Network Working Group S. Kent Request for Comments: 4301 K. Seo Obsoletes: 2401 BBN Technologies Category: Standards Track December 2005 Security Architecture for the Internet Protocol Status of This Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited. Copyright Notice Copyright (C) The Internet Society (2005). Abstract This document describes an updated version of the "Security Architecture for IP", which is designed to provide security services for traffic at the IP layer. This document obsoletes RFC 2401 (November 1998). Dedication This document is dedicated to the memory of Charlie Lynn, a long-time senior colleague at BBN, who made very significant contributions to the IPsec documents. Kent & Seo Standards Track [Page 1] RFC 4301 Security Architecture for IP December 2005 Table of Contents 1. Introduction ....................................................4 1.1. Summary of Contents of Document ............................4 1.2. Audience ...................................................4 1.3. Related Documents ..........................................5 2. Design Objectives ...............................................5 2.1. Goals/Objectives/Requirements/Problem Description ..........5 2.2. Caveats and Assumptions ....................................6 3. System Overview .................................................7 3.1. What IPsec Does ............................................7 3.2. How IPsec Works ............................................9 3.3. Where IPsec Can Be Implemented ............................10 4. Security Associations ..........................................11 4.1. Definition and Scope ......................................12 4.2. SA Functionality ..........................................16 4.3. Combining SAs .............................................17 4.4. Major IPsec Databases .....................................18 4.4.1. The Security Policy Database (SPD) .................19 4.4.1.1. Selectors .................................26 4.4.1.2. Structure of an SPD Entry .................30 4.4.1.3. More Regarding Fields Associated with Next Layer Protocols .................32 4.4.2. Security Association Database (SAD) ................34 4.4.2.1. Data Items in the SAD .....................36 4.4.2.2. Relationship between SPD, PFP flag, packet, and SAD .....................38 4.4.3. Peer Authorization Database (PAD) ..................43 4.4.3.1. PAD Entry IDs and Matching Rules ..........44 4.4.3.2. IKE Peer Authentication Data ..............45 4.4.3.3. Child SA Authorization Data ...............46 4.4.3.4. How the PAD Is Used .......................46 4.5. SA and Key Management .....................................47 4.5.1. Manual Techniques ..................................48 4.5.2. Automated SA and Key Management ....................48 4.5.3. Locating a Security Gateway ........................49 4.6. SAs and Multicast .........................................50 5. IP Traffic Processing ..........................................50 5.1. Outbound IP Traffic Processing (protected-to-unprotected) ................................52 5.1.1. Handling an Outbound Packet That Must Be Discarded ..........................................54 5.1.2. Header Construction for Tunnel Mode ................55 5.1.2.1. IPv4: Header Construction for Tunnel Mode ...............................57 5.1.2.2. IPv6: Header Construction for Tunnel Mode ...............................59 5.2. Processing Inbound IP Traffic (unprotected-to-protected) ..59 Kent & Seo Standards Track [Page 2] RFC 4301 Security Architecture for IP December 2005 6. ICMP Processing ................................................63 6.1. Processing ICMP Error Messages Directed to an IPsec Implementation ......................................63 6.1.1. ICMP Error Messages Received on the Unprotected Side of the Boundary ...................63 6.1.2. ICMP Error Messages Received on the Protected Side of the Boundary .....................64 6.2. Processing Protected, Transit ICMP Error Messages .........64 7. Handling Fragments (on the protected side of the IPsec boundary) ......................................................66 7.1. Tunnel Mode SAs that Carry Initial and Non-Initial Fragments .................................................67 7.2. Separate Tunnel Mode SAs for Non-Initial Fragments ........67 7.3. Stateful Fragment Checking ................................68 7.4. BYPASS/DISCARD Traffic ....................................69 8. Path MTU/DF Processing .........................................69 8.1. DF Bit ....................................................69 8.2. Path MTU (PMTU) Discovery .................................70 8.2.1. Propagation of PMTU ................................70 8.2.2. PMTU Aging .........................................71 9. Auditing .......................................................71 10. Conformance Requirements ......................................71 11. Security Considerations .......................................72 12. IANA Considerations ...........................................72 13. Differences from RFC 2401 .....................................72 14. Acknowledgements ..............................................75 Appendix A: Glossary ..............................................76 Appendix B: Decorrelation .........................................79 B.1. Decorrelation Algorithm ...................................79 Appendix C: ASN.1 for an SPD Entry ................................82 Appendix D: Fragment Handling Rationale ...........................88 D.1. Transport Mode and Fragments ..............................88 D.2. Tunnel Mode and Fragments .................................89 D.3. The Problem of Non-Initial Fragments ......................90 D.4. BYPASS/DISCARD Traffic ....................................93 D.5. Just say no to ports? .....................................94 D.6. Other Suggested Solutions..................................94 D.7. Consistency................................................95 D.8. Conclusions................................................95 Appendix E: Example of Supporting Nested SAs via SPD and Forwarding Table Entries...............................96 References.........................................................98 Normative References............................................98 Informative References..........................................99 Kent & Seo Standards Track [Page 3] RFC 4301 Security Architecture for IP December 2005 1. Introduction 1.1. Summary of Contents of Document This document specifies the base architecture for IPsec-compliant systems. It describes how to provide a set of security services for traffic at the IP layer, in both the IPv4 [Pos81a] and IPv6 [DH98] environments. This document describes the requirements for systems that implement IPsec, the fundamental elements of such systems, and how the elements fit together and fit into the IP environment. It also describes the security services offered by the IPsec protocols, and how these services can be employed in the IP environment. This document does not address all aspects of the IPsec architecture. Other documents address additional architectural details in specialized environments, e.g., use of IPsec in Network Address Translation (NAT) environments and more comprehensive support for IP multicast. The fundamental components of the IPsec security architecture are discussed in terms of their underlying, required functionality. Additional RFCs (see Section 1.3 for pointers to other documents) define the protocols in (a), (c), and (d). a. Security Protocols -- Authentication Header (AH) and Encapsulating Security Payload (ESP) b. Security Associations -- what they are and how they work, how they are managed, associated processing c. Key Management -- manual and automated (The Internet Key Exchange (IKE)) d. Cryptographic algorithms for authentication and encryption This document is not a Security Architecture for the Internet; it addresses security only at the IP layer, provided through the use of a combination of cryptographic and protocol security mechanisms. The spelling "IPsec" is preferred and used throughout this and all related IPsec standards. All other capitalizations of IPsec (e.g., IPSEC, IPSec, ipsec) are deprecated. However, any capitalization of the sequence of letters "IPsec" should be understood to refer to the IPsec protocols. The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be interpreted as described in RFC 2119 [Bra97]. 1.2. Audience The target audience for this document is primarily individuals who implement this IP security technology or who architect systems that will use this technology. Technically adept users of this technology Kent & Seo Standards Track [Page 4] RFC 4301 Security Architecture for IP December 2005 (end users or system administrators) also are part of the target audience. A glossary is provided in Appendix A to help fill in gaps in background/vocabulary. This document assumes that the reader is familiar with the Internet Protocol (IP), related networking technology, and general information system security terms and concepts. 