��o�°}��k�±}��g�П}��c�Ц}��_�~��[�~��W�U~��S�[~��O�…~��K�ЬЬЬ������������…~��‹~��w�ґ~��s�»~��o�и~��k�о~��g���c���_�F��[�L��W�e��S�f��O�u��K�ЬЬЬ������������u��y��w�Ћ��s�’��o���k�°��g�Ф��d�й��b�н��^�о��\�Ђ��X� Ђ��V�!Ђ��R�"Ђ��P�7676767������"Ђ��(Ђ��w�3Ђ��s�;Ђ��o�=Ђ��m�SЂ��i�VЂ��g�oЂ��c�qЂ��a�wЂ��]�ѓЂ��Y�‰Ђ��U�ЉЂ��S�ђЂ��O�676�6767676�6ђЂ��њЂ��w�ЈЂ��s�ҐЂ��q�ЅЂ��m�БЂ��k�ЧЂ��g�тЂ��e�ъЂ��a�Ѓ��]�Ѓ��Y�Ѓ��W�%Ѓ��S�)Ѓ��Q�67676�6767676�)Ѓ��?Ѓ��w�AЃ��u�JЃ��q�PЃ��m�YЃ��i�ZЃ��g�aЃ��c�jЃ��_�sЃ��[�uЃ��Y�ЌЃ��U�ђЃ��S�§Ѓ��O�67676�676�676§Ѓ��ВЃ��y�КЃ��u�СЃ��q�ЫЃ��m�ЭЃ��k�дЃ��g�оЃ��c�хЃ��_�шЃ��]�‚��Y�*‚��W�1‚��S�:‚��O��67676�676�67:‚��C‚��w�E‚��u�]‚��q�`‚��o�w‚��k�y‚��i�Ђ‚��e�Љ‚��a�‘‚��]�’‚��[�љ‚��W�ў‚��S�«‚��O�6�676�6767676«‚��Й‚��y�Я‚��u�б‚��q�г‚��n�™„��j�№„��g�»„��c�ж„��_�с„��[�…��W�…��U�I…��Q�J…��O�7�76�6�����67J…��Q…��w�R…��u�l…��q�n…��o�p…��k�z…��g�{…��c�€…��_�‰…��[�’…��W�“…��S�›…��O�J…��O���������7�7�›…��њ…��w�±…��s�І…��q�№…��m�є…��k�Й…��g�Ц…��e�Ш…��a�в…��]�г…��Y�р…��U�с…��Q�J…��O�������7�7�7��с…��щ…��w�ъ…��u�ы…��q�†��m�†��i�†��e�†��c�!†��_�"†��]�.†��Y�>†��W�@†��S�J†��O�6�7�7�7����7�J†��K†��w�X†��s�Y†��o�b†��k�c†��g�k†��e�l†��a�¦†��_�й†��[�к†��Y�с†��U�т†��S�‡��O��7�7�7�7�6�6�‡��‡��y�‰��u�;Џ��q�AЏ��m�Ж—��i�К—��e�Ъ—��a�Э—��]�н—��Y�щ—��V� ��R���N�‡��O�����6��(����7��)��w�E��s�—��q�›��m�њ��k� ��g�¶��e�є��a�Щ��_�Ъ��[�Ю��Y�Я��U�ш��S��7�7�7�7�7�7��ш��щ��w�F™��u�L™��q�P™��o�V™��k�W™��i�`™��e�s™��a�{™��_�}™��[�у™��Y�$љ��U�&љ��S��7�7�7�67�7�7�&љ��'љ��w�(љ��s�8љ��o�9љ��m�:љ��i�;љ��e�Zљ��a�[љ��]�\љ��Y�¦љ��W�Іљ��S�№љ��Q�&љ��S��7�7�����7���№љ��Жљ��w�Лљ��u�Сљ��q�Щљ��o�дљ��k�ељ��i�лљ��e�нљ��c�уљ��_�фљ��]�ыљ��Y�›��W�›��S��7�7�7�7�7�7�7�›��#›��y�/›��u�j›��s�p›��o�}›��m�–›��i�Ф›��g�Ъ›��c�й›��a�ч›��]�ш›��[�ь›��W�њ��U��7�7�7�7�7�7�7�7њ��7њ��w�Щњ��u�дњ��q�Gџ��m�Iџ��i�цџ��e�шџ��a�]Ґ��]�|Ґ��Y�Ё��U�;Ё��Q�DЄ��M�њ��U������(��(��(7�DЄ��фЄ��w�№��s�№��o�9є��k�Fє��g�gј��c�rј��_�sј��[�]ї��W�jї��S�ўВ��O�ЉГ��K�њ��(�����������(ЉГ��^Д��w�vД��s�«Д��o�ЇД��k�ЅД��g�БД��c�ЯД��_�гД��[�Е��W�Е��S�9Е��O�=Е��K�њ��(��(��(��(��(��(�=Е��bЕ��w�fЕ��s�Е��o�њЕ��k�ЄЕ��g�®Е��c�ЪЕ��_�ЮЕ��[�"Ж��W�&Ж��S�UЖ��O�YЖ��K�њ��(��(��(��(��(��(�YЖ��qЖ��w�uЖ��s�·Ж��o�»Ж��k�еЖ��g�йЖ��c�щЖ��_�эЖ��[�З��W�З��S�"З��O�&З��K�њ��(��(��(��(��(��(� 4.3.4. RFC 822 -> X.400 There are two basic cases: 1. X.400 addresses encoded in RFC 822. This will also include RFC 822 addresses which are given reversible encodings. 2. "Genuine" RFC 822 addresses. The mapping shall proceed as follows, by first assuming case 1). STAGE I. 1. If the 822-address is not of the form: local-part "@" domain take the domain which will be routed on and apply step 2 of stage 1 to derive (a possibly null) set of attributes. Then Hardcastle-Kille [Page 41] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 go to stage II. NOTE:It may be appropriate to reduce a source route address to this form by removal of all bar the last domain. In terms of the design intentions of RFC 822, this would be an incorrect action. However, in most real cases, it will do the "right" thing and provide a better service to the end user. This is a reflection on the excessive and inappropriate use of source routing in RFC 822 based systems. Either approach, or the intermediate approach of stripping only domain references which reference the local gateway are conformant to this specification. 2. Attempt to parse EBNF.domain as: *( domain-syntax "." ) known-domain Where EBNF.known-domain is the longest possible match in the set of globally defined mappings (see Appendix F). If this fails, and the EBNF.domain does not explicitly identify the local gateway, go to stage II. If the domain explicitly identifies the gateway, allocate no attributes. Otherwise, allocate the attributes associated with EBNF.known-domain. For each component, systematically allocate the attribute implied by each EBNF.domain-syntax component in the order: C, ADMD, PRMD, O, OU. Note that if the mapping used identifies an "omitted attribute", then this attribute should be omitted in the systematic allocation. If this new component exceed an upper bound (ADMD: 16; PRMD: 16; O: 64; OU: 32) or it would lead to more than four OUs, then go to stage II with the attributes derived. At this