Presented by:
~
\N
TechRepublic
Rootkit Detection

I know not whether my native land
be a grazing ground for wild beasts or yet my home!

—ANONYMOUS POET OF MA’ARRA

s we have shown throughout this book, rootkits can be difficult to

detect, especially when they operate in the kernel. This is because a
kernel rootkit can alter functions used by all software, including those
needed by security software.

The same powers available to infection-prevention software are also
available to a rootkit. Whatever avenues can be blocked to prevent rootkit
intrusion can simply be unblocked. A rootkit can prevent detection or pre-
vention software from running or working properly. In the end, it comes
down to an arms race between the attacker and the defender, with a large
advantage going to whichever one loads into the kernel and executes first.

That is not to say all is lost for the defender, but you should be aware
what works today may not detect the rootkit of tomorrow. As rootkit devel-
opers learn what detection software is doing, better rootkits will evolve. The
reverse is also true: Defenders will constantly update detection software as
new rootkit techniques emerge.

In this chapter, we take a look at the two basic approaches to rootkit
detection: detecting the rootkit itself, and detecting the behavior of a
rootkit. Once you become familiar with these approaches, you will be in a
better position to defend yourself.

Detecting Presence

Many techniques can be used to detect the presence of the rootkit. In the
past, software such as Tripwire' looked for an image on the file system. This
approach is still used by most anti-virus vendors, and can be applied to
rootkit detection.

1. www.tripwire.org

295

http://techrepublic.com.com
detwilerb
Placed Image

296 Chapter 10 Rootkit Detection

The assumption behind such an approach is that a rootkit will use the
file system. Obviously, this will not work if the rootkit runs only from mem-
ory or is located on a piece of hardware. In addition, if anti-rootkit pro-
grams are run on a live system that has already been infected, they may be
defeated.? A rootkit that is hiding files by hooking system calls or by using
a layered file filter driver will subvert this mode of detection.

Because software such as Tripwire has limitations, other methods of
detecting rootkit presence have evolved. In the following sections, we will
cover some of these methods, used to find a rootkit in memory or detect
proof of the rootkit’s presence.

Guarding the Doors

All software must “live” in memory somewhere. Thus, to discover a
rootkit, you can look in memory.

This technique takes two forms. The first seeks to detect the rootkit
as it loads into memory. This is a “guarding-the-doors” approach, detect-
ing what comes into the computer (processes, device drivers, and so forth).
A rootkit can use many different operating-system functions to load itself
into memory. By watching these ingress points, detection software
can sometimes spot the rootkit. However, there are many such points
to watch; if the detection software misses any of the loading methods,
all bets are off.

This was the problem with Pedestal Software’s Integrity Protection
Driver (IPD)3. IPD began by hooking kernel functions in the SSDT such as
NtLoadDriver and NtOpenSection. One of your authors, Hoglund, found
that one could load a module into kernel memory by calling ZwSetSystem-
Information, which IPD was not filtering. After IPD was fixed to take this
fact into account, in 2002, Crazylord published a paper that detailed using a
symbolic link for \DEVICEWPHYSICALMEMORY to bypass IPD’s protec-
tion.* IPD had to continually evolve to guard against the latest ways to
bypass the protection software.

2. For best results, file integrity checking software should be run offline against a copy of the
drive image.

3. It appears Pedestal (www.pedestalsoftware.com) no longer offers this product.

4. Crazylord, “Playing with Windows /dev/(k)mem,” Phrack no. 59, Article 16 (28 June
2002), available at: www.phrack.org/phrack/59/p59-0x10.txt

Detecting Presence 297

The latest IPD version hooks these functions:

m ZwOpenKey

m ZwCreateKey

m ZwSetValueKey

m ZwCreateFile

m ZwOpenkFile

m ZwOQOpenSection

m ZwCreateLinkObject

m ZwSetSystemInformation
m ZwOQOpenProcess

This seems like a long list of functions to watch! Indeed, the length of
this list underscores the complexity of rootkit detection.

Moreover, the list is not complete. Yet another way to load a rootkit is
to look for entry points into another process’s address space. All the ways
listed in Chapter 4, The Age-Old Art of Hooking, for loading a DLL into
another process must also be watched. And all of this does not even cover
every loading method discussed in this book.