1.3. Related Documents As mentioned above, other documents provide detailed definitions of some of the components of IPsec and of their interrelationship. They include RFCs on the following topics: a. security protocols -- RFCs describing the Authentication Header (AH) [Ken05b] and Encapsulating Security Payload (ESP) [Ken05a] protocols. b. cryptographic algorithms for integrity and encryption -- one RFC that defines the mandatory, default algorithms for use with AH and ESP [Eas05], a similar RFC that defines the mandatory algorithms for use with IKEv2 [Sch05] plus a separate RFC for each cryptographic algorithm. c. automatic key management -- RFCs on "The Internet Key Exchange (IKEv2) Protocol" [Kau05] and "Cryptographic Algorithms for Use in the Internet Key Exchange Version 2 (IKEv2)" [Sch05]. 2. Design Objectives 2.1. Goals/Objectives/Requirements/Problem Description IPsec is designed to provide interoperable, high quality, cryptographically-based security for IPv4 and IPv6. The set of security services offered includes access control, connectionless integrity, data origin authentication, detection and rejection of replays (a form of partial sequence integrity), confidentiality (via encryption), and limited traffic flow confidentiality. These services are provided at the IP layer, offering protection in a standard fashion for all protocols that may be carried over IP (including IP itself). IPsec includes a specification for minimal firewall functionality, since that is an essential aspect of access control at the IP layer. Implementations are free to provide more sophisticated firewall mechanisms, and to implement the IPsec-mandated functionality using those more sophisticated mechanisms. (Note that interoperability may suffer if additional firewall constraints on traffic flows are imposed by an IPsec implementation but cannot be negotiated based on the traffic selector features defined in this document and negotiated Kent & Seo Standards Track [Page 5] RFC 4301 Security Architecture for IP December 2005 via IKEv2.) The IPsec firewall function makes use of the cryptographically-enforced authentication and integrity provided for all IPsec traffic to offer better access control than could be obtained through use of a firewall (one not privy to IPsec internal parameters) plus separate cryptographic protection. Most of the security services are provided through use of two traffic security protocols, the Authentication Header (AH) and the Encapsulating Security Payload (ESP), and through the use of cryptographic key management procedures and protocols. The set of IPsec protocols employed in a context, and the ways in which they are employed, will be determined by the users/administrators in that context. It is the goal of the IPsec architecture to ensure that compliant implementations include the services and management interfaces needed to meet the security requirements of a broad user population. When IPsec is correctly implemented and deployed, it ought not adversely affect users, hosts, and other Internet components that do not employ IPsec for traffic protection. IPsec security protocols (AH and ESP, and to a lesser extent, IKE) are designed to be cryptographic algorithm independent. This modularity permits selection of different sets of cryptographic algorithms as appropriate, without affecting the other parts of the implementation. For example, different user communities may select different sets of cryptographic algorithms (creating cryptographically-enforced cliques) if required. To facilitate interoperability in the global Internet, a set of default cryptographic algorithms for use with AH and ESP is specified in [Eas05] and a set of mandatory-to-implement algorithms for IKEv2 is specified in [Sch05]. [Eas05] and [Sch05] will be periodically updated to keep pace with computational and cryptologic advances. By specifying these algorithms in documents that are separate from the AH, ESP, and IKEv2 specifications, these algorithms can be updated or replaced without affecting the standardization progress of the rest of the IPsec document suite. The use of these cryptographic algorithms, in conjunction with IPsec traffic protection and key management protocols, is intended to permit system and application developers to deploy high quality, Internet-layer, cryptographic security technology. 2.2. Caveats and Assumptions The suite of IPsec protocols and associated default cryptographic algorithms are designed to provide high quality security for Internet traffic. However, the security offered by use of these protocols ultimately depends on the quality of their implementation, which is Kent & Seo Standards Track [Page 6] RFC 4301 Security Architecture for IP December 2005 outside the scope of this set of standards. Moreover, the security of a computer system or network is a function of many factors, including personnel, physical, procedural, compromising emanations, and computer security practices. Thus, IPsec is only one part of an overall system security architecture. Finally, the security afforded by the use of IPsec is critically dependent on many aspects of the operating environment in which the IPsec implementation executes. For example, defects in OS security, poor quality of random number sources, sloppy system management protocols and practices, etc., can all degrade the security provided by IPsec. As above, none of these environmental attributes are within the scope of this or other IPsec standards. 3. System Overview This section provides a high level description of how IPsec works, the components of the system, and how they fit together to provide the security services noted above. The goal of this description is to enable the reader to "picture" the overall process/system, see how it fits into the IP environment, and to provide context for later sections of this document, which describe each of the components in more detail. An IPsec implementation operates in a host, as a security gateway (SG), or as an independent device, affording protection to IP traffic. (A security gateway is an intermediate system implementing IPsec, e.g., a firewall or router that has been IPsec-enabled.) More detail on these classes of implementations is provided later, in Section 3.3. The protection offered by IPsec is based on requirements defined by a Security Policy Database (SPD) established and maintained by a user or system administrator, or by an application operating within constraints established by either of the above. In general, packets are selected for one of three processing actions based on IP and next layer header information ("Selectors", Section 4.4.1.1) matched against entries in the SPD. Each packet is either PROTECTed using IPsec security services, DISCARDed, or allowed to BYPASS IPsec protection, based on the applicable SPD policies identified by the Selectors. 3.1. What IPsec Does IPsec creates a boundary between unprotected and protected interfaces, for a host or a network (see Figure 1 below). Traffic traversing the boundary is subject to the access controls specified by the user or administrator responsible for the IPsec configuration. These controls indicate whether packets cross the boundary unimpeded, are afforded security services via AH or ESP, or are discarded. Kent & Seo Standards Track [Page 7] RFC 4301 Security Architecture for IP December 2005 IPsec security services are offered at the IP layer through selection of appropriate security protocols, cryptographic algorithms, and cryptographic keys. IPsec can be used to protect one or more "paths" (a) between a pair of hosts, (b) between a pair of security gateways, or (c) between a security gateway and a host. A compliant host implementation MUST support (a) and (c) and a compliant security gateway must support all three of these forms of connectivity, since under certain circumstances a security gateway acts as a host. Unprotected ^ ^ | | +-------------|-------|-------+ | +-------+ | | | | |Discard|<--| V | | +-------+ |B +--------+ | ................|y..| AH/ESP |..... IPsec Boundary | +---+ |p +--------+ | | |IKE|<----|a ^ | | +---+ |s | | | +-------+ |s | | | |Discard|<--| | | | +-------+ | | | +-------------|-------|-------+ | | V V Protected Figure 1. Top Level IPsec Processing Model In this diagram, "unprotected" refers to an interface that might also be described as "black" or "ciphertext". Here, "protected" refers to an interface that might also be described as "red" or "plaintext". The protected interface noted above may be internal, e.g., in a host implementation of IPsec, the protected interface may link to a socket layer interface presented by the OS. In this document, the term "inbound" refers to traffic entering an IPsec implementation via the unprotected interface or emitted by the implementation on the unprotected side of the boundary and directed towards the protected interface. The term "outbound" refers to traffic entering the implementation via the protected interface, or emitted by the implementation on the protected side of the boundary and directed toward the unprotected interface. An IPsec implementation may support more than one interface on either or both sides of the boundary. Kent & Seo Standards Track [Page 8] RFC 4301 Security Architecture for IP December 2005 Note the facilities for discarding traffic on either side of the IPsec boundary, the BYPASS facility that allows traffic to transit the boundary without cryptographic protection, and the reference to IKE as a protected-side key and security management function. IPsec optionally supports negotiation of IP compression [SMPT01], motivated in part by the observation that when encryption is employed within IPsec, it prevents effective compression by lower protocol layers. 