stage, a set of attributes has been derived, which will give appropriate routing within X.400. If any of the later steps of Stage I force use of Stage II, then these attributes should be used in Stage II. 3. If the 822.local-part uses the 822.quoted-string encoding, remove this quoting. If this unquoted 822.local-part has leading space, trailing space, or two adjacent space go to stage II. 4. If the unquoted 822.local-part contains any characters not in PrintableString, go to stage II. 5. Parse the (unquoted) 822.local-part according to the EBNF EBNF.std-or-address. Checking of upper bounds should not be Hardcastle-Kille [Page 42] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 done at this point. If this parse fails, parse the local- part according to the EBNF EBNF.encoded-pn. If this parse fails, go to stage II. The result is a set of type/value pairs. If the set of attributes leads to an address of any form other than mnemonic form, then only these attributes should be taken. If (for mnemonic form) the values generated conflict with those derived in step 2 (e.g., a duplicated country attribute), the domain is assumed to be a remote gateway. In this case, take only the LHS derived attributes, together with any RHS dericed attributes which are more significant thant the most signicant attribute which is duplicated (e.g., if there is a duplicate PRMD, but no LHS derived ADMD and country, then the ADMD and country should be taken from the RHS). therwise add LHS and RHS derived attributes together. 6. Associate the EBNF.attribute-value syntax (determined from the identified type) with each value, and check that it conforms. If not, go to stage II. 7. Ensure that the set of attributes conforms both to the MTS.ORAddress specification and to the restrictions on this set given in X.400, and that no upper bounds are exceeded for any attribute. If not go to stage II. 8. Build the O/R Address from this information. STAGE II. This will only be reached if the RFC 822 EBNF.822-address is not a valid X.400 encoding. This implies that the address must refer to a recipient on an RFC 822 system. Such addresses shall be encoded in an X.400 O/R Address using a domain defined attribute. 1. Convert the EBNF.822-address to PrintableString, as specified in Chapter 3. 2. Generate the "RFC-822" domain defined attribute from this string. 3. Build the rest of the O/R Address in the manner described below. It may not be possible to encode the domain defined attribute due to length restrictions. If the limit is exceeded by a mapping at the MTS level, then the gateway shall reject the message in question. If this occurs at the IPMS level, then the action will depend on the policy being taken for IPMS encoding, which is discussed in Section Hardcastle-Kille [Page 43] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 5.1.3. If Stage I has identified a set of attributes, use these to build the remainder of the address. The administrative equivalence of the mappings will ensure correct routing throug X.400 to a gateway back to RFC 822. If Stage I has not identified a set of attributes, the remainder of the O/R address effectively identifies a source route to a gateway from the X.400 side. There are three cases, which are handled differently: 822-MTS Return Address This shall be set up so that errors are returned through the same gateway. Therefore, the O/R Address of the local gateway shall be used. IPMS Addresses These are optimised for replying. In general, the message may end up anywhere within the X.400 world, and so this optimisation identifies a gateway appropriate for the RFC 822 address being converted. The 822.domain to which the address would be routed is used to select an appropriate gateway. A globally defined set of mappings is used, which identifies (the O/R Address components of) appropriate gateways for parts of the domain namespace. The longest possible match on the 822.domain defines which gateway to use. The table format for distribution of this information is defined in Appendix F. This global mapping is used for parts of the RFC 822 namespace which do not have an administrative equivalence with any part of the