Finding all the ways a rootkit might be loaded is just the first step in
defending against rootkits. Load-detection techniques are belabored by the
need to decide both what to guard and when to signal. For example, you
can load a rootkit into memory using Registry keys. An obvious detection
point would be to hook ZwOpenKey, ZwCreateKey, and ZwSetValueKey
(as did IPD). However, if your detection software hooks these functions,
how does it know which keys to guard?

Drivers are usually placed into the following key:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services

This key is a good location to filter in your Registry-hook function, but
a rootkit could also alter another key:

HKEY_LOCAL_MACHINE\System\ControlSet@0@1l\Services

This key can be used when the machine is booted into the previously
known good configuration.

This example does not even begin to take into account all the Registry
keys that deal with how application extensions are handled. And, consider
that additional DLLs, such as Browser Helper Objects (BHOs), can be
loaded into processes.

298 Chapter 10 Rootkit Detection

Detection software must also address the issue of symbolic links.
Symbolic links are aliases for real names. A target you seek to protect
could have more than one possible name. If your detection software hooks
the system call table and a rootkit is using a symbolic link, the true target
of the symbolic link will not have been resolved when your hook is called.
Also, HKEY_LOCAL_MACHINE is not represented by that name in the
kernel. Even if your detection software can hook all of these filter functions,
the number of places to look seems infinite!

Still, let us assume you have discovered all the locations to watch in
order to prevent rootkits from loading, and let’s further assume you have
resolved all the possible names of critical resources to protect. The difficulty
you now face is in deciding when to signal. If you have detected a driver or
a DLL loading, how do you know it is malware? Your detection software
would need a signature for comparison, which assumes a known attack
vector. Alternatively, your software could analyze the behavior of the
module to try to determine whether it’s malicious.

Both of these approaches are very hard to pursue successfully. Signatures
require prior knowledge of the rootkit. This obviously doesn’t work when a
rootkit is yet unknown. Behavior detection is also difficult, plagued by false
positives and false negatives.

Knowing when to signal is critical. This is an ongoing security battle, in
which the anti-virus companies remain entrenched.

Scanning the “Rooms”

Scanning is the second technique for detecting rootkits in memory. In order
to avoid the tedious labor of guarding all the entry points into the kernel or
into a process’s address space, you may want to scan memory periodically,
looking for known modules or signatures of modules that correspond to
rootkits. Again, this technique can find only known attackers. The advan-
tage of this detection method is simplicity. The problem is that it doesn’t
prevent a rootkit from loading. In fact, it doesn’t work unless the rootkit has
already been loaded! If your software scans processes’ address spaces, it will
have to switch contexts into each process’s address space, or do the virtual-
to-physical address translation itself. If a kernel rootkit is already present, it
can interfere with this memory walking.

Looking for Hooks

Another memory-based detection method is to look for hooks within the
operating system and within processes. As we discussed in Chapters 4 and 3,
there are many places where a hook can hide, including the following:

Detecting Presence 299

m Import Address Table (IAT)

m System Service Dispatch Table (SSDT), also known as the
KeServiceDescriptorTable

m Interrupt Descriptor Table (IDT) with one per CPU

m Drivers’ I/O Request Packet (IRP) handler

m Inline function hooks

When scanning for hooks, you suffer from all the shortcomings men-
tioned in the previous section on scanning the “rooms.” The rootkit has
already been loaded into memory and is executing; it may interfere with
your detection methods. But one advantage to looking for hooks is that it’s
a generic approach. By looking for hooks, you do not have the problem of
searching for known signatures or patterns.

The basic algorithm for identifying a hook is to look for branches that
fall outside of an acceptable range. Such branches would be produced by
instructions like cal1 or jmp. Defining an acceptable range is not difficult
(for the most part). In a process Import Address Table (IAT), the name of
the module containing imported functions is listed. This module has a
defined start address in memory, and a size. Those numbers are all you
need to define an acceptable range.

Likewise for device drivers: All legitimate I/O Request Packet (IRP)
handlers should exist within a given driver’s address range, and all entries in
the System Service Dispatch Table (SSDT) should be within the address
range of the kernel process, ntoskrnl.exe.

