
The 2011 Mid-Year Top CYber
SeCuriTY riSkS reporT

Table of contents

Contributors	 2
Overview	 2
Vulnerability	trends	 4
	 Discovery	and	disclosure	of	new	vulnerabilities	 5
	 Further	analysis:	Zero	Day	Initiative	 7
	 Seeing	the	big	picture:	where	the	vulnerabilities	are	 9
	 Static	analysis	 10
	 Dynamic	analysis	 11
	 Manual	analysis	 13
Attack	trends	 14
	 New	vulnerabilities	are	unnecessary;	attacks	continue	to		
	 rise	regardless	 15
	 Cross-Site	Scripting	 17
	 SQL	Injection	plays	a	starring	role	 18
Mitigation	 20
	 Cross-Site	Request	Forgery	 21
	 SQL	Injection	 21
	 Cross-Site	Scripting	 23
	 Remote	File	Includes	 24
References	 24

2

Contributors
Producing	the	Top	Cyber	Security	Risks	Report	is	a	collaborative	effort	among	HP	DVLabs	and	other	
HP	teams,	such	as	Fortify	and	the	Application	Security	Center.	We	would	like	to	sincerely	thank	the	
Open	Source	Vulnerability	Database	(OSVDB)	for	allowing	print	rights	to	their	data	in	this	report.	For	
information	on	how	you	can	help	OSVDB:

https://osvdb.org/account/signup

http://osvdb.org/support

Contributor Title

Mike	Dausin Advanced	Security	Intelligence	Team	Lead

Adam	Hils Application	Security	Center	Product	Manager

Dan	Holden Director,	HP	DVLabs

Prajakta	Jagdale Web	Security	Research	Group	Lead

Jason	Jones Advanced	Security	Intelligence	Engineer

Rohan	Kotian Digital	Vaccine	Team	Lead

Jennifer	Lake Product	Marketing,	HP	DVLabs

Mark	Painter Application	Security	Center	Content	Strategist

Taylor	Anderson	McKinley Director,	Fortify	on	Demand

Alen	Puzic Advanced	Security	Intelligence	Engineer

Bob	Schiermann Senior	Technical	Publications	Writer

Overview
Increasingly,	organizations	face	security	risks	imposed	upon	them	by	attackers	intent	on	achieving	fame,	
glory,	or	profit.	Attackers,	familiar	with	common	vulnerabilities	inherent	in	many	of	today’s	websites,	
know	how	to	exploit	those	vulnerabilities	with	attacks	designed	specifically	to	take	advantage	of	them.	
Examples	of	such	destructive	activities	have	recently	hit	the	news	in	stories	about	“hacktivist”	groups	such	
as	LulzSec	and	Anonymous.

The	HP	2011	mid-year	edition	of	the	biannual	Top	Cyber	Security	Risks	Report	features	in-depth	analysis	
and	attack	data	from	HP	DVLabs,	Application	Security	Center,	and	Fortify	security	units	as	well	as	
vulnerability	disclosure	data	garnered	from	the	OSVDB.	Given	the	media	attention	paid	to	these	recent	
attacks,	as	well	as	data	HP	obtained	from	its	partners	and	customers,	the	bulk	of	this	report	is	focused	
on	Web	applications,	including	the	vulnerabilities	that	exist	and	the	attacks	that	are	exploiting	those	
weaknesses.	

This	report	is	intended	for	IT,	network,	and	security	administrators	who	are	responsible	for	securing	the	
public-facing	communication	with	an	organization’s	customers,	partners,	and	employees.	The	primary	
objective	of	this	edition	of	the	Top	Cyber	Security	Risks	Report	is	to	clearly	articulate	the	risks	and	
weaknesses	inherent	in	Web	applications.	We’ll	highlight	the	overall	vulnerability	landscape,	including	
vulnerabilities	in	commercially	available	and	custom-built	applications	that	can	lead	to	attacks,	as	well	as	
how	often	these	are	being	reported.	The	report	will	also	highlight	the	rising	number	of	attacks	that	are	
leveraging	the	vulnerabilities	discussed	throughout	the	paper.

https://osvdb.org/account/signup
http://osvdb.org/support

3

Key	findings	from	this	report	include:	

The number of Web application vulnerabilities that are reported differs significantly from the number
that actually exist.

The	Open	Source	Vulnerability	Database	(OSVDB)	monitors	vulnerability	discovery	and	reporting	through	
disclosure	programs.	Data	from	the	first	six	months	of	2011	shows	a	distinct	and	significant	decrease	in	
the	disclosure	of	new	vulnerabilities.	While	this	might	seem	like	good	news,	it	is	actually	the	opposite.	
Data	collected	from	scans	of	actual	customer	Web	application	deployments	indicates	that	the	number	of	
vulnerabilities	is	not	decreasing;	it	is	only	the	number	of	reported	new	vulnerabilities	that	is	decreasing.	
Production	websites	for	some	of	the	world’s	leading	organizations	are	still	bursting	with	vulnerabilities	
that	leave	the	websites	open	to	devastating	attacks.

Web application attacks are on the rise, despite the lack of new vulnerabilities being disclosed.

HP	DVLabs	compiled	attack	data	from	its	network	of	HP	TippingPoint	intrusion	prevention	systems	(IPS)	
to	determine	the	danger	these	vulnerabilities	pose	to	Internet	security.	Information	pulled	from	these	
systems	shows	that	the	number	of	attacks	on	Web	applications	is	ten	times	the	number	of	vulnerabilities	
being	reported.	This	fact	leads	us	to	believe	that	attackers	either	don’t	need	any	new	vulnerabilities	to	
achieve	their	goals,	or	that	there	are	plenty	of	vulnerabilities	in	custom	applications	that	are	unknown	or	
untracked,	increasing	the	attack	surface	to	attackers.	The	reality	is	likely	a	mixture	of	both.

Web application vulnerabilities are easy to exploit with a variety of attack techniques and tools.

Two	of	the	most	common	Web	application	attack	types,	Cross-Site	Scripting	(XSS)	and	SQL	Injection	
(SQLi),	are	covered	in-depth	in	this	report.	Based	on	data	obtained	from	HP	TippingPoint	IPS	devices,	
these	are	two	of	the	most	frequently	used	attack	types—though	many	times	for	different	reasons.		
XSS,	which	is	often	used	for	spam	or	phishing	attempts,	provides	an	easy	way	to	distribute	an	attack		
on	a	wide	scale.	Conversely,	SQLi	can	be	used	not	only	for	overwriting	a	database	and	then		
redirecting	visitors	to	a	malicious	site—similar	in	fashion	to	how	XSS	is	leveraged—but	also	for	massive	
database	theft.	

The	information	in	this	report	comes	from	various	sources,	allowing	HP	DVLabs	to	obtain	a	broad	set	of	
data	from	which	to	correlate	meaningful	findings.	These	sources	include:
•	A	worldwide	network	of	HP	TippingPoint	Intrusion	Prevention	Systems
•	Vulnerability	information	from	OSVDB	and	the	Zero	Day	Initiative	(ZDI)
•	Web	application	data	from	the	ASC	Web	Security	Research	Group,	the	EB	SW	BTO	Professional	

Services	Organization,	and	Fortify	on	Demand

4

Figure	1

Disclosed	vulnerabilities	according	to	OSVDB,	2000–2010

2000

To
ta

l v
ul

ne
ra

bi
lit

ie
s

11K

8.8K

6.6K

4.4K

2.2K

0
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Vulnerability	trends
To	better	understand	the	threat	landscape,	it	is	important	to	start	with	the	weaknesses	present	in	
computing	infrastructures.	These	weaknesses	typically	manifest	themselves	as	application	vulnerabilities,	
which	are	the	focus	of	this	section	of	the	report.	The	vulnerability	landscape	is	discussed	in	the	following	
three	sections:
•	Discovery and disclosure of new vulnerabilities:	This	section	describes	current	trends	in	vulnerability	

reporting,	highlighting	vulnerabilities	that	have	been	disclosed	in	commercially	available	computing	
systems,	including	Web	applications.	Based	on	the	trend	information,	one	can	discern	the	volume	and	
category	of	newly	discovered	vulnerabilities,	which	provides	insight	into	how	such	vulnerabilities	attract	
attackers’	attention.

•	Trends in vulnerability research:	This	section	highlights	data	from	the	HP	DVLabs’	Zero	Day	Initiative	
(ZDI)	vulnerability	research	program.	It	provides	a	deeper	look	into	the	types	of	vulnerabilities	that	the	
ZDI	researches	and	discovers	in	an	effort	to	get	a	better	sense	of	what	drives	a	security	attack.

•	Vulnerabilities discovered in production Web application environments:	This	section	highlights	results	
from	scans	of	live	Web	applications.	Data	in	this	section	demonstrates	the	vulnerabilities	that	are	
present	in	real-world	Web	applications,	including	new	vulnerabilities	that	are	unreported	as	well	as	
those	that	were	previously	disclosed,	and	as-yet	unfixed	vulnerabilities.	