X.400 namespace, but for which it is desirable to identify a preferred X.400 gateway in order to optimise routing. If no mapping is found for the 822.domain, a default value (typically that of the local gateway) is used. It is never appropriate to ignore the globally defined mappings. In some cases, it may be appropriate to locally override the globally defined mappings (e.g., to identify a gateway close to a recipient of the message). This is likely to be where the global mapping identifies a public gateway, and the local gateway has an agreement with a private gateway which it prefers to use. 822-MTS Recipient As the RFC 822 and X.400 worlds are fully connected, there Hardcastle-Kille [Page 44] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 is no technical reason for this situation to occur. In some cases, routing may be configured to connect two parts of the RFC 822 world using X.400. The information that this part of the domain space should be routed by X.400 rather than remaining within the RFC 822 world will be configured privately into the gateway in question. The O/R address shall then be generated in the same manner as for an IPMS address, using the globally defined mappings. It is to support this case that the definition of the global domain to gateway mapping is important, as the use of this mapping will lead to a remote X.400 address, which can be routed by X.400 routing procedures. The information in this mapping shall not be used as a basis for deciding to convert a message from RFC 822 to X.400. 4.3.4.1. Heuristics for mapping RFC 822 to X.400 RFC 822 users will often use an LHS encoded address to identify an X.400 recipient. Because the syntax is fairly complex, a number of heuristics may be applied to facilitate this form of usage. A gateway should take care not to be overly "clever" with heuristics, as this may cause more confusion than a more mechanical approach. The heuristics are as follows: 1. Ignore the omission of a trailing "/" in the std-or syntax. 2. If there is no ADMD component, and both country and PRMD are present, the value of /ADMD= / (single space) is assumed. 3. Parse the unquoted local part according to the EBNF colon- or-address. This may facilitate users used to this delimiter. colon-or-address = 1*(attribute "=" value ";" *(LWSP-char)) The remaining heuristic relates to ordering of address components. The ordering of attributes may be inverted or mixed. For this reason, the following heuristics may be applied: 4. If there is an Organisation attribute to the left of any Org Unit attribute, assume that the hierarchy is inverted. 4.3.5. X.400 -> RFC 822 There are two basic cases: 1. RFC 822 addresses encoded in X.400. Hardcastle-Kille [Page 45] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 2. "Genuine" X.400 addresses. This may include symmetrically encoded RFC 822 addresses. When a MTS Recipient O/R Address is interpreted, gatewaying will be selected if there is a single "RFC-822" domain defined attribute present and the local gateway is identified by the remainder of the O/R Address. In this case, use mapping A. For other O/R Addresses which 1. Contain the special attribute. AND 2. Identifies the local gateway or any other known gateway with the other attributes. use mapping A. In other cases, use mapping B. NOTE: A pragmatic approach would be to assume that any O/R Address with the special domain defined attribute identifies an RFC 822 address. This will usually work correctly, but is in principle not correct. Use of this approach is conformant to this specification. Mapping A 1. Map the domain defined attribute value to ASCII, as defined in Chapter 3. Mapping B This is used for X.400 addresses which do not use the explicit RFC 822 encoding. 