Finding Interrupt Discriptor Table (IDT) hooks is a bit more difficult,
because you do not know what the acceptable ranges should be for most of
the interrupts. The one you know for sure, however, is the INT 2E handler.
It should point to the kernel, ntoskrnl.exe.

Inline hooks are the hardest to detect, because they can be located any-
where within the function—requiring a complete disassembly of the func-
tion in order to find them—and because functions can call addresses outside
the module’s address range under normal circumstances. In the following
sections, we will explain how to detect SSDT, IAT, and some inline hooks.

Getting the Address Ranges of Kernel Modules

To protect the SSDT or a driver’s IRP handler table, you must first identify
what an acceptable range is. To do this, you need a start address and a size.
For kernel modules, you can call ZwQuerySystemInformation to find these.
You may be wondering whether this function cannot be hooked as well.
It can, but if it is hooked and fails to return information for ntoskrnl.exe or

300 Chapter 10 Rootkit Detection

some driver you know is loaded, that is an indication that a rootkit is
present.

To list all the kernel modules, you can call ZwQuerySystemInformation
and specify that you are interested in the class of information called System-
Modulelnformation. This will return a list of the loaded modules and each
module’s associated information. Here are the structures containing this
information:

#define MAXIMUM_FILENAME_LENGTH 256

typedef struct _MODULE_INFO {

DWORD d_Reservedl;

DWORD d_Reserved?2;

PVOID p_Base;

DWORD d_Size;

DWORD d_Flags;

WORD w_Index;

WORD w_Rank;

WORD w_LoadCount;

WORD w_NameOffset;

BYTE a_bPath [MAXIMUM_FILENAME_LENGTH];
} MODULE_INFO, =PMODULE_INFO, =xPPMODULE_INFO;

typedef struct _MODULE_LIST

{
int d_Modules;
MODULE_INFO a_Modules [];
} MODULE_LIST, %PMODULE_LIST, =x*PPMODULE_LIST;

The GetListOfModules function will allocate the required memory for
you, and return a pointer to this memory if it is able to get the system mod-
ule information:

[1117177/777/7777/77/7/77/777/77//
// PMODULE_LIST GetListOfModules
// Parameters:

// IN PNTSTATUS pointer to NTSTATUS variable. This is useful for debugging.
// Returns:
// OUT PMODULE_LIST pointer to MODULE_LIST

PMODULE_LIST GetListOfModules(PNTSTATUS pns)
{

ULONG ul_NeededSize;

ULONG =*pul_ModuleListAddress = NULL;

Detecting Presence 301

NTSTATUS ns;
PMODULE_LIST pml = NULL;

// Call it the first time to determine the size required
// to store the information.
ZwQuerySystemInformation(SystemModuleInformation,
&uT1_NeededSize,
0,
&ul_NeededSize);
pul_ModuleListAddress = (ULONG =) ExAllocatePool(PagedPool, ul_NeededSize);

if (!pul_ModulelListAddress) // ExAllocatePool failed.

{
if (pns !'= NULL)
#pns = STATUS_INSUFFICIENT_RESOURCES;
return (PMODULE_LIST) pul_ModulelListAddress;
}

ns = ZwQuerySystemInformation(SystemModuleInformation,
pul_ModuTleListAddress,
ul_NeededSize,

0);

if (ns != STATUS_SUCCESS)// ZwQuerySystemInformation failed.
{

// Free allocated paged kernel memory.

ExFreePool1((PVOID) pul_ModulelListAddress);

if (pns !'= NULL)

*pNs = ns;

return NULL;

}

pml = (PMODULE_LIST) pul_ModuleListAddress;
if (pns !'= NULL)

#pns = ns;
return pml;

Now you have a list of all the kernel modules. For each of these, two
important pieces of information were returned in the MODULE_INFO
structure. One was the base address of the module, and the other was its size.
You now have the acceptable range, so you can begin to look for hooks!