5

Figure	2

Vulnerability	disclosure	according	to	OSVDB,	2000–2011,	broken	down	by	month

1.3K

1.04K

780

To
ta

l v
ul

ne
ra

bi
lit

ie
s

520

280

0

Discovery and disclosure of new vulnerabilities
Based	on	data	pulled	from	OSVDB,	the	total	number	of	new	vulnerabilities	reported	for	the	first	half	
of	2011	is	about	25	percent	lower	than	the	number	of	new	vulnerabilities	reported	at	mid-year	2010	
and	previous	years.	As	of	June	30,	2011,	OSVDB	cataloged	3,087	(Figure 1)	reported	vulnerabilities	in	
Internet-based	systems,	applications,	and	other	computing	tools,	as	compared	to	4,091	cataloged	in	the	
corresponding	period	in	2010.	

After	peaking	in	2006,	vulnerability	reporting—for	commercially	available	products—has	been	in	a	slow	
decline	(Figure 2).	The	reasons	for	this	decline	are	varied,	but	several	likely	reasons	stand	out.	Software	
makers	and	system	developers	have	increased	their	security	awareness	and	have	taken	steps	to	reduce	
vulnerabilities	prior	to	releasing	their	products.	The	second	reason	is	a	reduction	in	the	disclosures	of	
discovered	vulnerabilities,	motivated	by	a	desire	to	instead	sell	the	vulnerability	for	profit.	Another	is	that	
some	organizations	would	rather	announce	details	regarding	vulnerabilities	only	after	they’ve	been	fixed.

Despite	the	overall	decline	in	new	vulnerabilities	being	discovered	and	reported,	it	is	important	to	note	
that	the	ratio	of	vulnerabilities	discovered	in	Web	applications	still	makes	up	31	percent	(Figure 3)	of	all	
vulnerabilities	disclosed.	It	is	worth	noting	that	roughly	half	of	all	vulnerability	disclosures	since	2006	
have	involved	Web	applications,	so	the	downward	trend	for	the	first	half	of	2011	is	yet	another	proof	
point	for	the	overall	drop	in	vulnerability	disclosure	thus	far.		

6

Figure	3

Comparison	of	Web	application	vulnerabilities	versus	non-Web	application	vulnerabilities,	January–June	2011

31%

69%

Web apps vulns

Other vulns

The	reason	for	the	high	number	of	Web	application	vulnerabilities	is	a	matter	of	opportunity	and	profit.	
First,	the	number	of	Web	applications	in	circulation	grows	steadily	every	day.	A	Web	application	in	its	
simplest	form	ties	together	an	operating	system,	a	Web	server,	a	database,	and	some	top-level	
application	that	customers	use	to	interact	with	the	back-end	systems.	Many	organizations	have	adopted	
this	model	for	interacting	with	customers	through	retail	sites,	online	banking	or	finance	applications,	or	
even	appointment	scheduling.	In	addition,	many	organizations	have	confidential	or	sensitive	data	stored	
in	the	database(s)	connected	to	these	applications,	offering	an	almost	limitless	field	of	opportunity	for	
attackers,	who	view	it	all	as	a	very	lucrative	proposition.

When	vulnerabilities	are	broken	down	by	category,	some	interesting	trends	begin	to	emerge.	Data	
presented	in	Figure 4	shows	that	certain	types	of	vulnerabilities	are	more	frequently	discovered	and	
disclosed.	Cross-Site	Scripting	(XSS)	still	comprises	the	most	significant	amount	of	new	Web	application	
vulnerability	disclosures.	XSS	is	commonly	used	for	spam,	phishing,	and	Web	browser	exploits.	Buffer	
Overflow	and	Denial	of	Service	(DoS)	vulnerabilities	round	out	the	top	three.

Buffer Overflow
A	buffer	overflow	attack	occurs	when	attackers	purposely	overload	a	systems’	temporary	memory	(called	a	buffer)	to	wreak	
havoc	on	a	victim’s	machine.	Oftentimes	attackers	also	include	instructional	code	in	information	they	use	to	overflow	the	memory.	
That	code	can	instruct	the	affected	system	to	access	or	change	confidential	data	or	even	send	information	back	to	the	attacker.

Denial of Service (DoS)
A	type	of	vulnerability	that	allows	an	attacker	to	exhaust	computer	resources	on	a	vulnerable	system	to	a	point	where	legitimate	
usage	of	that	system	is	impossible.

Distributed Denial of Service (DDos)
A	type	of	DoS	attack	that	employs	a	number	of	separate	computers,	which	simultaneously	launch	a	Denial	of	Service	attack	
against	a	single	application	or	system.	

7

Figure	4

Disclosed	vulnerabilities	broken	down	by	category,	January	2000–June	2011

To
ta

l v
ul

ne
ra

bi
lit

ie
s

3K

2.4K

1.8K

1.2K

600

0

20
00

20
01

20
02

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

Cross Site Scripting Cross Site Request Forgery SQL Injection Buffer Overflow Remote File Include Denial of Service

It	is	interesting	to	note	that	the	breakdown	of	popular	vulnerabilities	by	category	remains	fairly	consistent	
over	the	past	three	years	(Figure 5),	likely	because	XSS	vulnerabilities	are	relatively	easy	to	find	and	are	
very	useful	to	attackers.	Spammers	and	phishers	are	always	looking	for	ways	to	make	their	trade	more	
profitable,	and	XSS	continues	to	be	a	useful	vulnerability	for	these	purposes.

Further analysis: Zero Day Initiative
The	Zero	Day	Initiative	(ZDI),	founded	by	HP	TippingPoint	in	2005,	is	a	program	for	rewarding	security	
researchers	for	responsibly	disclosing	vulnerabilities.	The	program	is	designed	so	that	researchers	
provide	HP	TippingPoint	with	exclusive	information	about	previously	unpatched	vulnerabilities	they	
have	discovered.	HP	DVLabs	validates	the	vulnerability	and	then	works	with	the	affected	vendor	until	
the	vulnerability	is	patched.	At	the	same	time,	HP	DVLabs	develops	a	security	solution	that	provides	
preemptive	protection	for	HP’s	customers	even	before	the	application	vendor	distributes	a	fix	for	the	
vulnerability.

From	2005	through	June	2011,	ZDI	and	HP	DVLabs	researchers	have	discovered	and	responsibly	
disclosed	more	than	980	vulnerabilities	in	popular	computing	systems	including	Web	browsers,	media	
players,	and	document	readers.	

In	2010,	ZDI	announced	changes	to	its	disclosure	policy	that	incent	vendors	to	introduce	more	timely	
bug	fixes	into	their	products.	Under	the	new	policy,	ZDI	offers	the	affected	vendors	six	months	to	issue	
patches,	fixes,	or	workarounds	for	undisclosed	vulnerabilities	reported	to	them	via	the	ZDI	program.	
If,	after	six	months,	the	vendor	has	not	issued	a	fix	or	cleared	an	exception	with	ZDI,	limited	detail	of	
the	vulnerability	will	be	disclosed	so	that	the	defensive	community	and	consumers	of	these	affected	
applications	can	find	their	own	ways	to	mitigate	the	risk	associated	with	these	open	bugs.	Further	
information	regarding	the	ZDI	disclosure	policy	can	be	found	here:		
http://www.zerodayinitiative.com/advisories/disclosure_policy/.

http://www.zerodayinitiative.com/advisories/disclosure_policy/

8

Figure	5

Three-year	view:	popular	vulnerabilities	by	category

0
200
400
600
800

1000
1200
1400
1600
1800

2009 2010 2011

BO

DOS

PHP

SQLi

XSS

CSRF

(through 6/30/2011)

In	the	table	(Figure 6)	below	you	can	see	the	top	10	applications	with	vulnerabilities	disclosed	through	
the	ZDI	since	the	program	was	started	in	2005.

For	the	first	half	of	2011,	DVLabs	and	the	ZDI	either	discovered	or	acquired,	and	disclosed	to		
affected	vendors,	231	vulnerabilities	in	a	wide	range	of	products.	On	the	next	page	(Figure 7)	you	
can	see	the	top	10	applications	for	which	vulnerabilities	were	disclosed	through	the	ZDI.	While	only	
four	of	the	10	applications	are	related	to	Web	browsers,	the	total	number	of	vulnerabilities	from	these	
applications	is	staggering.	

Figure	6

Most	frequently	reported	vulnerabilities	disclosed	through	ZDI	from	2005–2011

0 10 20 30 40 50 60 70

Apple Quicktime
Microsoft Internet Explorer

Oracle/Sun Java
Microsoft Office
Mozilla Firefox
Apple Webkit

RealNetworks Real Player
Adobe Shockwave

HP OpenView
Adobe Reader

9

Figure	7

Most	frequently	reported	vulnerabilities	disclosed	through	ZDI	in	2011

0 5 10 15 20 25 30

CA Total Defense

IBM Lotus (general)

Microsoft Office Tools

HP OpenView Network Node Manager

Novell iPrint

Apple WebKit

Adobe Reader

HP Data Protector

Oracle Java (general)

Adobe Shockwave

Seeing the big picture: where the vulnerabilites are
So	far,	this	report	has	focused	primarily	on	vulnerability	disclosure,	which	may	or	may	not	reflect	the	
complete	picture	of	vulnerability	trends	unfolding	on	the	Internet.	In	an	effort	to	see	a	clearer	picture	of	
the	real-world	vulnerability	landscape,	the	HP	Application	Security	Center	Web	Security	Research	Group	
(WSRG)	compiled	results	from	over	2,750	security	assessments	performed	against	a	variety	of	customer	
Web	applications	during	the	first	six	months	of	2011.	While	it	is	good	to	see	an	overall	reduction	in	the	
number	of	new	vulnerabilities	being	reported,	that	has	unfortunately	had	no	impact	on	the	dangers	of	
exploitation.	These	results	have	been	divided	into	three	sections:	

•	The	first	correlates	results	from	almost	250	Web	applications	analyzed	statically	(at	the	line-of-code	
level)	for	Web	application	vulnerabilities.	