1. For all string encoded attributes, remove any leading or trailing spaces, and replace adjacent spaces with a single space. The only attribute which is permitted to have zero length is the ADMD. This should be mapped onto a single space. These transformations are for lookup only. If an EBNF.std-or-address mapping is used as in 4), then the orginal values should be used. 2. Map numeric country codes to the two letter values. Hardcastle-Kille [Page 46] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 3. Noting the hierarchy specified in 4.3.1 and including omitted attributes, determine the maximum set of attributes which have an associated domain specification in the globally defined mapping. If no match is found, allocate the domain as the domain specification of the local gateway, and go to step 5. Note: It might be appropriate to use a non-local domain. This would be selected by a global mapping analagous to the one described at the end of 4.3.4. This is not done, primarily because use of RFC 822 to connect X.400 systems is not expected to be significant. In cases where the address refers to an X.400 UA, it is important that the generated domain will correctly route to a gateway. In general, this is achieved by carefully co- ordinating RFC 822 routing with the definition of the global mappings, as there is no easy way for the gateway to make this check. One rule that shall be used is that domains with only one component will not route to a gateway. If the generated domain does not route correctly, the address is treated as if no match is found. 4. The mapping identified in 3) gives a domain, and an O/R address prefix. Follow the hierarchy: C, ADMD, PRMD, O, OU. For each successive component below the O/R address prefix, which conforms to the syntax EBNF.domain-syntax (as defined in 4.3.1), allocate the next subdomain. At least one attribute of the X.400 address shall not be mapped onto subdomain, as 822.local-part cannot be null. If there are omitted attributes in the O/R address prefix, these will have correctly and uniquely mapped to a domain component. Where there is an attribute omitted below the prefix, all attributes remaining in the O/R address shall be encoded on the LHS. This is to ensure a reversible mapping. For example, if the is an addres /S=XX/O=YY/ADMD=A/C=NN/ and a mapping for /ADMD=A/C=NN/ is used, then /S=XX/O=YY/ is encoded on the LHS. 5. If the address is not mnemonic form (form 1 variant 1), then all of the attributes in the address should be encoded on the LHS in EBNF.std-or-address syntax, as described below. For addresses of mnemonic form, if the remaining components are personal-name components, conforming to the restrictions of 4.2.1, then EBNF.encoded-pn is derived to form 822.local-part. In other cases the remaining components are Hardcastle-Kille [Page 47] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 simply encoded as 822.local-part using the EBNF.std-or-address syntax. If necessary, the 822.quoted-string encoding is used. The following are examples of legal quoting: "a b".c@x; "a b.c"@x. Either form may be generated, but the latter is preferred. If the derived 822.local-part can only be encoded by use of 822.quoted-string, then use of the mapping defined in [Kille89b] may be appropriate. Use of this mapping is discouraged. 4.4. Repeated Mappings There are two types of repeated mapping: 1. A recursive mapping, where the repeat is within one gateway 2 A source route, where the repetition occurs across multiple gateways 4.4.1. Recursive Mappings It is possible to supply an address which is recurive at a single gateway. For example: C = "XX" ADMD = "YY" O = "ZZ" "RFC-822" = "Smith(a)ZZ.YY.XX" This is mapped first to an RFC 822 address, and then back to the X.400 address: C = "XX" ADMD = "YY" O = "ZZ" Surname = "Smith" In some situations this type of recursion may be frequent. It is important that where this occurs, that no unnecessary protocol conversion occurs. This will minimise loss of service. 4.4.2. Source Routes The mappings defined are symmetrical and reversible across a single gateway. The symmetry is particularly useful in cases of (mail exploder type) distribution list expansion. For example, an X.400 user sends to a list on an RFC 822 system which he belongs to. The Hardcastle-Kille [Page 48] RFC 1327 Mapping between X.400(1988) and RFC 822 May 1992 received message will have the originator and any 3rd party X.400 O/R Addresses in correct format (rather than doubly encoded). In cases (X.400 or RFC 822) where there is common agreement on gateway identification, the