302 Chapter 10 Rootkit Detection

Finding SSDT Hooks

The following DriverEntry function calls the GetListOfModules function
and then walks each entry, looking for the one named ntoskrnl.exe. When it
is found, a global variable containing the beginning and end addresses of
that module is initialized. This information will be used to look for
addresses in the SSDT that are outside of ntoskrnl.exe’s range.

typedef struct _NTOSKRNL {
DWORD Base;
DWORD End;

} NTOSKRNL, =PNTOSKRNL;

PMODULE_LIST g_pml;
NTOSKRNL g_ntoskrnl;

NTSTATUS DriverEntry(IN PDRIVER_OBJECT DriverObject,
IN PUNICODE_STRING RegistryPath)

int count;
g_pml = NULL;
g_ntoskrnl.Base = 0;
g_ntoskrnT.End = 0;
g_pml = GetListOfModules();
if (lg_pml)
return STATUS_UNSUCCESSFUL;

for (count = 0; count < g_pml->d_Modules; count++)
{
// Find the entry for ntoskrnl.exe.
if (_stricmp("ntoskrnl.exe", g_pml->a_Modules[count].a_bPath + g_pml-
>a_Modules[count].w_NameOffset) == 0)
{

g_ntoskrnl.Base = (DWORD)g_pml->a_Modules[count].p_Base;

g_ntoskrnl.End ((DWORD)g_pmT1->a_Modules[count].p_Base + g_pml-
>a_Modules[count].d_Size);
}
}

ExFreePool(g_pml);

if (g_ntoskrnl.Base != 0)
return STATUS_SUCCESS;

else
return STATUS_UNSUCCESSFUL;

Detecting Presence 303

The following function will print a debug message if it finds an SSDT
address out of acceptable range:

#pragma pack(l)

typedef struct ServiceDescriptorEntry {
unsigned int =ServiceTableBase;
unsigned int =ServiceCounterTableBase;
unsigned int NumberOfServices;
unsigned char xParamTableBase;

} SDTEntry_t;

#pragma pack()

// Import KeServiceDescriptorTable from ntoskrnl.exe.
__decTspec(d1Tlimport) SDTEntry_t KeServiceDescriptorTable;

void IdentifySSDTHooks(void)
{
int i;
for (i = 0; i < KeServiceDescriptorTable.NumberOfServices; i++)
{
if ((KeServiceDescriptorTable.ServiceTableBase[i] <
g_ntoskrnl.Base) ||
(KeServiceDescriptorTable.ServiceTableBase[i] >
g_ntoskrnl.End))

DbgPrint("System call %d is hooked at address %x!\n", 1,
KeServiceDescriptorTable.ServiceTableBase[i]);

}

Finding SSDT hooks is very powerful, but do not be surprised if you
find a few that are not rootkits. Remember, a lot of protection software
today also hooks the kernel and various APIs.

In the next section, you will learn how to detect certain inline function
hooks, which are discussed in Chapter 4.

Finding Inline Hooks

For simplicity in finding inline hooks, we will identify only detour patches
that occur in the first several bytes of the function preamble. (A full-function
disassembler in the kernel is beyond the scope of this book.) To detect these
patches, we use the CheckNtoskrnlForOutsideJump function:

304 Chapter 10 Rootkit Detection

I1171177
// DWORD CheckForOutsideJump

//
// Description:

// This function takes the address of the function
// to check. It then Tlooks at the first few opcodes
// looking for immediate jumps, etc.
//
DWORD CheckNtoskrnTForOutsideJump (DWORD dw_addr)
{

BYTE opcode = %((PBYTE) (dw_addr));

DWORD hook = 0;

WORD desc = 0;

// These are the opcodes for unconditional relative jumps.
// Opcode Oxeb is a relative jump that takes one byte, so
// at most it can jump 255 bytes from the current EIP.
//
// Currently not sure how to handle opcode @xea. It Tlooks
// Tike jmp XXXX:XXXXXXXX. For now, I guess I will just
// ignore the first two bytes. In the future, you should
// add these two bytes as they represent the segment.
if ((opcode == 0xe8) || (opcode == 0xe9))
{

// |l (opcode == @Oxeb) -> ignoring these short jumps

hook |= «((PBYTE) (dw_addr+1)) << 0;

hook |= «((PBYTE) (dw_addr+2)) << 8;

hook |= =((PBYTE)(dw_addr+3)) << 16;

hook |= =((PBYTE)(dw_addr+4)) << 24;

hook += 5 + dw_addr;

}

else if (opcode == 0xea)