•	The	second	group	includes	results	from	dynamic	analysis	(during	the	actual	running	of	the	application)	
conducted	against	over	2,500	unique	Web	applications.	

•	Finally,	the	third	set	of	analyses	includes	a	closer	inspection	of	a	much	smaller	group	of	assessments	to	
explore	the	different	ways	in	which	Web	application	vulnerabilities	can	be	exploited,	how	that	impacts	
the	overall	risk	standing	of	the	application,	and	what	mitigation	measures	developers	are	employing	
that	are	not	working.	

Each	set	of	analyses	will	shed	light	on	the	nature—and	seriousness—of	Web	application	vulnerabilities	
and	how	prevalent	they	are.	What	security	professionals	have	steadily	witnessed	in	the	last	decade	
is	that	attacks	have	moved	from	defacement	and	general	annoyance	to	one-time	attacks	designed	to	
steal	as	much	data	as	possible,	and	from	there	to	pernicious	ongoing	attacks	that	attempt	to	distribute	
malware	and	steal	as	much	data	for	as	long	as	possible	without	being	detected.	It	is	imperative	to	
realize	that	it	often	takes	only	one	Web	application	vulnerability	for	an	entire	system	to	be	compromised.	
The	enormity	of	the	danger	cannot	be	overstated.	

10

Static analysis
The	first	set	of	applications	was	statically	analyzed	by	the	WSRG	in	conjunction	with	the	HP	Fortify	on	
Demand	group	and	included	236	unique	applications.	The	first	statistic	is	truly	staggering:	a	full	69%	
of	the	applications	tested	contained	at	least	one	SQLi	flaw.	Fundamentally,	SQLi	is	an	attack	upon	the	
Web	application,	not	the	Web	server	or	the	operating	system	itself.	As	the	name	implies,	it	is	the	act	of	
adding	unexpected	SQL	commands	to	a	query,	thereby	manipulating	the	database	in	ways	unintended	
by	the	database	administrator	or	developer.	When	the	attack	is	successful,	data	can	be	extracted,	
modified,	inserted,	or	deleted	from	database	servers	that	are	used	by	vulnerable	Web	applications.	If	
attackers	can	find	one	SQL	Injection	vulnerability	in	an	application,	there’s	a	very	good	chance	they	can	
compromise	it	completely.	A	lot	of	high-profile	attacks	over	the	course	of	the	first	half	of	2011	were	the	
direct	result	of	SQLi.	Even	Lady	Gaga	isn’t	immune	to	SQLi.

The	second	most	prevalent	vulnerability	discovered	in	this	series	of	assessments	was	Cross-Site	Scripting	
(XSS),	(specifically,	the	reflected	variety).	Put	simply,	reflected	XSS	attacks	come	from	somewhere	else,	
such	as	when	user-supplied	input	from	a	Web	client	is	immediately	included	via	server-side	scripts	in	
a	dynamically	generated	Web	page.	Using	some	social	engineering,	an	attacker	can	trick	a	victim,	
perhaps	through	a	malicious	link	or	a	“rigged”	form,	to	submit	information	which	will	be	altered	to	
include	attack	code	and	then	sent	to	the	legitimate	server.	The	injected	code	is	then	reflected	back	to	the	
user’s	browser	which	executes	it	because	it	came	from	a	trusted	server.	64%	of	the	assessed	applications	
contained	at	least	one	reflected	XSS	flaw.

Its	sister	vulnerability,	persistent	XSS,	was	discovered	in	42%	of	the	applications	tested	in	this	group.	
Persistent	attacks	are	just	that:	in	some	form	they	are	stored	on	the	target	server,	such	as	in	a	database,	
or	via	a	submission	to	a	bulletin	board	or	visitor	log.	The	victim	will	retrieve	and	execute	the	attack	code	
in	his	browser	when	a	request	is	made	for	the	stored	information.	What’s	also	interesting	about	this	
particular	vulnerability	is	that	even	though	it	was	found	in	27%	fewer	of	the	applications	than	SQLi,	there	
were	actually	more	unique	instances	of	persistent	XSS	discovered	than	any	other	vulnerability	for	which	
the	WSRG	tested.	The	impacts	of	each	flavor	of	XSS	are	the	same.

A	more	generic	vulnerability,	Header	Manipulation,	was	found	in	37%	of	the	applications.	Header	
Manipulation	vulnerabilities	occur	when	data	enters	a	Web	application	through	an	untrusted	source,	
most	frequently	a	Web	request.	The	data	is	included	in	an	HTTP	response	header	sent	to	a	Web	user	
without	being	validated.	As	with	many	Web	application	security	vulnerabilities,	Header	Manipulation	is	
a	means	to	an	end,	not	an	end	in	itself.	At	its	root,	the	vulnerability	is	straightforward:	an	attacker	passes	
malicious	data	to	a	vulnerable	application,	and	the	application	includes	the	data	in	an	HTTP	response	
header.	Including	unvalidated	data	in	an	HTTP	response	header	can	enable	cache-poisoning,	XSS,	cross-
user	defacement,	page	hijacking,	cookie	manipulation,	or	open	redirect	vulnerabilities.	And	18%	of	the	
applications	also	contained	a	specific	cookie	Header	Manipulation	vulnerability.

Cross-Site Scripting (XSS)
A	type	of	Web	application	vulnerability	that	takes	advantage	of	a	lack	of	input	validation	to	enable	an	attacker	to	inject	malicious	
client-side	code	into	a	Web	page	which	is	viewed	by	a	victim’s	Web	browser.	Various	forms	of	XSS	are	currently	being	used	to	
phish	website	users	into	revealing	sensitive	information	such	as	usernames,	passwords,	and	credit	card	details.	XSS	can	generally	
be	divided	into	stored,	reflected,	and	DOM-based	attacks.	Stored	XSS	results	in	the	payload	being	persisted	on	the	target	system	
in	either	the	database	or	the	file	system.	The	victims	will	retrieve	and	execute	the	attack	code	in	their	browser	when	a	request	is	
made	for	the	stored	information.	Execution	of	the	reflected	XSS	attacks,	on	the	other	hand,	occurs	when	user	input	from	a	Web	client	
is	immediately	included	via	server-side	scripts	in	a	dynamically	generated	Web	page.	DOM-based	XSS	attacks	rely	on	malicious	
modification	of	the	DOM	environment	in	a	victim’s	browser.	It	differs	from	the	stored	and	reflected	XSS	in	the	fact	that	the	malicious	
data	is	never	sent	to	the	server.	Via	some	social	engineering,	an	attacker	can	trick	a	victim,	such	as	through	a	malicious	link	or	
“rigged”	form,	to	submit	information	that	will	be	altered	to	include	attack	code	and	then	sent	to	the	legitimate	server.	

Command Execution
A	type	of	vulnerability	that	takes	advantage	of	a	lack	of	input	validation	on	a	website	in	order	to	run	operating	system	commands	
on	the	vulnerable	application	server.	Typically,	this	vulnerability	category	allows	attackers	to	exploit	Web	applications	that	pass	user	
data	as	parameters	to	I/O	operations	by	appending	OS	commands	to	user	supplied	input	using	special	characters	such	as	a	pipe	(|).	

http://www.mirror.co.uk/celebs/news/2011/07/16/lady-gaga-website-hacked-and-fans-details-stolen-115875-23274356/

11

Another	widespread	vulnerability	discovered	during	the	WSRG	analysis	was	Path	Manipulation.	This	
occurs	when	user-supplied	input	can	control	or	otherwise	influence	file	names	or	paths	utilized	in	file	
system	operations,	which	can	then	give	an	attacker	the	means	to	access	or	change	protected	system	
resources.	63%	of	the	scans	detected	a	Path	Manipulation	vulnerability.

While	none	of	the	vulnerabilities	discussed	so	far	can	be	considered	innocuous,	one	extremely	
dangerous	vulnerability	was	also	detected	in	large	numbers.	Command	Injection	occurs	when	a	remote	
user	can	supply	a	specially	crafted	value	to	execute	arbitrary	operating	system	commands	on	the	target	
system.	35%	of	the	applications	contained	at	least	one	Command	Injection	vulnerability.

Another	significant	vulnerability	occurs	when	developers	leave	passwords	hardcoded	in	their	code.	
Hardcoded	passwords	were	discovered	in	30%	of	the	applications.	An	attacker	who	discovers	a	
hardcoded	password	could	obviously	gain	unintended	access	to	the	application.	The	damages	would	
depend	on	the	functionality	of	the	application	itself.