3.2. How IPsec Works IPsec uses two protocols to provide traffic security services -- Authentication Header (AH) and Encapsulating Security Payload (ESP). Both protocols are described in detail in their respective RFCs [Ken05b, Ken05a]. IPsec implementations MUST support ESP and MAY support AH. (Support for AH has been downgraded to MAY because experience has shown that there are very few contexts in which ESP cannot provide the requisite security services. Note that ESP can be used to provide only integrity, without confidentiality, making it comparable to AH in most contexts.) o The IP Authentication Header (AH) [Ken05b] offers integrity and data origin authentication, with optional (at the discretion of the receiver) anti-replay features. o The Encapsulating Security Payload (ESP) protocol [Ken05a] offers the same set of services, and also offers confidentiality. Use of ESP to provide confidentiality without integrity is NOT RECOMMENDED. When ESP is used with confidentiality enabled, there are provisions for limited traffic flow confidentiality, i.e., provisions for concealing packet length, and for facilitating efficient generation and discard of dummy packets. This capability is likely to be effective primarily in virtual private network (VPN) and overlay network contexts. o Both AH and ESP offer access control, enforced through the distribution of cryptographic keys and the management of traffic flows as dictated by the Security Policy Database (SPD, Section 4.4.1). These protocols may be applied individually or in combination with each other to provide IPv4 and IPv6 security services. However, most security requirements can be met through the use of ESP by itself. Each protocol supports two modes of use: transport mode and tunnel mode. In transport mode, AH and ESP provide protection primarily for Kent & Seo Standards Track [Page 9] RFC 4301 Security Architecture for IP December 2005 next layer protocols; in tunnel mode, AH and ESP are applied to tunneled IP packets. The differences between the two modes are discussed in Section 4.1. IPsec allows the user (or system administrator) to control the granularity at which a security service is offered. For example, one can create a single encrypted tunnel to carry all the traffic between two security gateways, or a separate encrypted tunnel can be created for each TCP connection between each pair of hosts communicating across these gateways. IPsec, through the SPD management paradigm, incorporates facilities for specifying: o which security protocol (AH or ESP) to employ, the mode (transport or tunnel), security service options, what cryptographic algorithms to use, and in what combinations to use the specified protocols and services, and o the granularity at which protection should be applied. Because most of the security services provided by IPsec require the use of cryptographic keys, IPsec relies on a separate set of mechanisms for putting these keys in place. This document requires support for both manual and automated distribution of keys. It specifies a specific public-key based approach (IKEv2 [Kau05]) for automated key management, but other automated key distribution techniques MAY be used. Note: This document mandates support for several features for which support is available in IKEv2 but not in IKEv1, e.g., negotiation of an SA representing ranges of local and remote ports or negotiation of multiple SAs with the same selectors. Therefore, this document assumes use of IKEv2 or a key and security association management system with comparable features. 3.3. Where IPsec Can Be Implemented There are many ways in which IPsec may be implemented in a host, or in conjunction with a router or firewall to create a security gateway, or as an independent security device. a. IPsec may be integrated into the native IP stack. This requires access to the IP source code and is applicable to both hosts and security gateways, although native host implementations benefit the most from this strategy, as explained later (Section 4.4.1, paragraph 6; Section 4.4.1.1, last paragraph). Kent & Seo Standards Track [Page 10] RFC 4301 Security Architecture for IP December 2005 b. In a "bump-in-the-stack" (BITS) implementation, IPsec is implemented "underneath" an existing implementation of an IP protocol stack, between the native IP and the local network drivers. Source code access for the IP stack is not required in this context, making this implementation approach appropriate for use with legacy systems. This approach, when it is adopted, is usually employed in hosts. c. The use of a dedicated, inline security protocol processor is a common design feature of systems used by the military, and of some commercial systems as well. It is sometimes referred to as a "bump-in-the-wire" (BITW) implementation. Such implementations may be designed to serve either a host or a gateway. Usually, the BITW device is itself IP addressable. When supporting a single host, it may be quite analogous to a BITS implementation, but in supporting a router or firewall, it must operate like a security gateway. This document often talks in terms of use of IPsec by a host or a security gateway, without regard to whether the implementation is native, BITS, or BITW. When the distinctions among these implementation options are significant, the document makes reference to specific implementation approaches. A host implementation of IPsec may appear in devices that might not be viewed as "hosts". For example, a router might employ IPsec to protect routing protocols (e.g., BGP) and management functions (e.g., Telnet), without affecting subscriber traffic traversing the router. A security gateway might employ separate IPsec implementations to protect its management traffic and subscriber traffic. The architecture described in this document is very flexible. For example, a computer with a full-featured, compliant, native OS IPsec implementation should be capable of being configured to protect resident (host) applications and to provide security gateway protection for traffic traversing the computer. Such configuration would make use of the forwarding tables and the SPD selection function described in Sections 5.1 and 5.2. 4. Security Associations This section defines Security Association management requirements for all IPv6 implementations and for those IPv4 implementations that implement AH, ESP, or both AH and ESP. The concept of a "Security Association" (SA) is fundamental to IPsec. Both AH and ESP make use of SAs, and a major function of IKE is the establishment and maintenance of SAs. All implementations of AH or ESP MUST support the concept of an SA as described below. The remainder of this Kent & Seo Standards Track [Page 11] RFC 4301 Security Architecture for IP December 2005 section describes various aspects of SA management, defining required characteristics for SA policy management and SA management techniques. 4.1. Definition and Scope An SA is a simplex "connection" that affords security services to the traffic carried by it. Security services are afforded to an SA by the use of AH, or ESP, but not both. If both AH and ESP protection are applied to a traffic stream, then two SAs must be created and coordinated to effect protection through iterated application of the security protocols. To secure typical, bi-directional communication between two IPsec-enabled systems, a pair of SAs (one in each direction) is required. IKE explicitly creates SA pairs in recognition of this common usage requirement. For an SA used to carry unicast traffic, the Security Parameters Index (SPI) by itself suffices to specify an SA. (For information on the SPI, see Appendix A and the AH and ESP specifications [Ken05b, Ken05a].) However, as a local matter, an implementation may choose to use the SPI in conjunction with the IPsec protocol type (AH or ESP) for SA identification. If an IPsec implementation supports multicast, then it MUST support multicast SAs using the algorithm below for mapping inbound IPsec datagrams to SAs. Implementations that support only unicast traffic need not implement this de- multiplexing algorithm. In many secure multicast architectures, e.g., [RFC3740], a central Group Controller/Key Server unilaterally assigns the Group Security Association's (GSA's) SPI. This SPI assignment is not negotiated or coordinated with the key management (e.g., IKE) subsystems that reside in the individual end systems that constitute the group. Consequently, it is possible that a GSA and a unicast SA can simultaneously use the same SPI. A multicast-capable IPsec implementation MUST correctly de-multiplex inbound traffic even in the context of SPI collisions. Each entry in the SA Database (SAD) (Section 4.4.2) must indicate whether the SA lookup makes use of the destination IP address, or the destination and source IP addresses, in addition to the SPI. For multicast SAs, the protocol field is not employed for SA lookups. For each inbound, IPsec-protected packet, an implementation must conduct its search of the SAD such that it finds the entry that matches the "longest" SA identifier. In this context, if two or more SAD entries match based on the SPI value, then the entry that also matches based on destination address, or destination and source address (as indicated in the SAD entry) is the "longest" match. This implies a logical ordering of the SAD search as follows: Kent & Seo Standards Track [Page 12] RFC 4301 Security Architecture for IP December 2005 1. Search the SAD for a match on the combination of SPI, destination address, and source address. If an SAD entry matches, then process the inbound packet with that matching SAD entry. Otherwise, proceed to step 2. 