{
hook |= #((PBYTE)(dw_addr+1)) << 0;
hook |= #((PBYTE)(dw_addr+2)) << 8;
hook |= #((PBYTE)(dw_addr+3)) << 16;
hook |= #((PBYTE)(dw_addr+4)) << 24;
// Should update to reflect GDT entry,
// but we are ignoring it for now.
desc = *((WORD =) (dw_addr+5));

}

// Now that we have the target of the jump
// we must check whether the hook is outside of

Detecting Presence 305

// ntoskrnl. If it isn't, return 0.
if (hook != 0)
{
if ((hook < g_ntoskrnl.Base) || (hook > g_ntoskrnl.End))
hook = hook;
else
hook

0;

return hook;

Given a function address in the SSDT, CheckNtoskrnlForOutsideJump
goes to that function and looks for an immediate, unconditional jump. If
one is found, it tries to resolve the address the CPU will jump to. The func-
tion then checks this address to determine whether it is outside the accept-
able range for ntoskrnl.exe.

By substituting the appropriate range check, you can use this code to
test for inline hooks in the first several bytes of any function.

Finding IRP Handler Hooks

You already have all the code necessary to find all the drivers in memory by
using the GetModulesInformation function; and Chapter 4 covers how to
locate the IRP handler table in a particular driver. To find driver IRP handler
hooks, all you need to do is combine these two methods. You could even
dereference each function pointer to search for inline function hooks within
the handlers using the preceding code.

Finding IAT Hooks

IAT hooks are extremely popular with current Windows rootkits. IAT
hooks are in the userland portion of a process, so they are easier to program
than kernel rootkits, and do not require the same level of privilege. Because
of this, you should make sure your detection software looks for IAT hooks.

Finding IAT hooks is very tedious, and implementing a search for them
requires many of the techniques covered in previous chapters. However,
those steps are relatively straightforward. First, change contexts into the
process address space of the process you want to scan for hooks. In other
words, your detection code must run within the process you are scanning.
Some of the techniques for doing this are outlined in Chapter 4, in the
Userland Hooks section.

306 Chapter 10 Rootkit Detection

Next, your code needs a list of all the DLLs the process has loaded. For
the process, and every DLL within the process, your goal is to inspect the
functions imported by scanning the IAT and looking for function addresses
outside the range of the DLL the function is exported from. After you have
the list of DLLs and the address range for each one, you can modify the
code in the Hybrid Hooking Approach section of Chapter 4 to walk each
IAT of each DLL to see whether there are any hooks. Particular attention
should be paid to Kernel32.dll and NTDLL.DLL. These are common targets
of rootkits, because these DLLs are the userland interface into the operating
system.

If the IAT is not hooked, you should still look at the function itself to
determine whether an inline hook is present. The code to do that is listed
earlier in this chapter, in the CheckNtoskrnlForOutsideJump function; just
change the range of the target DLL.

Once you are in a process’s address space, there are several ways to find
the list of process DLLs. For example, the Win32 API has a function called
EnumProcessModules:

BOOL EnumProcessModules(
HANDLE hProcess,
HMODULE+ TphModule,
DWORD cb,

LPDWORD 1pcbNeeded

Pass a handle to the current process as the first parameter to Enum-
ProcessModules, and it will return a listing of all the DLLs in the process.
Alternatively, you could call this function from any process’s address space. In
that case, you would pass a handle to the target process you are scanning. The
function, EnumProcesses, would then list all the processes. You do not have to
worry whether there are hidden processes, because you do not care whether
the rootkit has hooked its own hidden processes.

The second parameter to EnumProcessModules is a pointer to the buffer
you must allocate in order to hold the list of DLL handles. The third param-
eter is the size of this buffer. If you have not allocated enough space to hold
all the information, EnumProcessModules will return the size needed to
store all the DLL handles.

With a handle to every DLL in the process returned by EnumProcess-
Modules, you can get each DLL’s name by calling the GetModuleFile-
NameEx function. Another function, GetModuleInformation, returns the

Detecting Presence 307

DLL base address and size for each DLL handle you use as the second
parameter. This information is returned in the form of a
MODULE_INFORMATION structure:

typedef struct _MODULEINFO {
LPVOID T1pBaseOfD11;
DWORD SizeOfImage;
LPVOID EntryPoint;

} MODULEINFO, «LPMODULEINFO;

With the name of the DLL, its start address, and its length, you have all
the data necessary to determine an acceptable range for the functions it con-
tains. This information should be stored in a linked list so that you can
access it later.