5%	of	the	applications	contained	XPath	Injection	vulnerabilities.	XPath	Injection	is	very	similar	to	SQLi.	
In	that	scenario,	SQL	commands	are	modified	by	an	attacker	to	gain	access	to	database	contents	and	
information.	In	XPath	Injection,	XPath	statements	are	modified	to	gain	access	to	the	data	contained	within	
an	XML	document,	which	often	serves	as	the	“XML	database.”	Importantly,	XPath	does	not	utilize	access	
control	restrictions	as	SQL	does	via	privileges,	so	a	successful	XPath	Injection	attack	will	yield	complete	
results	in	that	all	the	data	in	the	document	will	be	revealed.	The	XPath	language	is	also	uniform,	unlike	
SQL,	so	that	any	installed	implementation	is	potentially	vulnerable.	In	these	aspects,	XPath	Injection	is	
easier	to	execute	than	SQLi	and	has	greater	results	returned	on	affected	systems.	

Another	interesting	set	of	data	describes	the	number	of	vulnerabilities	found	per	application,	and	per	
1000	lines	of	code.	During	initial	scans	(before	remediation	efforts),	410	vulnerabilities	were	found	on	
average	for	each	of	the	236	applications	evaluated,	equating	to	4.6	vulnerabilities	per	1000	lines	of	
code.	Of	the	three	languages	counted,	PHP	was	the	most	vulnerable	programming	language,	with	13.1	
vulnerabilities	per	1000	lines,	followed	by	.Net	at	7.7.	Java	was	the	most	secure,	at	4.1.

Dynamic analysis
The	second	set	of	data	was	collected	by	the	WSRG	in	conjunction	with	the	HP	Enterprise	Business	
Software	BTO	Professional	Services	organization	and	was	split	across	three	enterprise-level	
organizations:	one	from	the	energy	sector,	one	from	banking	and	finance,	and	one	from	product	
manufacturing	and	distribution	to	see	how	Web	application	vulnerabilities	are	presented	in	real-world	
applications	and	are	encountered	across	all	types	of	businesses.	Each	assessment	was	conducted	using	
dynamic	(real-time)	analysis	methods.	The	first	two	sets	of	data	were	analyzed	against	a	small	(less	than	
20)	number	of	applications,	while	the	last	set	consisted	of	more	than	2,300	scans	and	was	actually	
analyzed in	far	greater	depth	than	the	first	two.	However,	all	three	sets	of	data	yielded	interesting	results.	
Each	was	tested	for	a	series	of	common,	yet	dangerous,	Web	application	vulnerabilities.	

Cross-Site Request Forgery (CSRF)
A	type	of	Web	application	vulnerability	that	takes	advantage	of	a	lack	of	authorization	on	a	vulnerable	Web	application	to	allow	
an	attacker	to	execute	application	commands	on	behalf	of	another	user	of	the	application.	The	typical	scenario	of	a	Cross-Site	
Request	Forgery	attack	involves	an	attacker	tricking	a	victim	into	clicking	on	a	specially	crafted	link	that	is	designed	to	perform	a	
malicious	operation	on	behalf	of	the	victim.	For	example,	a	victim	may	click	on	a	malicious	link	that	forces	the	victim	to	transfer	
money	from	the	victim’s	bank	account	to	an	attacker’s	bank	account.

Remote File Include
A	type	of	Web	application	vulnerability	that	takes	advantage	of	a	lack	of	input	validation	on	a	website	in	order	to	execute	
unauthorized	code	(typically	PHP	or	ASP)	on	a	vulnerable	server.	Remote	File	Include	attacks	typically	arise	from	a	scripting	
language’s	inherent	ability	to	include	code	from	external	URLs,	or	arbitrary	local	files.	It	is	this	ability	that	allows	the	attacker	to	
include	unauthorized	code	from	an	external	source.

12

The	energy	sector	applications	contained	a	number	of	vulnerabilities	that	could	be	utilized	to	compromise	
the	system.	For	example,	23%	were	vulnerable	to	SQLi.	15.3%	were	vulnerable	to	Remote	File	Include	
(RFI)	vulnerabilities.	53.8%	were	vulnerable	to	Reflected	XSS,	while	another	23%	were	vulnerable	to	
Persistent	XSS.	Also,	38.4%	were	vulnerable	to	Cross-Site	Request	Forgery.	Cross-Site	Request	Forgery	
relies	on	a	browser	to	retrieve	and	execute	an	attack.	It	includes	a	link	or	script	in	a	page	that	connects	
to	a	site	that	the	user	may	have	recently	used.	The	script	then	conducts	seemingly	authorized,	yet	
malicious,	actions	on	the	user’s	behalf.	Other	vulnerabilities	could	be	exploited	to	block	the	access	of	
legitimate	users.	30.76%	were	susceptible	to	a	Buffer	Overflow,	with	another	15.3%	vulnerable	to	a	
Denial-of-Service	attack.	It	is	important	to	note	that	an	application	that	suffers	from	any	one	of	these	
vulnerabilities	would	fail	a	PCI	compliance	audit.

While	not	as	many	specific	vulnerabilities	were	detected,	the	banking	and	finance	sector	applications	
also	contained	a	large	number	of	disconcerting	vulnerabilities.	58.3%	of	the	applications	were	
vulnerable	to	Reflected	XSS,	but	only	8.3%	contained	a	Persistent	XSS	vulnerability.	16.6%	were	
vulnerable	to	Cross-Site	Request	Forgery.	Exploitation	of	any	of	those	vulnerabilities	could	result	in	an	
attacker	gaining	legitimate	authentication	credentials,	in	addition	to	other	possibilities.	In	a	bit	of	a	
good	anomaly	for	this	particular	organization,	only	8.3%	of	the	applications	were	found	to	contain	
either	a	SQLi	or	RFI	vulnerability.	Yet,	that	positive	security	posture	is	somewhat	lessened	by	the	fact	that	
21.4%	of	the	applications	weren’t	using	SSL	cookies.	And	50%	suffered	from	Directory	Path	Disclosure	
vulnerabilities,	which	attackers	can	utilize	to	formulate	more	damaging	attacks	(think	of	this	as	a	step	in	
reconnaissance—if you	know	where	something	is,	it’s	much	easier	to	attack	it).

Finally,	the	third	set	of	applications	(all	2,345	of	them)	is	utilized	by	a	very	large	product	manufacturing	
and	distribution	organization.	Although	greater	in	number,	these	applications	were	actually	assessed	at	
a	higher	level	of	granularity	than	the	preceding	sets	of	data.	Of	these	applications,	31%	were	vulnerable	
to	XSS	and	15%	were	vulnerable	to	a	version	of	XSS	that	required	user	interaction,	such	as	clicking	a	link	
or	moving	the	mouse	pointer	over	text.	Another	6.5%	were	vulnerable	to	a	specific	form	of	XSS	resulting	
from	the	way	Apache	Web	servers	incorrectly	filtered	input	in	the	“Expect”	header.	Another	5.8%	were	
vulnerable	due	to	specific	filtering	vulnerabilities	in	Microsoft®	ASP.NET.

While	only	1.9%	of	the	applications	were	confirmed	to	be	vulnerable	to	SQLi,	and	2.3%	registered	as	
vulnerable	to	SQLi	albeit	with	no	data	able	to	be	extracted,	18%	were	still	vulnerable	to	Blind	SQLi.	
Normal	SQLi	attacks	depend	in	a	large	measure	on	an	attacker	reverse-engineering	portions	of	the	
original	SQL	query	using	information	gained	from	error	messages.	However,	applications	can	still	be	
susceptible	to	Blind	SQLi	even	if	no	error	message	is	displayed.	The	consequences	are	the	same.

One	interesting	statistic	is	that	only	two	of	these	applications	registered	as	being	vulnerable	to	Cross-
Site	Request	Forgery.	When	coding	applications,	developers	tend	to	make	the	same	security	mistakes	in	
more	than	once	place.	In	other	words,	if	an	application	is	vulnerable	to	SQLi,	chances	are	it’s	vulnerable	
in	many	locations,	not	just	one.	However,	the	opposite	can	hold	true,	too.	It	is	apparent	that	these	
developers	utilized	anti-CSRF	tokens	or	other	effective	counter	measures	in	their	applications.	

Another	issue	that	the	WSRG	examined	was	that	of	information	leakage.	Information	leakage	
consists	of	directory	probing,	error	messages	that	reveal	information	unintended	by	the	developer,	
common	“guessed”	directories,	and	other	items	that	could	reveal	information	beneficial	to	escalating	
attack	methodology.	Successful	exploitation	would	give	an	attacker	unauthorized	access	to	sensitive	
information.	The	main	problem	with	information	leakage	is	that	the	information	gained	from	these	attacks	
can	be	used	to	conduct	far	more	damaging	attacks.	