2. Search the SAD for a match on both SPI and destination address. If the SAD entry matches, then process the inbound packet with that matching SAD entry. Otherwise, proceed to step 3. 3. Search the SAD for a match on only SPI if the receiver has chosen to maintain a single SPI space for AH and ESP, and on both SPI and protocol, otherwise. If an SAD entry matches, then process the inbound packet with that matching SAD entry. Otherwise, discard the packet and log an auditable event. In practice, an implementation may choose any method (or none at all) to accelerate this search, although its externally visible behavior MUST be functionally equivalent to having searched the SAD in the above order. For example, a software-based implementation could index into a hash table by the SPI. The SAD entries in each hash table bucket's linked list could be kept sorted to have those SAD entries with the longest SA identifiers first in that linked list. Those SAD entries having the shortest SA identifiers could be sorted so that they are the last entries in the linked list. A hardware-based implementation may be able to effect the longest match search intrinsically, using commonly available Ternary Content-Addressable Memory (TCAM) features. The indication of whether source and destination address matching is required to map inbound IPsec traffic to SAs MUST be set either as a side effect of manual SA configuration or via negotiation using an SA management protocol, e.g., IKE or Group Domain of Interpretation (GDOI) [RFC3547]. Typically, Source-Specific Multicast (SSM) [HC03] groups use a 3-tuple SA identifier composed of an SPI, a destination multicast address, and source address. An Any-Source Multicast group SA requires only an SPI and a destination multicast address as an identifier. If different classes of traffic (distinguished by Differentiated Services Code Point (DSCP) bits [NiBlBaBL98], [Gro02]) are sent on the same SA, and if the receiver is employing the optional anti-replay feature available in both AH and ESP, this could result in inappropriate discarding of lower priority packets due to the windowing mechanism used by this feature. Therefore, a sender SHOULD put traffic of different classes, but with the same selector values, on different SAs to support Quality of Service (QoS) appropriately. To permit this, the IPsec implementation MUST permit establishment and maintenance of multiple SAs between a given sender and receiver, Kent & Seo Standards Track [Page 13] RFC 4301 Security Architecture for IP December 2005 with the same selectors. Distribution of traffic among these parallel SAs to support QoS is locally determined by the sender and is not negotiated by IKE. The receiver MUST process the packets from the different SAs without prejudice. These requirements apply to both transport and tunnel mode SAs. In the case of tunnel mode SAs, the DSCP values in question appear in the inner IP header. In transport mode, the DSCP value might change en route, but this should not cause problems with respect to IPsec processing since the value is not employed for SA selection and MUST NOT be checked as part of SA/packet validation. However, if significant re-ordering of packets occurs in an SA, e.g., as a result of changes to DSCP values en route, this may trigger packet discarding by a receiver due to application of the anti-replay mechanism. DISCUSSION: Although the DSCP [NiBlBaBL98, Gro02] and Explicit Congestion Notification (ECN) [RaFlBl01] fields are not "selectors", as that term in used in this architecture, the sender will need a mechanism to direct packets with a given (set of) DSCP values to the appropriate SA. This mechanism might be termed a "classifier". As noted above, two types of SAs are defined: transport mode and tunnel mode. IKE creates pairs of SAs, so for simplicity, we choose to require that both SAs in a pair be of the same mode, transport or tunnel. A transport mode SA is an SA typically employed between a pair of hosts to provide end-to-end security services. When security is desired between two intermediate systems along a path (vs. end-to-end use of IPsec), transport mode MAY be used between security gateways or between a security gateway and a host. In the case where transport mode is used between security gateways or between a security gateway and a host, transport mode may be used to support in-IP tunneling (e.g., IP-in-IP [Per96] or Generic Routing Encapsulation (GRE) tunneling [FaLiHaMeTr00] or dynamic routing [ToEgWa04]) over transport mode SAs. To clarify, the use of transport mode by an intermediate system (e.g., a security gateway) is permitted only when applied to packets whose source address (for outbound packets) or destination address (for inbound packets) is an address belonging to the intermediate system itself. The access control functions that are an important part of IPsec are significantly limited in this context, as they cannot be applied to the end-to-end headers of the packets that traverse a transport mode SA used in this fashion. Thus, this way of using transport mode should be evaluated carefully before being employed in a specific context. Kent & Seo Standards Track [Page 14] RFC 4301 Security Architecture for IP December 2005 In IPv4, a transport mode security protocol header appears immediately after the IP header and any options, and before any next layer protocols (e.g., TCP or UDP). In IPv6, the security protocol header appears after the base IP header and selected extension headers, but may appear before or after destination options; it MUST appear before next layer protocols (e.g., TCP, UDP, Stream Control Transmission Protocol (SCTP)). In the case of ESP, a transport mode SA provides security services only for these next layer protocols, not for the IP header or any extension headers preceding the ESP header. In the case of AH, the protection is also extended to selected portions of the IP header preceding it, selected portions of extension headers, and selected options (contained in the IPv4 header, IPv6 Hop-by-Hop extension header, or IPv6 Destination extension headers). For more details on the coverage afforded by AH, see the AH specification [Ken05b]. A tunnel mode SA is essentially an SA applied to an IP tunnel, with the access controls applied to the headers of the traffic inside the tunnel. Two hosts MAY establish a tunnel mode SA between themselves. Aside from the two exceptions below, whenever either end of a security association is a security gateway, the SA MUST be tunnel mode. Thus, an SA between two security gateways is typically a tunnel mode SA, as is an SA between a host and a security gateway. The two exceptions are as follows. o Where traffic is destined for a security gateway, e.g., Simple Network Management Protocol (SNMP) commands, the security gateway is acting as a host and transport mode is allowed. In this case, the SA terminates at a host (management) function within a security gateway and thus merits different treatment. o As noted above, security gateways MAY support a transport mode SA to provide security for IP traffic between two intermediate systems along a path, e.g., between a host and a security gateway or between two security gateways. Several concerns motivate the use of tunnel mode for an SA involving a security gateway. For example, if there are multiple paths (e.g., via different security gateways) to the same destination behind a security gateway, it is important that an IPsec packet be sent to the security gateway with which the SA was negotiated. Similarly, a packet that might be fragmented en route must have all the fragments delivered to the same IPsec instance for reassembly prior to cryptographic processing. Also, when a fragment is processed by IPsec and transmitted, then fragmented en route, it is critical that there be inner and outer headers to retain the fragmentation state data for the pre- and post-IPsec packet formats. Hence there are several reasons for employing tunnel mode when either end of an SA is Kent & Seo Standards Track [Page 15] RFC 4301 Security Architecture for IP December 2005 a security gateway. (Use of an IP-in-IP tunnel in conjunction with transport mode can also address these fragmentation issues. However, this configuration limits the ability of IPsec to enforce access control policies on traffic.) Note: AH and ESP cannot be applied using transport mode to IPv4 packets that are fragments. Only tunnel mode can be employed in such cases. For IPv6, it would be feasible to carry a plaintext fragment on a transport mode SA; however, for simplicity, this restriction also applies to IPv6 packets. See Section 7 for more details on handling plaintext fragments on the protected side of the IPsec barrier. For a tunnel mode SA, there is an "outer" IP header that specifies the IPsec processing source and destination, plus an "inner" IP header that specifies the (apparently) ultimate source and destination for the packet. The security protocol header appears after the outer IP header, and before the inner IP