Now begin to walk each file in memory, parsing the IAT of each DLL
just as illustrated in the Hybrid Hooking Approach section in Chapter 4.
(Remember that each process and each DLLs IAT can hold imports from
multiple other DLLs.) This time, though, when you parse a process or a
DLL looking for its IAT, identify each DLL it is importing. You can use the
name of the DLL being imported to find the DLL in the stored linked list of
DLLs. Now compare each address in the IAT to its corresponding DLL
module information.

The preceding technique requires the EnumProcesses, EnumProcess-
Modules, GetModuleFileNameEx, and the GetModuleInformation APIs.
The attacker’s rootkit could have hooked these calls. If you want to find
the list of DLLs loaded in a process without making any API calls, you can
parse the Process Environment Block (PEB). It contains a linked list of all
the loaded modules. This technique has long been used by all sorts of
attackers, including virus writers. In order to implement this technique, you
will have to write a little Assembly language. The Last Stage of Delirium
Research Group has written a very good paper?® that details how to find the
linked list of DLLs within a process.

Rootkit.com
The previously shown sections of code for finding IAT, SSDT, IRP, and Inline hooks
are implemented in the tool VICE, available at:
www.rootkit.com/vault/fuzen_op/vice.zip

5. The Last Stage of Delirium Research Group, “Win32 Assembly Components” (updated 12
December 2002), available at: http://Isd-pl.net/windows_components.html

308 Chapter 10 Rootkit Detection

Tracing Execution

Another way to find hooks in APIs and in system services is to trace the exe-
cution of the calls. This method was used by Joanna Rutkowska in her tool
Patchfinder 2.° The premise is that hooks cause extra instructions to be exe-
cuted that would not be called by unhooked functions. Her software base-
lines several functions at boot, and requires that at that time the system is
not hooked. Once this baseline is recorded, the software can then periodi-
cally call the functions again, checking to see whether additional instruc-
tions have been executed in subsequent calls when compared to the baseline.

Although this technique works, it suffers from the fact that it requires a
clean baseline. Also, the number of instructions a particular function exe-
cutes can vary from one call to the next, even if it is not hooked. This is
largely due to the fact that the number of instructions depends on the data
set the function is parsing. What is an acceptable variance is a matter of
opinion. Although Rutkowska does state that, in her tests, the difference
between a hooked function and an unhooked function was significant when
tested against known rootkits, that difference could depend upon the
sophistication of the attacker.

Detecting Behavior

Detecting behavior is a promising new area in rootkit detection. It is per-
haps the most powerful. The goal of this technique is to catch the operating
system in a “lie.” If you find an API that returns values you know to be
false, not only have you identified the presence of a rootkit, but you have
also identified what the rootkit is trying to hide. The behavior you are look-
ing for is the lie. A caveat to this is that you must be able to determine what
the “truth” is without relying upon the API you are checking.

Detecting Hidden Files and Registry Keys

Mark Russinovich and Bryce Cogswell have released a tool called Rootkit-
Revealer.” It can detect hidden Registry entries as well as hidden files. To

6. J. Rutkowska, “Detecting Windows Server Compromises with Patchfinder 2”
(January 2004), available at: www.invisiblethings.org/papers/rootkits_detection_with_
patchfinder2.pdf

7. B. Cogswell and M. Russinovich, RootkitRevealer, available at: www.sysinternals.com/
ntw2k/freeware/rootkitreveal.shtml

Detecting Bebavior 309

determine what the “truth” is, RootkitRevealer parses the files that corre-
spond to the different Registry hives without the aide of the standard Win32
API calls, such as RegOpenKeyEx and RegQueryValueEx. It also parses the
file system at a very low level, avoiding the typical API calls. RootkitRevealer
then calls the highest level APIs to compare the result with what it knows to
be true. If a discrepancy is found, the behavior of the rootkit (and, hence,
what it is hiding) is identified. This technique is fairly straightforward, yet
very powerful.

Detecting Hidden Processes

Hidden processes and files are some of the most common threats you will
face. A hidden process is particularly threatening because it represents code
running on your system that you are completely unaware of. In this section,
you will learn different ways to detect processes the attacker does not want
you to see.