18.8%	of	the	applications	contained	login	information	sent	over	unencrypted	connection.	Any	area	of	a	
Web	application	that	possibly	contains	sensitive	information	or	access	to	privileged	functionality	such	as	
remote	site	administration	functionality	should	utilize	SSL	or	another	form	of	encryption	to	prevent	login	
information	from	being	sniffed	or	otherwise	intercepted	or	stolen.	5.6%	of	the	applications	contained	
a	known	file	or	directory.	One	of	the	most	important	aspects	of	Web	application	security	is	to	restrict	

13

access	to	important	files	or	directories	to	only	those	individuals	who	actually	need	to	access	them.	2.2%	
contained	some	form	of	code	disclosure	vulnerability.	An	attacker	who	gains	access	to	the	source	code	of	
an	application	obviously	has	an	upper	hand	in	determining	the	best	method	of	attacking	it.

Manual analysis
The	WSRG	also	conducted	extensive	manual	analysis	of	vulnerabilities	discovered	while	conducting	
automated	security	tests	for	a	different	group	of	commercial	applications.	The	analysis	focused	on	
discovering	trends	that	help:

1.	 Determine	the	impact	of	various	factors	pertaining	to	the	vulnerability	source/context	on	its	criticality	
and	exploitability	

2.	Assess	the	mitigations	put	in	place	by	developers	to	secure	their	Web	applications	against	the	most	
common	vulnerability	categories	and	understand	their	shortcomings

While	securing	Web	applications	against	every	possible	threat	is	important,	not	all	vulnerabilities	are	
created	equal,	even	if	they	belong	to	the	same	category.	In	the	case	of	production	systems,	the	discovery	
of	critical	vulnerabilities	necessitates	an	immediate	response.	This,	in	turn,	entails	prioritizing	the	
discovered	issues	based	on	the	exploitability,	severity,	and	impact	on	the	security	posture	of	the	overall	
system.	The	manual	analysis	helped	the	WSRG	identify	the	following	numerous	factors	that	impact	a	
vulnerability’s	true	risk	rating.

1.	 Access	control	requirement	for	the	resource
Any	resource	requiring	the	user	to	authenticate	adds	an	extra	layer	of	complexity	for	the	attacker	in	
discovering	the	issue.	However,	once	discovered,	a	successful	exploitation	can	prove	deadly,	allowing	
the	attacker	to	bypass	the	access	control,	escalate	privileges,	and	gain	control	over	protected	and	
possibly	sensitive	sections	of	the	system.	46%	of	the	vulnerabilities	were	discovered	in	protected	
resources.	

2.	 Function/Purpose	of	the	resource
Obviously,	the	sensitivity	of	the	Web	page	content	and	its	purpose	greatly	impacts	the	criticality	of	
any	vulnerability.	An	XSS	vulnerability	in	the	login	page	provides	the	attacker	with	more	leverage	to	
achieve	a	complete	takeover	of	the	system	than	one	that	exists	on	a	search	page.	Ultimately,	any	given	
security	issue	can	be	turned	into	a	deadly	weapon	against	a	Web	application.	However,	the	more	
effort	required	to	exploit	a	vulnerability,	the	less	attractive	the	application	becomes	to	an	attacker.		
In	the	sample	set,	31%	of	vulnerabilities	were	detected	in	login	scripts	while	46%	were	detected	in	
search	pages.

3.	 In-house	applications	vs.	third-party	components
During	manual	analysis,	the	WSRG	discovered	that	vulnerabilities	were	detected	in	both	custom	
code	as	well	as	in	that	of	third-party	applications.	In	62%	of	the	applications,	the	vulnerabilities	
were	concentrated	in	the	sections	of	applications	that	were	developed	in-house.	In	31%	of	the	
applications,	the	distribution	was	exactly	reversed.	Security	issues	in	third-party	software	are	definitely	
more	concerning	since	those	allow	the	attackers	to	compromise	multiple	systems	by	possibly	using	
the	same	exploit.	Issues	detected	within	custom	code	could	take	longer	to	fix	since	they	will	require	
understanding	of	all	the	vulnerable	input	usages	and	then	applying	a	separate	fix	for	each.

4.	Complexity	of	the	exploit	that	led	to	the	discovery	of	the	vulnerability
Attackers	always	prefer	targeting	systems	that	are	easier	and	faster	to	compromise.	Thus,	any	
application	vulnerable	to	simple	attack	vectors	will	attract	more	attackers	than	one	that	has	at	least	
some	mitigating	security	controls	in	place.	69%	of	vulnerabilities	were	discovered	using	“plain	vanilla”	
attack	vectors.	

14

Despite	the	high-profile	nature	of	recent	Web	application	compromises,	data	breaches,	and	increased	
fines	for	noncompliance	with	governmental	regulations,	a	large	number	of	applications	still	remain	
vulnerable	to	the	most	rudimentary	Web	attacks.	The	WSRG	has	determined	that	a	few	recurring	issues	
contribute	to	this	problem:	

1.	 Mitigations	applied	without	accurately	understanding	the	usage	context	of	the	user	input
23%	of	the	Web	applications	in	the	sample	set	actually	employed	the	HTML	encoding	technique	to	
protect	against	XSS,	15%	used	a	blacklisting	approach,	and	54%	had	no	protection	mechanisms	
implemented.	The	mitigations	failed	to	provide	any	protection	because	in	54%	of	the	applications,	
the	reflections	occurred	within	the	client-side	JavaScript	code	blocks,	making	the	security	controls	
ineffective.

2.	Reliance	on	specific	mitigation	techniques	instead	of	a	holistic	approach
Manual	inspection	of	the	client-side	application	source	code	indicated	that	the	few	security	controls	
employed	by	the	developers	were	applied	in	response	to	individual	vulnerabilities	discovered	more	
than	likely	during	automated	scans.	There	was	no	indication	of	development	having	adhered	to	any	
form	of	a	Secure	Development	Lifecycle	(SDLC)	process	to	develop	any	of	the	tested	applications.	This	
was	evident	in	the	unbalanced	distribution	of	vulnerabilities	in	different	sections	of	the	applications.

3.	 Lack	of	uniformity	in	implementation	of	security	controls
Also,	the	manual	analysis	revealed	that	while	certain	sections	of	Web	pages	were	protected	against	
XSS	attacks,	others	were	left	open	to	exploitation.	This	behavior	could	be	attributed	to	various	
factors	such	as	the	mixture	of	in-house	code	vs.	third-party	application	code,	division	of	application	
development	efforts	with	no	uniform	process	put	in	place	to	govern	best	practices,	a	reactive	
approach	to	securing	applications,	and	so	on.	This	lack	of	uniformity	obviously	makes	vulnerability	
patching	extremely	complex	and	challenging.	The	best	approach	is	to	establish	a	well-defined	secure	
development	process	that	is	uniformly	adhered	to	by	all	the	parties	involved	in	the	creation	of	the	
application.

Attack	trends
The	previous	section	provided	a	view	into	the	vulnerability	landscape—specifically	where	and	how	
applications	can	be	compromised.	While	vulnerabilities	provide	a	solid	understanding	of	what	exists,	
looking	at	what	attacks	are	exploiting	those	vulnerabilities	and	how	often	will	provide	a	deeper	
understanding	of	enterprise	risk.	Attack	data	from	this	section	is	broken	out	into	three	areas:

• Frequency and number of attacks.	Data	in	this	section	is	obtained	from	a	network	of	HP	TippingPoint	
Intrusion	Prevention	System	(IPS)	devices.	This	data	is	important	for	understanding	the	risk	severity	of	
particular	vulnerabilities.	

• A deeper look at Cross-Site Scripting (XSS) attacks.	XSS	is	one	of	the	most	frequent	attacks	measured	
on	HP	TippingPoint	IPS	devices.	This	section	delves	into	the	different	types	of	XSS	attacks	and	the	
specific	danger	inherent	in	these	variants.	

• A timeline and breakdown of SQL Injection (SQLi) attacks.	SQLi	is	the	most	frequent	Web	application	
attack	that	we	track.	This	section	looks	at	how	SQLi	has	evolved	and	why	it	poses	such	a	huge	risk	for	
today’s	enterprises.	

15

Figure	8

Total	number	of	attacks	at	mid-year,	2009–2011

0

200000000

400000000

600000000

800000000

1000000000

1200000000

1400000000

2009 2010 2011

New vulnerabilities are unnecessary; attacks continue to rise regardless
Despite	the	fact	that	the	level	of	new	vulnerability	discoveries	is	dropping,	there	is	no	shortage	of	
attacks.	While	this	is	true	across	the	board—every	system,	every	category—it	is	especially	significant	
when	discussing	Web	applications.	Given	the	levels	of	vulnerabilities	that	are	present	in	so	many	
Web	applications,	it’s	a	fair	assessment	that	this	rise	in	attacks	is	due	to	attackers	leveraging	existing	
vulnerabilities.	

First,	the	trend	of	attacks	for	the	first	half	of	the	year	for	the	past	three	years	(Figure 8)	depicts	a	distinct	
upward	spike.	

Next,	comparing	Web	application	attacks	at	the	mid-year	for	the	past	three	years	(Figure 9),	there	is	a	
distinct	increase	in	attacks	on	Web	applications—nearly	a	double	year-on-year	growth	for	attacks	aimed	
at	these	applications.	