header. If AH is employed in tunnel mode, portions of the outer IP header are afforded protection (as above), as well as all of the tunneled IP packet (i.e., all of the inner IP header is protected, as well as next layer protocols). If ESP is employed, the protection is afforded only to the tunneled packet, not to the outer header. In summary, a) A host implementation of IPsec MUST support both transport and tunnel mode. This is true for native, BITS, and BITW implementations for hosts. b) A security gateway MUST support tunnel mode and MAY support transport mode. If it supports transport mode, that should be used only when the security gateway is acting as a host, e.g., for network management, or to provide security between two intermediate systems along a path. 4.2. SA Functionality The set of security services offered by an SA depends on the security protocol selected, the SA mode, the endpoints of the SA, and the election of optional services within the protocol. For example, both AH and ESP offer integrity and authentication services, but the coverage differs for each protocol and differs for transport vs. tunnel mode. If the integrity of an IPv4 option or IPv6 extension header must be protected en route between sender and receiver, AH can provide this service, except for IP or extension headers that may change in a fashion not predictable by the sender. Kent & Seo Standards Track [Page 16] RFC 4301 Security Architecture for IP December 2005 However, the same security may be achieved in some contexts by applying ESP to a tunnel carrying a packet. The granularity of access control provided is determined by the choice of the selectors that define each SA. Moreover, the authentication means employed by IPsec peers, e.g., during creation of an IKE (vs. child) SA also affects the granularity of the access control afforded. If confidentiality is selected, then an ESP (tunnel mode) SA between two security gateways can offer partial traffic flow confidentiality. The use of tunnel mode allows the inner IP headers to be encrypted, concealing the identities of the (ultimate) traffic source and destination. Moreover, ESP payload padding also can be invoked to hide the size of the packets, further concealing the external characteristics of the traffic. Similar traffic flow confidentiality services may be offered when a mobile user is assigned a dynamic IP address in a dialup context, and establishes a (tunnel mode) ESP SA to a corporate firewall (acting as a security gateway). Note that fine-granularity SAs generally are more vulnerable to traffic analysis than coarse-granularity ones that are carrying traffic from many subscribers. Note: A compliant implementation MUST NOT allow instantiation of an ESP SA that employs both NULL encryption and no integrity algorithm. An attempt to negotiate such an SA is an auditable event by both initiator and responder. The audit log entry for this event SHOULD include the current date/time, local IKE IP address, and remote IKE IP address. The initiator SHOULD record the relevant SPD entry. 4.3. Combining SAs This document does not require support for nested security associations or for what RFC 2401 [RFC2401] called "SA bundles". These features still can be effected by appropriate configuration of both the SPD and the local forwarding functions (for inbound and outbound traffic), but this capability is outside of the IPsec module and thus the scope of this specification. As a result, management of nested/bundled SAs is potentially more complex and less assured than under the model implied by RFC 2401 [RFC2401]. An implementation that provides support for nested SAs SHOULD provide a management interface that enables a user or administrator to express the nesting requirement, and then create the appropriate SPD entries and forwarding table entries to effect the requisite processing. (See Appendix E for an example of how to configure nested SAs.) Kent & Seo Standards Track [Page 17] RFC 4301 Security Architecture for IP December 2005 4.4. Major IPsec Databases Many of the details associated with processing IP traffic in an IPsec implementation are largely a local matter, not subject to standardization. However, some external aspects of the processing must be standardized to ensure interoperability and to provide a minimum management capability that is essential for productive use of IPsec. This section describes a general model for processing IP traffic relative to IPsec functionality, in support of these interoperability and functionality goals. The model described below is nominal; implementations need not match details of this model as presented, but the external behavior of implementations MUST correspond to the externally observable characteristics of this model in order to be compliant. There are three nominal databases in this model: the Security Policy Database (SPD), the Security Association Database (SAD), and the Peer Authorization Database (PAD). The first specifies the policies that determine the disposition of all IP traffic inbound or outbound from a host or security gateway (Section 4.4.1). The second database contains parameters that are associated with each established (keyed) SA (Section 4.4.2). The third database, the PAD, provides a link between an SA management protocol (such as IKE) and the SPD (Section 4.4.3). Multiple Separate IPsec Contexts If an IPsec implementation acts as a security gateway for multiple subscribers, it MAY implement multiple separate IPsec contexts. Each context MAY have and MAY use completely independent identities, policies, key management SAs, and/or IPsec SAs. This is for the most part a local implementation matter. However, a means for associating inbound (SA) proposals with local contexts is required. To this end, if supported by the key management protocol in use, context identifiers MAY be conveyed from initiator to responder in the signaling messages, with the result that IPsec SAs are created with a binding to a particular context. For example, a security gateway that provides VPN service to multiple customers will be able to associate each customer's traffic with the correct VPN. Forwarding vs Security Decisions The IPsec model described here embodies a clear separation between forwarding (routing) and security decisions, to accommodate a wide range of contexts where IPsec may be employed. Forwarding may be trivial, in the case where there are only two interfaces, or it may be complex, e.g., if the context in which IPsec is implemented Kent & Seo Standards Track [Page 18] RFC 4301 Security Architecture for IP December 2005 employs a sophisticated forwarding function. IPsec assumes only that outbound and inbound traffic that has passed through IPsec processing is forwarded in a fashion consistent with the context in which IPsec is implemented. Support for nested SAs is optional; if required, it requires coordination between forwarding tables and SPD entries to cause a packet to traverse the IPsec boundary more than once. "Local" vs "Remote" In this document, with respect to IP addresses and ports, the terms "Local" and "Remote" are used for policy rules. "Local" refers to the entity being protected by an IPsec implementation, i.e., the "source" address/port of outbound packets or the "destination" address/port of inbound packets. "Remote" refers to a peer entity or peer entities. The terms "source" and "destination" are used for packet header fields. "Non-initial" vs "Initial" Fragments Throughout this document, the phrase "non-initial fragments" is used to mean fragments that do not contain all of the selector values that may be needed for access control (e.g., they might not contain Next Layer Protocol, source and destination ports, ICMP message type/code, Mobility Header type). And the phrase "initial fragment" is used to mean a fragment that contains all the selector values needed for access control. However, it should be noted that for IPv6, which fragment contains the Next Layer Protocol and ports (or ICMP message type/code or Mobility Header type [Mobip]) will depend on the kind and number of extension headers present. The "initial fragment" might not be the first fragment, in this context. 