Hooking SwapContext

Hooking functions is useful during detection. The SwapContext function in
ntoskrnl.exe is called to swap the currently running thread’s context with
the thread’s context that is resuming execution. When SwapContext has
been called, the value contained in the EDI register is a pointer to the next
thread to be swapped in, and the value contained in the ESI register is a
pointer to the current thread, which is about to be swapped out. For this
detection method, replace the preamble of SwapContext with a five-byte
unconditional jump to your detour function. Your detour function should
verify that the KTHREAD of the thread to be swapped in (referenced by
the EDI register) points to an EPROCESS block that is appropriately linked
to the doubly linked list of EPROCESS blocks. With this information, you
can find a process that was hidden using the DKOM tricks outlined in
Chapter 7, Direct Kernel Object Manipulation. The reason this works is
that scheduling in the kernel is done on a thread basis, as you will recall,
and all threads are linked to their parent processes. This detection technique
was first documented by James Butler et. al.?

Alternatively, you could use this method to detect processes hidden by
hooking. By hooking SwapContext, you get the true list of processes. You

8. J. Butler et al., “Hidden Processes: The Implication for Intrusion Detection,” Proceedings
of the IEEE Workshop on Information Assurance (United States Military Academy, West
Point, NY), June 2003.

310 Chapter 10 Rootkit Detection

can then compare this data with that returned by the APIs used to list
processes, such as the NtQuerySystemInformation function that was
hooked in the section Hooking the System Service Descriptor Table in
Chapter 4.

Different Sources of Process Listings

There are ways to list the processes on the system other than going through
the ZwQuerySystemInformation function. DKOM and hooking tricks will
fool this API. However, a simple alternative like listing the ports with net-
stat.exe may reveal a hidden process, because it has a handle to a port open.
We discuss using netstat.exe in Chapter 4.

The process CSRSS.EXE is another source for finding almost all the
processes on the system. It has a handle to every process except these four:

m The Idle process

m The System process
m SMSS.EXE

m CSRSS.EXE

By walking the handles in CSRSS.EXE and identifying the processes
to which they refer, you obtain a data set to compare against the list of
processes returned by the APIs. Table 10-1 contains the offsets necessary in
order to find the handle table of CSRSS.EXE. Within the EPROCESS block
of every process is a pointer to a structure that is its HANDLE_TABLE. The
HANDLE_TABLE structure contains a pointer to the actual handle table,
among other information. For further information on how to parse the
handle table, see Russinovich and Solomon’s book, Microsoft Windows
Internals.”

Table 10-1 Offsets for finding handles from an EPROCESS block.

Windows 2000 | Windows XP | Windows 2003

Offset to Handle 0x128 Oxc4 Oxc4
Table in EPROCESS
Offset to the actual 0x8 0x0 0x0

table within the
Handle Table Structure

9. M. Russinovich and D. Solomon, Microsoft Windows Internals, Fourth Edition (Red-
mond, Wash.: Microsoft Press, 2005), pp. 124-49.

Detecting Bebavior 311

Another technique exists for identifying the list of processes without
calling a potentially corrupted API. You know from our earlier discussion
that every process’s EPROCESS block has a pointer to its handle table. It
turns out that all these handle table structures are linked by a LIST_ENTRY,
similarly to the way all processes are linked by a LIST_ENTRY (see Chap-
ter 7). By finding the handle table for any process and then walking the list
of handle tables, you can identify every process on the system. As of this
writing, we believe this is the technique used by BlackLight!? from the
antivirus company F-Secure.

In order to walk the list of handle tables, you need the offset of the
LIST_ENTRY within the handle table structure (in addition to the offset
within the EPROCESS block of the pointer to the handle table, which you
have from the Table 10-1). The HANDLE_TABLE structure also contains
the PID of the process that owns the handle table. The PID is also found
at different offsets depending on the version of the Windows operating sys-
tem. The offsets to identify every process based upon its PID are given in
Table 10-2.