Looking	at	the	data	another	way—comparing	numbers	of	Web	application	attacks	to	all	attacks	in	the	
graph	(Figure 10)	on	the	next	page—it	is	interesting	to	note	that	the	ration	of	Web	application	attacks	is	
actually	a	bit	higher.

16

Figure	9

Total	number	of	Web	application	attacks	at	mid-year,	2009–2011

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

2009 2010 2011
(through 6/30/2011)

When	Web	application	attacks	are	broken	down	by	category,	we	can	see	some	definite	trends	taking	
shape.	Let’s	refer	back	to	the	three	types	of	Web	application	vulnerabilities	discussed	in	an	earlier	
section:	PHP/Remote	File	Include	(PHP/RFI),	SQL	Injection	(SQLi),	and	Cross-Site	Scripting	(XSS).	While	
XSS	vulnerabilities	are	disclosed	more	often,	it	is	SQLi	vulnerabilities	that	are	being	attacked	the	most	
(Figure 11)—by	a	significant	margin.

Data	in	Figure 12 (on	page	18)	shows	that	Web	application	attacks	are	increasing	so	rapidly	that	the	
number	of	attacks	for	the	first	half	of	2011	are	nearly	at	the	same	levels	as	for	the	full	years	in	2009	and	
2010.	And	in	one	case—SQLi—the	numbers	are	higher	than	in	the	previous	year.	

Figure	10

Web	application	attacks	versus	non-Web	application	attacks,	January–June	2011

63%

37%
All attacks

Web attacks

17

Figure	11

Web	application	attacks	in	the	first	half	2011,	broken	down	by	category

0

1000000

2000000

3000000

4000000

5000000

6000000

Jan Feb Mar Apr May Jun

PHP/RFI

SQLi

XSS

Cross-Site Scripting
Cross-Site	Scripting	(XSS)	vulnerability	has	been	around	for	a	while	and	has	been	well-documented	over	
the	years.	To	refresh,	XSS	is	a	hacking	technique	that	allows	attackers	to	exploit	vulnerabilities	in	Web	
applications	and	inject	client-side	script	into	the	vulnerable	Web	pages	that	are	viewed	by	unsuspecting	
users.	A	successful	attack	will	allow	an	attacker	to	hijack	user	sessions,	steal	sensitive	information,	or	
deface	websites.	There	are	two	primary	types	of	XSS	vulnerability:	non-persistent	(or	reflected),	and	
persistent	(or	stored).	

The	reflected	(non-persistent)	XSS	is	by	far	the	most	common	type	of	XSS	attack.	The	root	cause	is	the	
improper	handling	(lack	of	sanitization)	of	HTTP	request	data	by	the	server	code,	allowing	malicious	
sites	to	“reflect”	malicious	code	and	attack	the	user.	The	main	attack	vector	is	usually	an	email	message	
containing	a	malicious	URL.	When	the	user	clicks	on	the	URL,	they	are	taken	to	the	vulnerable	site	where	
the	malicious	code	is	executed	and	reflected	back	on	the	user	in	order	to	execute	the	attack.	It	is	the	XSS	
vulnerability	of	the	website	that	allows	this	type	of	attack	to	happen.	The	Web	browser	executes	the	code	
because	it	believes	the	code	originates,	and	is	unaltered,	from	a	trusted	website.

A	persistent,	or	stored,	XSS	attack	is	a	far	more	devastating	XSS	variant.	This	attack	does	not	require	
users	to	click	URLs	in	order	to	pass	malicious	code	back	to	the	vulnerable	website	and	attack	the	user.	
In	this	case,	the	malicious	code	is	able	to	live	on	the	vulnerable	server	and	is	served	up	alongside	
regular	HTML	content.	Again,	this	type	of	attack	is	a	direct	result	of	poor	input	validation	on	the	server	
side,	which	allows	for	non-sanitized	input	to	end	up	being	displayed	on	the	site.	This	type	of	attack	is	
particularly	risky	not	only	because	it	does	not	require	direct	user	interaction	but	also	because	it	has	a	
much	wider	scope.	With	non-persistent	attacks,	the	only	users	who	get	attacked	are	the	ones	who	reflect	
the	malicious	code	to	the	site	by	clicking	the	URL.	With	persistent	XSS	attacks,	every	visitor	to	the	site	may	
get	compromised	as	the	malicious	code	lives	on	the	server	itself.	Also,	this	malicious	code	can	be	self-
propagating,	creating	a	type	of	client-side	worm.	

18

Figure	12

Web	application	attacks,	2009–2011

0

5000000

10000000

15000000

20000000

25000000

30000000

2009 2010 2011

PHP

SQLi

XSS

(through 6/30/2011)

Over	the	last	decade,	XSS	has	been	a	popular	part	of	the	security	threat	landscape.	According	to	
vulnerabilities	documented	by	Symantec	in	2007,	XSS	accounted	for	roughly	80%	of	all	the	security	
vulnerabilities.	That	percentage	has	leveled	off	over	the	recent	years,	but	XSS	is	still	the	second	most	
popular	type	of	Web	application	vulnerability.	According	to	the	Open	Web	Application	Security	Project	
(OWASP)	2010	Top	Ten,	XSS	was	second	only	to	SQLi.	What	makes	XSS	even	more	dangerous	is	that	it	
could	be	leveraged	by	an	attacker	to	exploit	other	Web	application	vulnerabilities	such	as	Information	
Disclosures,	Content	Spoofing,	and	more.

While	organizations	have	a	better	understanding	of	the	risks	posed	by	XSS	attacks,	these	types	of	
vulnerabilities	still	make	up	a	high	percentage	of	bugs	being	disclosed	every	year.	So	while	many	XSS	
vulnerabilities	have	a	low	common	vulnerability	scoring	system	(CVSS)	score,	their	prevalence	increases	
the	overall	attack	surface	of	a	Web	application,	which	put	enterprises	at	a	high	risk	for	exposure	and	
can	be	costly	to	fix.	

SQL Injection plays a starring role
SQLi	attacks	gained	media	attention	this	year	from	the	hacktivist	groups	LulzSec	and	Anonymous,	who	
used	this	type	of	attack	to	compromise	systems	of	several	high-profile	organizations.	Data	from	the	earlier	
graph	(Figure 12)	shows	that	this	type	of	attack	is	on	the	rise	and	has	been	extensive	for	some	time.	

The	chart	and	timeline	on	the	next	page	(Figure 13)	demonstrate	how	SQLi	attacks	have	evolved	over	the	
years.	

•	1998—Rain	Forest	Puppy	(RFP)	discloses/discusses	the	initial	idea	of	SQL	Injection	in	phrack Magazine
(Volume	9,	Issue	54)

•	2000—SQL	Injection	FAQ—Chip	Andrews—uses	the	first	public	usage	of	term	“SQL	Injection”	in	a	
paper

•	2003—The	idea	of	blind	SQL	Injection	is	disclosed/discussed
•	2006—Web	application	vulnerability	disclosure	skyrockets	in	part	due	to	SQL	Injection
•	2008—SQL	Injection	vulnerability	disclosure	peaks

SQL Injection (SQLi)
A	type	of	Web	application	vulnerability	that	takes	advantage	of	a	lack	of	input	validation	on	a	website	in	order	to	execute	
unauthorized	database	commands	on	a	Web	applications	database	server.	When	successfully	exploited,	data	can	be	extracted,	
modified,	inserted,	or	deleted	from	database	servers	that	are	used	by	the	vulnerable	Web	application.	In	certain	circumstances,	
SQL	Injection	can	be	utilized	to	take	complete	control	of	a	system.

19

Rain Forest Puppy (RFP)
discloses/discusses
the initial idea of
SQL Injection in
Phrack Magazine
(volume 9, issue 54)
Dec 25, 1998

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 SQL Injection timeline

SQL Injection FAQ –
Chip Andrews – uses the
first public usage of term
“SQL Injection” in a paper
Oct 23, 2000

The idea of blind SQL Injection is
disclosed/discussed
2003

Hackers have gained
access to a database
containing personal
information on 800,000
current and former UCLA
students
2006

Web application
vulnerability disclosure
skyrockets in part
due to SQL Injection
2006

An estimated
500,000 websites
compromised as
a result of
SQL Injections
2008

SQL Injection
vulnerability
disclosure peaks
2008

The Asprox botnet
leverages
SQL Injection for
mass drive by
SQL Injection attacks
to grow botnet
2008

Another half a million sites hit with automated SQL Injection
2010

HBGary, a technology security firm, was broken
into by Anonymous using SQL Injection in their
CMS-driven website
Feb 5, 2011

Expedia’s TripAdvisor member data stolen
as a result of SQL Injection
Mar 24, 2011

Barracuda Networks was compromised using an
SQL Injection flaw
April 11, 2011

The Asprox botnet leverages SQL Injection for
mass drive by SQI Injection attacks to grow
botnet Aug 5, 2011

LulzSec hacktivists are accused of using
SQL Injection to steal coupons, download keys,
and passwords that were stored in plaintext on
Sony’s website, accessing the personal information
of a million users
June 1, 2011

Group Anonymous claims to have hacked the
NATO site, using a “simple SQL Injection”
June 5, 2011

Three men, responsible for the largest data security breach in U.S. history,
stole 130 million credit card and debit card numbers from five leading
companies. They took advantage of a coding error, and allegedly used a
SQL Injection attack to compromise a Web application, which was used as
the starting point to help them bypass company network firewalls and gain
access over companies’ networks.
Aug 17, 2009

Figure	13

Timeline	and	evolution	of	SQL	Injection	attacks

•	2008—The	Asprox	botnet	leverages	SQL	Injection	for	mass	drive	by	SQLi	attacks	to	grow	botnet		
(http://en.wikipedia.org/wiki/Asprox).	From	at	least	April	through	August,	a	sweep	of	attacks	began	
exploiting	the	SQL	Injection	vulnerabilities	of	Microsoft’s	IIS	Web	server	and	SQL	Server	database	
server.	The	attack	does	not	require	guessing	the	name	of	a	table	or	column,	and	it	corrupts	all	text	
columns	in	all	tables	in	a	single	request.	An	HTML	string	that	references	a	malware	JavaScript	file	is	
appended	to	each	value.	When	that	database	value	is	later	displayed	to	a	website	visitor,	the	script	
attempts	several	approaches	at	gaining	control	over	a	visitor’s	system.	The	number	of	exploited	Web	
pages	is	estimated	at	500,000.