4.4.1. The Security Policy Database (SPD) An SA is a management construct used to enforce security policy for traffic crossing the IPsec boundary. Thus, an essential element of SA processing is an underlying Security Policy Database (SPD) that specifies what services are to be offered to IP datagrams and in what fashion. The form of the database and its interface are outside the scope of this specification. However, this section specifies minimum management functionality that must be provided, to allow a user or system administrator to control whether and how IPsec is applied to traffic transmitted or received by a host or transiting a security gateway. The SPD, or relevant caches, must be consulted during the processing of all traffic (inbound and outbound), including traffic not protected by IPsec, that traverses the IPsec boundary. This includes IPsec management traffic such as IKE. An IPsec Kent & Seo Standards Track [Page 19] RFC 4301 Security Architecture for IP December 2005 implementation MUST have at least one SPD, and it MAY support multiple SPDs, if appropriate for the context in which the IPsec implementation operates. There is no requirement to maintain SPDs on a per-interface basis, as was specified in RFC 2401 [RFC2401]. However, if an implementation supports multiple SPDs, then it MUST include an explicit SPD selection function that is invoked to select the appropriate SPD for outbound traffic processing. The inputs to this function are the outbound packet and any local metadata (e.g., the interface via which the packet arrived) required to effect the SPD selection function. The output of the function is an SPD identifier (SPD-ID). The SPD is an ordered database, consistent with the use of Access Control Lists (ACLs) or packet filters in firewalls, routers, etc. The ordering requirement arises because entries often will overlap due to the presence of (non-trivial) ranges as values for selectors. Thus, a user or administrator MUST be able to order the entries to express a desired access control policy. There is no way to impose a general, canonical order on SPD entries, because of the allowed use of wildcards for selector values and because the different types of selectors are not hierarchically related. Processing Choices: DISCARD, BYPASS, PROTECT An SPD must discriminate among traffic that is afforded IPsec protection and traffic that is allowed to bypass IPsec. This applies to the IPsec protection to be applied by a sender and to the IPsec protection that must be present at the receiver. For any outbound or inbound datagram, three processing choices are possible: DISCARD, BYPASS IPsec, or PROTECT using IPsec. The first choice refers to traffic that is not allowed to traverse the IPsec boundary (in the specified direction). The second choice refers to traffic that is allowed to cross the IPsec boundary without IPsec protection. The third choice refers to traffic that is afforded IPsec protection, and for such traffic the SPD must specify the security protocols to be employed, their mode, security service options, and the cryptographic algorithms to be used. SPD-S, SPD-I, SPD-O An SPD is logically divided into three pieces. The SPD-S (secure traffic) contains entries for all traffic subject to IPsec protection. SPD-O (outbound) contains entries for all outbound traffic that is to be bypassed or discarded. SPD-I (inbound) is applied to inbound traffic that will be bypassed or discarded. All three of these can be decorrelated (with the exception noted above for native host implementations) to facilitate caching. If Kent & Seo Standards Track [Page 20] RFC 4301 Security Architecture for IP December 2005 an IPsec implementation supports only one SPD, then the SPD consists of all three parts. If multiple SPDs are supported, some of them may be partial, e.g., some SPDs might contain only SPD-I entries, to control inbound bypassed traffic on a per-interface basis. The split allows SPD-I to be consulted without having to consult SPD-S, for such traffic. Since the SPD-I is just a part of the SPD, if a packet that is looked up in the SPD-I cannot be matched to an entry there, then the packet MUST be discarded. Note that for outbound traffic, if a match is not found in SPD-S, then SPD-O must be checked to see if the traffic should be bypassed. Similarly, if SPD-O is checked first and no match is found, then SPD-S must be checked. In an ordered, non-decorrelated SPD, the entries for the SPD-S, SPD-I, and SPD-O are interleaved. So there is one lookup in the SPD. SPD Entries Each SPD entry specifies packet disposition as BYPASS, DISCARD, or PROTECT. The entry is keyed by a list of one or more selectors. The SPD contains an ordered list of these entries. The required selector types are defined in Section 4.4.1.1. These selectors are used to define the granularity of the SAs that are created in response to an outbound packet or in response to a proposal from a peer. The detailed structure of an SPD entry is described in Section 4.4.1.2. Every SPD SHOULD have a nominal, final entry that matches anything that is otherwise unmatched, and discards it. The SPD MUST permit a user or administrator to specify policy entries as follows: - SPD-I: For inbound traffic that is to be bypassed or discarded, the entry consists of the values of the selectors that apply to the traffic to be bypassed or discarded. - SPD-O: For outbound traffic that is to be bypassed or discarded, the entry consists of the values of the selectors that apply to the traffic to be bypassed or discarded. - SPD-S: For traffic that is to be protected using IPsec, the entry consists of the values of the selectors that apply to the traffic to be protected via AH or ESP, controls on how to create SAs based on these selectors, and the parameters needed to effect this protection (e.g., algorithms, modes, etc.). Note that an SPD-S entry also contains information such as "populate from packet" (PFP) flag (see paragraphs below on "How To Derive the Values for an SAD entry") and bits indicating whether the Kent & Seo Standards Track [Page 21] RFC 4301 Security Architecture for IP December 2005 SA lookup makes use of the local and remote IP addresses in addition to the SPI (see AH [Ken05b] or ESP [Ken05a] specifications). Representing Directionality in an SPD Entry For traffic protected by IPsec, the Local and Remote address and ports in an SPD entry are swapped to represent directionality, consistent with IKE conventions. In general, the protocols that IPsec deals with have the property of requiring symmetric SAs with flipped Local/Remote IP addresses. However, for ICMP, there is often no such bi-directional authorization requirement. Nonetheless, for the sake of uniformity and simplicity, SPD entries for ICMP are specified in the same way as for other protocols. Note also that for ICMP, Mobility Header, and non-initial fragments, there are no port fields in these packets. ICMP has message type and code and Mobility Header has mobility header type. Thus, SPD entries have provisions for expressing access controls appropriate for these protocols, in lieu of the normal port field controls. For bypassed or discarded traffic, separate inbound and outbound entries are supported, e.g., to permit unidirectional flows if required. OPAQUE and ANY For each selector in an SPD entry, in addition to the literal values that define a match, there are two special values: ANY and OPAQUE. ANY is a wildcard that matches any value in the corresponding field of the packet, or that matches packets where that field is not present or is obscured. OPAQUE indicates that the corresponding selector field is not available for examination because it may not be present in a fragment, it does not exist for the given Next Layer Protocol, or prior application of IPsec may have encrypted the value. The ANY value encompasses the OPAQUE value. Thus, OPAQUE need be used only when it is necessary to distinguish between the case of any allowed value for a field, vs. the absence or unavailability (e.g., due to encryption) of the field. How to Derive the Values for an SAD Entry For each selector in an SPD entry, the entry specifies how to derive the corresponding values for a new SA Database (SAD, see Section 4.4.2) entry from those in the SPD and the packet. The goal is to allow an SAD entry and an SPD cache entry to be created based on specific selector values from the packet, or from the matching SPD entry. For outbound traffic, there are SPD-S cache entries and SPD-O cache entries. For inbound traffic not Kent & Seo Standards Track [Page 22] RFC 4301 Security Architecture for IP December 2005 protected by IPsec, there are SPD-I cache entries and there is the SAD, which represents the cache for inbound IPsec-protected traffic (see Section 4.4.2). If IPsec processing is specified for an entry, a "populate from packet" (PFP) flag may be asserted for one or more of the selectors in the SPD entry (Local IP address; Remote IP address; Next Layer Protocol; and, depending on Next Layer Protocol, Local port and Remote port, or ICMP type/code, or Mobility Header type). If asserted for a given selector X, the flag indicates that the SA to be created should take its value for X from the value in the packet. Otherwise, the SA should take its value(s) for X from the value(s) in the SPD entry. Note: In the non-PFP case, the selector values negotiated by the SA management protocol (e.g., IKEv2) may be a subset of those in the SPD entry, depending on the SPD policy of the peer. Also, whether a single flag is used for, e.g., source port, ICMP type/code, and Mobility Header (MH) type, or a separate flag is used for each, is a local matter. The following example illustrates the use of the PFP flag in the context of a security gateway or a BITS/BITW implementation. Consider an SPD entry where the allowed value for Remote address is a range of IPv4 addresses: 192.0.2.1 to 192.0.2.10. Suppose an outbound packet arrives with a destination address of 192.0.2.3, and there is no extant SA to carry this packet. The value used for the SA created to transmit this packet could be either of the two values shown below, depending on what the SPD entry for this selector says is the source of the selector value: PFP flag value example of new for the Remote SAD dest. address addr. selector selector value --------------- ------------ a. PFP TRUE 192.0.2.3 (one host) b. PFP FALSE 192.0.2.1 to 192.0.2.10 (range of hosts) Note that if the SPD entry above had a value of ANY for the Remote address, then the SAD selector value would have to be ANY for case (b), but would still be as illustrated for case (a). Thus, the PFP flag can be used to prohibit sharing of an SA, even among packets that match the same SPD entry. Management Interface For every IPsec implementation, there MUST be a management interface that allows a user or system administrator to manage the SPD. The interface must allow the user (or administrator) to specify the security processing to be applied to every packet that traverses the IPsec boundary. (In a native host IPsec Kent & Seo Standards Track [Page 23] RFC 4301 Security Architecture for IP December 2005 implementation making use of a socket interface, the SPD may not need to be consulted on a per-packet basis, as noted at the end of Section 4.4.1.1 and in Section 5.) The management interface for the SPD MUST allow creation of entries consistent with the selectors defined in Section 4.4.1.1, and MUST support (total) ordering of these entries, as seen via this interface. The SPD entries' selectors are analogous to the ACL or packet filters commonly found in a stateless firewall or packet filtering router and which are currently managed this way. In host systems, applications MAY be allowed to create SPD entries. (The means of signaling such requests to the IPsec implementation are outside the scope of this standard.) However, the system administrator MUST be able to specify whether or not a user or application can override (default) system policies. The form of the management interface is not specified by this document and may differ for hosts vs. security gateways, and within hosts the interface may differ for socket-based vs. BITS implementations. However, this document does specify a standard set of SPD elements that all IPsec implementations MUST support. Decorrelation The processing model described in this document assumes the ability to decorrelate overlapping SPD entries to permit caching, which enables more efficient processing of outbound traffic in security gateways and BITS/BITW implementations. Decorrelation [CoSa04] is only a means of improving performance and simplifying the processing description. This RFC does not require a compliant implementation to make use of decorrelation. For example, native host implementations typically make use of caching implicitly because they bind SAs to socket interfaces, and thus there is no requirement to be able to decorrelate SPD entries in these implementations. Note: Unless otherwise qualified, the use of "SPD" refers to the body of policy information in both ordered or decorrelated (unordered) state. Appendix B provides an algorithm that can be used to decorrelate SPD entries, but any algorithm that produces equivalent output may be used. Note that when an SPD entry is decorrelated all the resulting entries MUST be linked together, so that all members of the group derived from an individual, SPD entry (prior to decorrelation) can all be placed into caches and into the SAD at the same time. For example, suppose one starts with an entry A (from an ordered SPD) that when decorrelated, yields entries A1, A2, and A3. When a packet comes along that matches, say A2, and triggers the creation of an SA, the SA management protocol (e.g., IKEv2) negotiates A. And all 3 Kent & Seo Standards Track [Page 24] RFC 4301 Security Architecture for IP December 2005 decorrelated entries, A1, A2, and A3, are placed in the appropriate SPD-S cache and linked to the SA. The intent is that use of a decorrelated SPD ought not to create more SAs than would have resulted from use of a not-decorrelated SPD. If a decorrelated SPD is employed, there are three options for what an initiator sends to a peer via an SA management protocol (e.g., IKE). By sending the complete set of linked, decorrelated entries that were selected from the SPD, a peer is given the best possible information to enable selection of the appropriate SPD entry at its end, especially if the peer has also decorrelated its SPD. However, if a large number of decorrelated entries are linked, this may create large packets for SA negotiation, and hence fragmentation problems for the SA management protocol. Alternatively, the original entry from the (correlated) SPD may be retained and passed to the SA management protocol. Passing the correlated SPD entry keeps the use of a decorrelated SPD a local matter, not visible to peers, and avoids possible fragmentation concerns, although it provides less precise information to a responder for matching against the responder's SPD. An intermediate approach is to send a subset of the complete set of linked, decorrelated SPD entries. This approach can avoid the fragmentation problems cited above yet provide better information than the original, correlated entry. The major shortcoming of this approach is that it may cause additional SAs to be created later, since only a subset of the linked, decorrelated entries are sent to a peer. Implementers are free to employ any of the approaches cited above. A responder uses the traffic selector proposals it receives via an SA management protocol to select an appropriate entry in its SPD. The intent of the matching is to select an SPD entry and create an SA that most closely matches the intent of the initiator, so that traffic traversing the resulting SA will be accepted at both ends. If the responder employs a decorrelated SPD, it SHOULD use the decorrelated SPD entries for matching, as this will generally result in creation of SAs that are more likely to match the intent of both peers. If the responder has a correlated SPD, then it SHOULD match the proposals against the correlated entries. For IKEv2, use of a decorrelated SPD offers the best opportunity for a responder to generate a "narrowed" response. In all cases, when a decorrelated SPD is available, the decorrelated entries are used to populate the SPD-S cache. If the SPD is not decorrelated, caching is not allowed and an ordered Kent & Seo Standards Track [Page 25] RFC 4301 Security Architecture for IP December 2005 search of SPD MUST be performed to verify that inbound traffic arriving on an SA is consistent with the access control policy expressed in the SPD. Handling Changes to the SPD While the System Is Running If a change is made to the SPD while the system is running, a check SHOULD be made of the effect of this change on extant SAs. An implementation SHOULD check the impact of an SPD change on extant SAs and SHOULD provide a user/administrator with a mechanism for configuring what actions to take, e.g., delete an affected SA, allow an affected SA to continue unchanged, etc. 4.4.1.1. Selectors An SA may be fine-grained or coarse-grained, depending on the selectors used to define the set of traffic for the SA. For example, all traffic between two hosts may be carried via a single SA, and afforded a uniform set of security services. Alternatively, traffic between a pair of hosts might be spread over multiple SAs, depending on the applications being used (as defined by the Next Layer Protocol and related fields, e.g., ports), with different security services offered by different SAs. Similarly, all traffic between a pair of security gateways could be carried on a single SA, or one SA could be assigned for each communicating host pair. The following selector parameters MUST be supported by all IPsec implementations to facilitate control of SA granularity. Note that both Local and Remote addresses should either be IPv4 or IPv6, but not a mix of address types. Also, note that the Local/Remote port selectors (and ICMP message type and code, and Mobility Header type) may be labeled as OPAQUE to accommodate situations where these fields are inaccessible due to packet fragmentation. - Remote IP Address(es) (IPv4 or IPv6): This is a list of ranges of IP addresses (unicast, broadcast (IPv4 only)). This structure allows expression of a single IP address (via a trivial range), or a list of addresses (each a trivial range), or a range of addresses (low and high values, inclusive), as well as the most generic form of a list of ranges. Address ranges are used to support more than one remote system sharing the same SA, e.g., behind a security gateway. - Local IP Address(es) (IPv4 or IPv6): This is a list of ranges of IP addresses (unicast, broadcast (IPv4 only)). This structure allows expression of a single IP address (via a trivial range), or a list of addresses (each a trivial range), or a range of addresses (low and high values, inclusive), as well as the most generic form of a list of ranges. Address ranges are used to Kent & Seo Standards Track [Page 26] RFC 4301 Security Architecture for IP December 2005 support more than one source system sharing the same SA, e.g., behind a security gateway. Local refers to the address(es) being protected by this implementation (or policy entry). Note: The SPD does not include support for multicast address entries. To support multicast SAs, an implementation should make use of a Group SPD (GSPD) as defined in [RFC3740]. GSPD entries require a different structure, i.e., one cannot use the symmetric relationship associated with local and remote address values for unicast SAs in a multicast context. Specifically, outbound traffic directed to a multicast address on an SA would not be received on a companion, inbound SA with the multicast address as the source. - Next Layer Protocol: Obtained from the IPv4 "Protocol" or the IPv6 "Next Header" fields. This is an individual protocol number, ANY, or for IPv6 only, OPAQUE. The Next Layer Protocol is whatever comes after any IP extension headers that are present. To simplify locating the Next Layer Protocol, there SHOULD be a mechanism for configuring which IPv6 extension headers to skip. The default configuration for which protocols to skip SHOULD include the following protocols: 0 (Hop-by-hop options), 43 (Routing Header), 44 (Fragmentation Header), and 60 (Destination Options). Note: The default list does NOT include 51 (AH) or 50 (ESP). From a selector lookup point of view, IPsec treats AH and ESP as Next Layer Protocols. Several additional selectors depend on the Next Layer Protocol value: * If the Next Layer Protocol uses two ports (as do TCP, UDP, SCTP, and others), then there are selectors for Local and Remote Ports. Each of these selectors has a list of ranges of values. Note that the Local and Remote ports may not be available in the case of receipt of a fragmented packet or if the port fields have been protected by IPsec (encrypted); thus, a value of OPAQUE also MUST be supported. Note: In a non-initial fragment, port values will not be available. If a port selector specifies a value other than ANY or OPAQUE, it cannot match packets that are non-initial fragments. If the SA requires a port value other than ANY or OPAQUE, an arriving fragment without ports MUST be discarded. (See Section 7, "Handling Fragments".) * If the Next Layer Protocol is a Mobility Header, then there is a selector for IPv6 Mobility Header message type (MH type) [Mobip]. This is an 8-bit value that identifies a particular mobility message. Note that the MH type may not be available Kent & Seo Standards Track [Page 27] RFC 4301 Security Architecture for IP December 2005 in the case of receipt of a fragmented packet. (See Section 7, "Handling Fragments".) For IKE, the IPv6 Mobility Header message type (MH type) is placed in the most significant eight bits of the 16-bit local "port" selector. * If the Next Layer Protocol value is ICMP, then there is a 16-bit selector for the ICMP message type and code. The message type is a single 8-bit value, which defines the type of an ICMP message, or ANY. The ICMP code is a single 8-bit value that defines a specific subtype for an ICMP message. For IKE, the message type is placed in the most significant 8 bits of the 16-bit selector and the code is placed in the least significant 8 bits. This 16-bit selector can contain a single type and a range of codes, a single type and ANY code, and ANY type and ANY code. Given a policy entry with a range of Types (T-start to T-end) and a range of Codes (C-start to C-end), and an ICMP packet with Type t and Code c, an implementation MUST test for a match using (T-start*256) + C-start <= (t*256) + c <= (T-end*256) + C-end Note that the ICMP message type and code may not be available in the case of receipt of a fragmented packet. (See Section 7, "Handling Fragments".) - Name: This is not a selector like the others above. It is not acquired from a packet. A name may be used as a symbolic identifier for an IPsec Local or Remote address. Named SPD entries are used in two ways: 1. A named SPD entry is used by a responder (not an initiator) in support of access control when an IP address would not be appropriate for the Remote IP address selector, e.g., for "road warriors". The name used to match this field is communicated during the IKE negotiation in the ID payload. In this context, the initiator's Source IP address (inner IP header in tunnel mode) is bound to the Remote IP address in the SAD entry created by the IKE negotiation. This address overrides the Remote IP address value in the SPD, when the SPD entry is selected in this fashion. All IPsec implementations MUST support this use of names. 2. A named SPD entry may be used by an initiator to identify a user for whom an IPsec SA will be created (or for whom traffic may be bypassed). The initiator's IP source address (from inner IP header in tunnel mode) is used to replace the following if and when they are created: Kent & Seo Standards Track [Page 28] RFC 4301 Security Architecture for IP December 2005 - local address in the SPD cache entry - local address in the outbound SAD entry - remote address in the inbound SAD entry Support for this use is optional for multi-user, native host implementations and not applicable to other implementations. Note that this name is used only locally; it is not communicated by the key management protocol. Also, name forms other than those used for case 1 above (responder) are applicable in the initiator context (see below). An SPD entry can contain both a name (or a list of names) and also values for the Local or Remote IP address. For case 1, responder, the identifiers employed in named SPD entries are one of the following four types: a. a fully qualified user name string (email), e.g., mozart@foo.example.com (this corresponds to ID_RFC822_ADDR in IKEv2) b. a fully qualified DNS name, e.g., foo.example.com (this corresponds to ID_FQDN in IKEv2) c. X.500 distinguished name, e.g., [WaKiHo97], CN = Stephen T. Kent, O = BBN Technologies, SP = MA, C = US (this corresponds to ID_DER_ASN1_DN in IKEv2, after decoding) d. a byte string (this corresponds to Key_ID in IKEv2) For case 2, initiator, the identifiers employed in named SPD entries are of type byte string. They are likely to be Unix UIDs, Windows security IDs, or something similar, but could also be a user name or account name. In all cases, this identifier is only of local concern and is not transmitted. The IPsec implementation context determines how selectors are used. For example, a native host implementation typically makes use of a socket interface. When a new connection is established, the SPD can be consulted and an SA bound to the socket. Thus, traffic sent via that socket need not result in additional lookups to the SPD (SPD-O and SPD-S) cache. In contrast, a BITS, BITW, or security gateway implementation needs to look at each packet and perform an SPD-O/SPD-S cache lookup based on the selectors. Kent & Seo Standards Track [Page 29] RFC 4301 Security Architecture for IP December 2005 4.4.1.2. Structure of an SPD Entry This section contains a prose description of an SPD entry. Also, Appendix C provides an example of an ASN.1 definition of an SPD entry. This text describes the SPD in a fashion that is intended to map directly into IKE payloads to ensure that the policy required by SPD entries can be negotiated through IKE. Unfortunately, the semantics of the version of IKEv2 published concurrently with this document [Kau05] do not align precisely with those defined for the SPD. Specifically, IKEv2 does not enable negotiation of a single SA that binds multiple pairs of local and remote addresses and ports to a single SA. Instead, when multiple local and remote addresses and ports are negotiated for an SA, IKEv2 treats these not as pairs, but as (unordered) sets of local and remote values that can be arbitrarily paired. Until IKE provides a facility that conveys the semantics that are expressed in the SPD via selector sets (as described below), users MUST NOT include multiple selector sets in a single SPD entry unless the access control intent aligns with the IKE "mix and match" semantics. An implementation MAY warn users, to alert them to this problem if users create SPD entries with multiple selector sets, the syntax of which indicates possible conflicts with current IKE semantics. The management GUI can offer the user other forms of data entry and display, e.g., the option of using address prefixes as well as ranges, and symbolic names for protocols, ports, etc. (Do not confuse the use of symbolic names in a management interface with the SPD selector "Name".) Note that Remote/Local apply only to IP addresses and ports, not to ICMP message type/code or Mobility Header type. Also, if the reserved, symbolic selector value OPAQUE or ANY is employed for a given selector type, only that value may appear in the list for that selector, and it must appear only once in the list for that selector. Note that ANY and OPAQUE are local syntax conventions -- IKEv2 negotiates these values via the ranges indicated below: ANY: start = 0 end = OPAQUE: start = end = 0 An SPD is an ordered list of entries each of which contains the following fields. o Name -- a list of IDs. This quasi-selector is optional. The forms that MUST be supported are described above in Section 4.4.1.1 under "Name". Kent & Seo Standards Track [Page 30] RFC 4301 Security Architecture for IP December 2005 o PFP flags -- one per traffic selector. A given flag, e.g., for Next Layer Protocol, applies to the relevant selector across all "selector sets" (see below) contained in an SPD entry. When creating an SA, each flag specifies for the corresponding traffic selector whether to instantiate the selector from the corresponding field in the packet that triggered the creation of the SA or from the value(s) in the corresponding SPD entry (see Section 4.4.1, "How to Derive the Values for an SAD Entry"). Whether a single flag is used for, e.g., source port, ICMP type/code, and MH type, or a separate flag is used for each, is a local matter. There are PFP flags for: - Local Address - Remote Address - Next Layer Protocol - Local Port, or ICMP message type/code or Mobility Header type (depending on the next layer protocol) - Remote Port, or ICMP message type/code or Mobility Header type (depending on the next layer protocol) o One to N se