As you traverse each process using the LIST_ENTRY values, you can
find the owning PIDs. Now you have another data set to compare against if
the Win32 API fails to list a particular process. The following function lists
all the processes on the system by walking the linked list of handle tables:

void ListProcessesByHandleTable(void)
{
PEPROCESS eproc;
PLIST_ENTRY start_plist, plist_hTable = NULL;
PDWORD d_pid;
// Get the current EPROCESS block.

Table 10-2 Offsets used to walk the handle tables and ID the processes.

Windows 2000 | Windows XP | Windows 2003

Offset to LIST_ENTRY 0x54 Ox1c Ox1c
within Handle Table

Offset to Process ID 0x10 0x08 0x08
within Handle Table

10. F-Secure BlackLight (Helsinki, Finland: F-Secure Corporation, 2005): www.f-
secure.com/blacklight/

312 Chapter 10 Rootkit Detection

eproc = PsGetCurrentProcess();
plist_hTable = (PLIST_ENTRY) ((x(PDWORD) ((DWORD) eproc +
HANDLETABLEOFFSET)) + HANDLELISTOFFSET);
start_plist = plist_hTable;
do
{
d_pid = (PDWORD) (((DWORD)p1ist_hTable + EPROCPIDOFFSET)
- HANDLELISTOFFSET);
// Print the Process ID as a debug message.
// You could store it to compare to API calls.
DbgPrint("Process ID: %d\n", =d_pid);
// Advance.
plist_hTable = plist_hTable->Flink;
}while (start_plist != plist_hTable);

This is just another way to identify a hidden process, but it is very effec-
tive. If the rootkit does not alter this list in the kernel, which can be difficult
to do, your detection method will catch its hidden processes. There are
other, similar structures in the kernel that could be used in this way as well.
Detection techniques are evolving as fast as rootkits are.

Conclusion

This chapter has shown you many different ways to detect rootkits. We have
covered practical implementations, and discussed the theory behind other
techniques.

Most of the methods in this chapter have focused on detecting hooks
and hidden processes. Whole books could be written on file-system detec-
tion, or on detecting covert communication channels. By identifying hooks,
though, you will be well on your way to detecting most public rootkits.

No detection algorithm is complete or foolproof. The art of detection is
just that—an art. As the attacker advances, the detection methods will
evolve.

One drawback of spelling out both rootkit and detection methodologies
is that this discussion favors the attacker. As methods to detect an attacker
are explained, the attacker will alter her methodology. However, the mere
fact that a particular subversion technique has not been written up in a
book or presented at a conference does not make anyone any safer. The level
of sophistication in the attacks presented in this book is beyond the reach of
the majority of so-called “hackers,” who are basically script-kiddies. We

Conclusion 313

hope the techniques discussed in this publication will become the first meth-
ods that security companies and operating system creators begin to defend
against.

More-advanced rootkit techniques and their detection are being devel-
oped as you read these words. Currently, we are aware of several efforts to
cloak rootkits in memory so that even memory scanning is corrupted. Other
groups are moving to hardware with embedded processors in order to scan
kernel memory without relying upon the operating system.!! Obviously
these two groups will be at odds. Since neither implementation is available
for public scrutiny, it is hard to say which one has the upper hand. We are
sure that each one will have its own limitations and weaknesses.

The rootkits and detection software mentioned in the previous para-
graph represent the extremes. Before you begin to worry about these new
tools, you need to address the most common threats. This book has shown
you what they are, and where the attacker is likely to go.

Recently we have seen companies showing their first signs of interest in
rootkit detection. We hope this trend will continue. Having more-informed
consumers will cause protection software to advance. The same can be said
for having more-informed attackers.

As we stated in Chapter 1, corporations are not motivated to protect
against a potential attack until there is an attack. You are now that
motivation!

11. N. Petroni, J. Molina, T. Fraser, and W. Arbaugh (University of Maryland, College Park,
Md.), “Copilot: A Coprocessor Based Kernel Runtime Integrity Monitor,” paper presented at
Usenix Security Symposium 2004, available at: www.usenix.org/events/sec04/tech/petroni.html

This chapter is excerpted from the book titled, Rootkits: Subverting the Windows Kernel,
authored by Jamie Butler and Greg Hoglund, published by Addison Wesley Professional in July
2005. ISBN 0321294319. Copyright 2006. Reprinted with permission. All rights reserved.

http://www.awprofessional.com/title/0321294319