•	On	August	17,	2009,	the	U.S.	Justice	Department	charged	an	American	citizen	Albert	Gonzalez	and	
two	unnamed	Russians	with	the	theft	of	130	million	credit	card	numbers	using	a	SQL	Injection	attack.	
In	reportedly	“the	biggest	case	of	identity	theft	in	American	history,”	the	man	stole	cards	from	a	
number	of	corporate	victims	after	researching	their	payment	processing	systems.	Among	the	companies	
hit	were	credit	card	processor	Heartland	Payment	Systems,	convenience	store	chain	7-Eleven,	and	
supermarket	chain	Hannaford	Brothers.

•	On	February	5,	2011,	HBGary,	a	technology	security	firm,	was	broken	into	by	Anonymous	using	a	
SQL	Injection	in	their	CMS-driven	website.

•	On	April	11,	2011,	Barracuda	Networks	was	compromised	using	a	SQL	Injection	flaw.	Email	addresses	
and	usernames	of	employees	were	among	the	information	obtained.

•	On	June	1,	2011,	“hacktivists”	of	the	group	LulzSec	were	accused	of	using	SQLi	to	steal	coupons	
and	to	download	keys	and	passwords	that	were	stored	in	plaintext	on	Sony’s	website,	accessing	the	
personal	information	of	a	million	users.

•	In	June	2011,	Group	Anonymous	claims	to	have	hacked	the	NATO	site,	using	a	“simple	SQL	Injection.”

http://en.wikipedia.org/wiki/Asprox
http://en.wikipedia.org/wiki/Internet_Information_Services
http://en.wikipedia.org/wiki/Microsoft_SQL_Server
http://en.wikipedia.org/wiki/Microsoft_SQL_Server
http://en.wikipedia.org/wiki/Albert_Gonzalez
http://en.wikipedia.org/wiki/Heartland_Payment_Systems
http://en.wikipedia.org/wiki/7-Eleven
http://en.wikipedia.org/wiki/Hannaford_Brothers
http://en.wikipedia.org/wiki/HBGary
http://en.wikipedia.org/wiki/Anonymous_(group)
http://en.wikipedia.org/wiki/Lulzsec
http://en.wikipedia.org/wiki/Anonymous_(group)
http://en.wikipedia.org/wiki/NATO

20

Figure	14

Web	application	vulnerabilities	disclosed,	January–June	2011

5%

25%

60%

10%

PHP/RFI

SQLi

XSS

CSRF

Figure	15

Total	Web	application	attacks,	January–June	2011

11%

68%

21%

PHP/RFI

SQLi

XSS

With	SQLi	attacks,	it	is	readily	apparent	that	attackers	are	content	leveraging	existing	vulnerabilities	for	
their	exploits.	The	graphs	above	(Figures 14 and 15)	show	a	side-by-side	comparison	of	the	most	
reported	types	of	Web	application	vulnerabilities	verses	the	most	attacked	Web	application	
vulnerabilities.	SQLi	vulnerabilities	make	up	a	quarter	of	the	new	vulnerabilities	reported	for	the	first	half	
of	2011.	Yet	SQLi	attacks	make	up	more	than	60	percent	of	the	Web	application	attacks	seen	in	the	
HP	TippingPoint	IPS.	

Web	applications	are	affected	by	multiple	types	of	attacks,	and	SQLi	and	XSS	are	just	two	that	have	
received	a	significant	amount	of	media	attention	over	the	last	few	months.	The	next	section	of	this		
paper	presents	general	mitigation	strategies	for	protecting	Web	applications	and	decreasing	the	risk		
of	outages,	data	loss,	or	network	compromise	that	can	result.

Mitigation
Visibility	is	increasingly	becoming	one	of	the	most	important	aspects	of	information	security,	along	
with	reducing	the	overall	attack	surface	made	available	to	attackers.	To	mitigate	risk	responsibly,	
organizations	should	test	code	in	development,	scan	for	vulnerabilities	in	QA	before	staging,	and	test	
applications	in	production	on	an	ongoing	basis.	The	following	information	is	intended	to	help	developers	
correct	certain	specific	categories	of	critical	Web	application	vulnerabilities.

21

Cross-Site Request Forgery
Resolving	Cross-Site	Request	Forgery	is	not	a	simple	task,	and	it	actually	may	require	recoding	every	
form	and	feature	of	a	Web	application.	While	no	method	of	preventing	Cross-Site	Request	Forgery	is	
perfect,	using	Cross-Site	Request	Forgery	nonce	tokens	eliminates	most	of	the	risk.	Although	an	attacker	
may	guess	a	valid	token,	nonce	tokens	are	nevertheless	the	most	effective	solution	for	preventing	Cross-
Site	Request	Forgery	attacks.	A	user	can	be	verified	as	legitimate	by	generating	a	“secret,”	such	as	a	
secret	hash	or	token,	after	the	user	logs	in.	“The	secret”	should	be	stored	in	a	server-side	session	and	
then	included	in	every	link	and	sensitive	form.	Each	subsequent	HTTP	request	should	include	this	token;	
otherwise,	the	request	is	denied	and	the	session	invalidated.	The	token	should	not	be	the	same	as	the	
session	ID	in	case	a	Cross-Site	Scripting	vulnerability	exists.	Initialize	the	token	as	other	session	variables.	
It	can	be	validated	with	a	simple	conditional	statement,	and	it	can	be	limited	to	a	small	timeframe	to	
enhance	its	effectiveness.	Attackers	need	to	include	a	valid	token	with	a	Cross-Site	Request	Forgery	
attack	in	order	to	match	the	form	submission.	Because	the	user’s	token	is	stored	in	the	session,	any	
attacker	would	need	to	use	the	same	token	as	the	victim.	

CAPTCHA	can	also	prevent	Cross-Site	Request	Forgery	attacks.	With	CAPTCHA,	a	user	needs	to	enter	
a	word	shown	in	distorted	text,	contained	inside	an	image,	before	continuing.	The	assumption	is	that	
a	computer	cannot	determine	the	word	inside	the	graphic,	although	a	human	can.	CAPTCHA	requires	
that	a	user	authorize	specific	actions	before	the	Web	application	initiates	them.	It	is	difficult	to	create	a	
script	that	automatically	enters	text	to	continue,	but	research	is	underway	on	how	to	break	CAPTCHAs,	
so	strong	CAPTCHAs	are	a	necessity.	Building	a	secure	CAPTCHA	takes	more	effort.	In	addition	to	
making	sure	that	computers	cannot	read	the	images,	you	need	to	make	sure	that	the	CAPTCHA	cannot	
be	bypassed	at	the	script	level.	Consider	whether	you	use	the	same	CAPTCHA	multiple	times,	making	an	
application	vulnerable	to	a	replay	attack.	Also	make	sure	the	answer	to	the	CAPTCHA	is	not	passed	in	
plaintext	as	part	of	a	Web	form.

SQL Injection
SQL	Injection	arises	from	an	attacker’s	manipulation	of	query	data	to	modify	query	logic.	The	best	
method	of	preventing	SQL	Injection	attacks	is,	therefore,	to	separate	the	logic	of	a	query	from	its	data;	
this	will	prevent	commands	inserted	from	user	input	from	being	executed.	The	downside	of	this	approach	
is	that	it	can	have	an	impact	on	performance,	albeit	slight,	and	that	each	query	on	the	site	must	be	
structured	in	this	method	for	it	to	be	completely	effective.	If	one	query	is	inadvertently	bypassed,	that	
could	be	enough	to	leave	the	application	vulnerable	to	SQL	Injection.	The	following	code	shows	a	
sample	SQL	statement	that	is	SQL	injectable.	

sSql	=	“SELECT	LocationName	FROM	Locations“;

sSql	=	sSql	+	“WHERE	LocationID	=“	+	Request[“LocationID”];

oCmd.CommandText	=	sSql;

The	following	example	utilizes	parameterized	queries	and	is	safe	from	SQL	Injection	attacks.	

sSql	=	“SELECT	*	FROM	Locations“;

sSql	=	sSql	+	“WHERE	LocationID	=	@LocationID”;

oCmd.CommandText	=	sSql;

oCmd.Parameters.Add(“@LocationID”,	Request[“LocationID”]);

22

The	application	will	send	the	SQL	statement	to	the	server	without	including	the	user’s	input.	Instead,	a	
parameter-@LocationID-	is	used	as	a	placeholder	for	that	input.	In	this	way,	user	input	never	becomes	
part	of	the	command	that	SQL	executes.	Any	input	that	an	attacker	inserts	will	be	effectively	negated.	An	
error	would	still	be	generated,	but	it	would	be	a	simple	data-type	conversion	error,	and	not	something	
that	a	hacker	could	exploit.	

The	following	code	samples	show	a	product	ID	being	obtained	from	an	HTTP	query	string	and	then	used	
in	a	SQL	query.	Note	how	the	string	containing	the	“SELECT”	statement	passed	to	SqlCommand	is	simply	
a	static	string	and	is	not	concatenated	from	input.	Also	note	how	the	input	parameter	is	passed	using	a	
SqlParameter	object,	whose	name	(“@pid”)	matches	the	name	used	within	the	SQL	query.

C#	sample:

string	connString	=	WebConfigurationManager.ConnectionStrings[“myConn”].ConnectionString;

using	(SqlConnection	conn	=	new	SqlConnection(connString))	

{	

conn.Open();

SqlCommand	cmd	=	new	SqlCommand(“SELECT	Count(*)	FROM	Products	WHERE	ProdID=@pid”,	
conn);	

SqlParameter	prm	=	new	SqlParameter(“@pid”,	SqlDbType.VarChar,	50);	

prm.Value	=	Request.QueryString[“pid”];	

cmd.Parameters.Add(prm);	

int	recCount	=	(int)cmd.ExecuteScalar();

}	

VB.NET	sample:	

Dim	connString	As	String	=	WebConfigurationManager.ConnectionStrings(“myConn”).
ConnectionString

Using	conn	As	New	SqlConnection(connString)	

conn.Open()

Dim	cmd	As	SqlCommand	=	New	SqlCommand(“SELECT	Count(*)	FROM	Products	WHERE	
ProdID=@pid”,	conn)

Dim	prm	As	SqlParameter	=	New	SqlParameter(“@pid”,	SqlDbType.VarChar,	50)	

prm.Value	=	Request.QueryString(“pid”)	

cmd.Parameters.Add(prm)	

Dim	recCount	As	Integer	=	cmd.ExecuteScalar()

End	Using

23

Cross-Site Scripting
Cross-Site	Scripting	attacks	can	be	avoided	by	carefully	validating	all	input	and	properly	encoding	all	
output.	When	validating	user	input,	verify	that	it	matches	the	strictest	definition	possible	of	valid	input.	For	
example,	if	a	certain	parameter	is	supposed	to	be	a	number,	attempt	to	convert	it	to	a	numeric	data	type	
in	your	programming	language.	

PHP:	intval(“0”.$_GET[‘q’]);	

ASP.NET:	int.TryParse(Request.QueryString[“q”],	out	val);	

The	same	applies	to	date	and	time	values,	or	anything	that	can	be	converted	to	a	stricter	type	before	
being	used.	When	accepting	other	types	of	text	input,	make	sure	the	value	matches	either	a	list	of	
acceptable	values	(white-listing),	or	a	strict	regular	expression.	White-listing	involves	creating	a	list	of	
acceptable	characters,	as	opposed	to	black-listing,	which	is	a	list	of	unacceptable	characters.	If	at	any	
point	the	value	appears	invalid,	do	not	accept	it.	Also,	do	not	attempt	to	return	the	value	to	the	user	in	an	
error	message.	

Most	server-side	scripting	languages	provide	built-in	methods	to	convert	the	value	of	the	input	variable	
into	correct,	non-interpretable	HTML.	These	should	be	used	to	sanitize	all	input	before	it	is	displayed	to	
the	client.	

PHP:	string	htmlspecialchars	(string	string	[,	int	quote_style])

ASP.NET:	Server.HTMLEncode	(strHTML	String)

When	reflecting	values	into	JavaScript	or	another	format,	make	sure	to	use	a	type	of	encoding	that	is	
appropriate.	Encoding	data	for	HTML	is	not	sufficient	when	it	is	reflected	inside	of	a	script	or	style	sheet.	
For	example,	when	reflecting	data	in	a	JavaScript	string,	make	sure	to	encode	all	non-alphanumeric	
characters	using	hex	(\xHH)	encoding.

If	you	have	JavaScript	on	your	page	that	accesses	unsafe	information	(like	location.href)	and	writes	it	to	
the	page	(either	with	document.write,	or	by	modifying	a	DOM	element),	make	sure	the	data	is	encoded	
for	HTML	before	writing	it	to	the	page.	JavaScript	does	not	have	a	built-in	function	to	do	this,	but	many	
frameworks	do.	If	you	are	lacking	an	available	function,	something	like	the	following	will	handle	most	
cases:

s	=	s.replace(/&/g,’&’).replace(/”/i,’"’).replace(/</i,’<’).replace(/>/i,’>’).replace

(/’/i,’'’)

Ensure	that	you	are	always	using	the	right	approach	at	the	right	time.	Validating	user	input	should		
be	done	as	soon	as	it	is	received.	Encoding	data	for	display	should	be	done	immediately	before	
displaying	it.

This is an HP Indigo digital print.

Get connected
www.hp.com/go/getconnected

Get the insider view on tech trends, alerts, and
HP solutions for better business outcomes

Share	with	colleagues

©	Copyright	2011	Hewlett-Packard	Development	Company,	L.P.	The	information	contained	herein	is	subject	to	change	without	notice.	The	only	
warranties	for	HP	products	and	services	are	set	forth	in	the	express	warranty	statements	accompanying	such	products	and	services.	Nothing	herein	
should	be	construed	as	constituting	an	additional	warranty.	HP	shall	not	be	liable	for	technical	or	editorial	errors	or	omissions	contained	herein.

Java	is	a	registered	trademark	of	Oracle	and/or	its	affiliates.	Microsoft	is	a	U.S.	registered	trademark	of	Microsoft	Corporation.

4AA3-7045ENW,	Created	September	2011		

Remote File Includes
As	the	saying	goes,	security	is	baked	in,	not	brushed	on.	Any	application	under	development	should	be	
designed	with	security	in	mind	from	the	onset.	The	following	recommendations	will	help	you	build	Web	
applications	that	are	not	susceptible	to	parameter	include	vulnerabilities.	

•	Define	what	is	allowed.	Ensure	that	the	Web	application	validates	all	input	parameters	(cookies,	
headers,	query	strings,	forms,	hidden	fields,	etc.)	against	a	stringent	definition	of	expected	results.	
The	best	method	of	doing	this	is	via	“white-listing”;	this	is	defined	as	only	accepting	specific	account	
numbers	or	specific	account	types	for	those	relevant	fields,	or	only	accepting	integers	or	letters	of	the	
English	alphabet	for	others.	Many	developers	will	try	to	validate	input	by	“black-listing”	characters,	or	
“escaping”	them.	Basically,	this	entails	rejecting	known	bad	data	by	placing	an	“escape”	character	in	
front	of	it	so	that	the	item	that	follows	will	be	treated	as	a	literal	value.	This	approach	is	not	as	effective	
as	white-listing	because	it	is	impossible	to	know	all	forms	of	bad	data	ahead	of	time.

•	Check	the	responses	from	POST	and	GET	requests	to	ensure	what	is	being	returned	is	what	is	
expected,	and	is	valid.	

•	Verify	the	origin	of	scripts	before	you	modify	or	utilize	them.	
•	Do	not	implicitly	trust	any	script	given	to	you	by	others	(whether	downloaded	from	the	Web	or	given		

to	you	by	an	acquaintance)	for	use	in	your	own	code.	

References
http://techtimely.wordpress.com/2011/04/22/web-hacking-threats/

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

http://en.wikipedia.org/wiki/Cross-site_scripting

http://www.phrack.org/issues.html?id=8&issue=54

http://sqlsecurity.com/FAQs/SQLInjectionFAQ/tabid/56/Default.aspx

http://www.isti.tu-berlin.de/fileadmin/fg214/Papers/ravi-asprox.pdf

http://arstechnica.com/tech-policy/news/2011/02/anonymous-speaks-the-inside-story-of-the-hbgary-
hack.ars/3

http://nakedsecurity.sophos.com/2011/06/02/sony-pictures-attacked-again-4-5-million-records-
exposed/

http://techtimely.wordpress.com/2011/04/22/web-hacking-threats/
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://en.wikipedia.org/wiki/Cross-site_scripting
http://nakedsecurity.sophos.com/2011/06/02/sony-pictures-attacked-again-4-5-million-records-exposed/
http://nakedsecurity.sophos.com/2011/06/02/sony-pictures-attacked-again-4-5-million-records-exposed/

	Contributors

	Digg 32:
	Twitter 32:
	Facebook 32:
	Linked in 32:

