How do you interview security experts?

One might identify three key concerns for hiring anyone, for any position, aside from meeting basic skills requirements; how to interrogate a candidate, what traits a candidate should possess, and when you should be interviewing candidates at all. Each of these three concerns is addressed here as they apply to hiring information security experts.

What kind of questions should you ask?

When interviewing, hiring managers often like to have checklists of “right answers” for predefined questions. There are several problems with that.

1. If you’re building lists of questions with “right answers”, you’re basically trying to use obscurity to maintain the security of your hiring process. You’re banking on the job candidate not being able to get the “right answers” without having the actual security expertise those answers are meant to represent. That’s why it is at least as important to get good explanations for answers as to get actual answers you like.

2. When you plan out questions for an interview, and your goal is to have questions with “right answers”, you’ll tend to choose questions for which it’s easy to define “right answers”. The tendency for that type of question is to also be the kind of question for which it’s easy to study “industry best practices” answers without having to know why they’re good answers.

3. If the security expert you’re hiring doesn’t know more about security than you do, you did something wrong. That means that no matter what questions and expected answers you have, the best candidate will probably be someone who disagrees with some of your “right answers” — and will probably be more right than those answers. In other words, rejecting a candidate for giving a couple of “wrong answers” might involve rejecting the best candidate for the job because your “right answers” weren’t actually as good as the candidate’s answers.

You need questions that invite explanations, not just simple answers. It’s harder to explain why an answer is right than to just give that right answer itself. If your candidate gives a “right answer”, your question should be phrased so that it requires more than just a few words to satisfy the answer. If the candidate gives a “wrong answer”, tell him or her what answer you were expecting and ask why the answer you got was different. Have a conversation about the difference between the given answer and the expected answer, and make your decision based on the quality of the explanation and the thought process behind it, rather than whether the answer was what you expected.

In short, don’t ask “Would you select Retina Network Security Scanner or QualysGuard for a heterogeneous six thousand node WAN distributed over four primary sites and seventeen satellite sites worldwide?” Instead, ask “What are some key criteria you would consider when selecting a vulnerability management system for a complex enterprise WAN, and why?”

What kind of personal traits should a security expert have?

Even when the information security job is a support position, evaluating security expert candidates is a very different task than evaluating candidates for most other positions. Among the traits far more important to even the lowest level security support personnel than to most other positions are:

1. independent: To perform the job well, a security expert must be able to take initiative in pursuing the answers to security problems, research needed knowledge effectively often without relying on guidance from others, and even set his or her own task goals. Information security tasks require a lot of exploration outside of well-defined policy bounds, because the very nature of the job revolves around preventing, investigating, and responding to incidents where policy has been violated or subverted.

2. analytical: Because so much of a security expert’s work involves investigation, assessment, and troubleshooting tasks, a candidate for a security focused position should have habits and skills that lend themselves to abstract thinking, problem analysis, and recognizing the security principles that influence the circumstances of a particular incident.

3. interested: If the new hire for your security position is not genuinely interested in security matters even outside of the job, you can pretty much guarantee that no matter how dedicated he or she is to the job, no matter how hard a worker and loyal an employee, he or she will do little more of value than you could accomplish with a couple of automated scanning tools and checklists in the hands of your network administrator.

Professional information security work is, at every level, a matter of “thinking outside the box”. By definition, the best security experts are those whose expertise lies more with an unconventional mindset and perspective than with memorized standards of “industry best practices”. In fact, in many cases the most important lessons to be learned about such practices are their flaws.

In short, the qualities most important in a security expert are those that set him or her apart from his or her peers, and not those that make him or her indistinguishable from them.

When should you hire a security expert? Always.

There are cases where a security expert is specifically needed for a security focused position, of course, and answering the question of how to recognize such needs is a bit more complex than can be addressed in a short article. In a more general sense, however, every information technology professional you hire should, to some extent, be a security expert — at least within the limited realm of general knowledge of security principles as they apply to the duties of the position you seek to fill.

Security works best when it is part of the design of a system, when it is the very basis for policy, and when it informs the everyday work of every IT professional you employ. Every network and system administrator, every developer, and every IT resource manager should have some expertise in security matters related to his or her field, and have the interest and dedication needed to maintain and expand that expertise.

In short, every IT professional you hire for a position above entry level should, to some degree, be a security expert — and the entry level hires should be eager and able to become security experts.

Not all data breaches are created equal. The data elements compromised don’t always destroy civilization as we know it. Further, understanding the root cause of a breach is a better use of time and resources than chasing elusive causes, causes that arise because someone was quick to point a finger at security ignorance as the reason things fell apart.

In a recent article at CSOonline.com, Joan Goodchild described a breach of student dates of birth and grades stored on a Princeton Web site. The data were available for some time, allegedly due to a change of site hosting services. The reaction to the breach was predictable, with people expressing fear and concern over the loss of dates of birth. Claims were made that loss of this information exposes students to increased risk of identity theft. This was accompanied by comments about Princeton and site hosting staff not understanding the importance of Web site security. I submit that both assertions are wrong.

It’s been some time since I believed using a date of birth, mother’s maiden name, or father’s middle name was a good way to verify identity. This information is freely available via public records, both on and off the Internet. Take a look at a sample individual report, available for $34.95. About a year ago I actually paid the fee to see what I could find out about myself. The result caused me to quickly check the secret questions I use for banking and other secure online transactions. While exposing grades might be life-changing for students more concerned with the social benefits of college life, losing dates of birth is not going to increase student identity exposure very much.

Organizations and security pundits need to get this right. Proper data classification is important if an organization wants to apply limited resources to the right vulnerabilities.

As for claims that the cause of this breach might be that both Princeton and the site provider don’t understand the importance of security, I believe the root cause lies elsewhere. What are the chances Princeton IT staff don’t understand the need to properly protect information? The problem is probably located in change processes rather than in a mythical security vacuum.

Change management is a critical process many organizations either ignore or loosely follow. A good change process requires cross-functional review, including security. It also mandates quality assurance testing of all requirements. And no system requirements definition is complete without security requirements resulting from a thorough risk assessment. There’s a good chance that a root cause analysis of the Princeton breach will find a flaw in how changes are managed rather than IT negligence.

Resolving security issues is often about asking the right questions instead of quickly looking for someone to blame. And protecting personal information starts with understanding which identity components are already available to anyone with a small credit card balance.

This is just one more example of why each of us must take responsibility for protecting ourselves from identity thieves. No system is invulnerable to attack, making it likely that every one of us will eventually have his or her identity exposed to possible theft. The U.S. Federal Trade Commission provides numerous personal protection guidelines. It takes effort from both the public and those who store their information to apply the layers of defense necessary to stop identity thieves. According to David A. Wheeler’s Secure Programming for Linux and Unix HOWTO, the three core requirements for developing secure software are as follows:

· First, people have to actually review the code.

· Second, at least some of the people developing and reviewing the code must know how to write secure programs.

· Third, once found, problems need to be fixed quickly and their fixes distributed.

Wheeler’s how to is one of the best online resources for people who want to start learning the technical side of writing secure software, and these three principles are non-negotiable necessities for widely distributed, truly secure software design.

While these principles are presented as part of Wheeler’s explanation for how open source software has more potential for software security than its closed source counterparts, they apply to closed source software just as much as to open source software, and there’s no reason these three principles cannot be properly employed to ensure secure software development in a closed source shop too.

There are some challenges, though:

1. Independent code review tends to be extremely expensive when you require nondisclosure agreements.

2. Free code review tends to be scarce with “source available” licensing, because people typically feel they’re giving you something for nothing, whereas open source software is in many ways its own reward.

3. The more code review, the better — and even if you get some reasonable amount of review for closed source or “source available” code, you are unlikely to get as much as you could for open source code.

4. Most of the best secure code writers understand that open code is the best way to get secure code (see Kerckhoffs’ principle), which might make it difficult to hire them if you plan to keep your code closed.

5. Hiring and retention decisions in corporate development shops tend to ultimately rest in the hands of people who wouldn’t know secure code if it bit them on their noses.

6. Corporate responsibility lies with shareholder profits — not the actual quality of software. This means that any time the ability to generate revenue or reduce costs conflicts with secure coding goals, the secure coding goals are likely to suffer. Considering the value of good programmers who know how to write secure code, that means that severely limiting the money the human resources department is authorized to offer for new hire salaries is normal behavior, which in turn limits the ability to hire the best programmers.

7. Comprehensive software management systems, such as those found in open source Unix-like OSes like APT for Debian GNU/Linux and the ports system for FreeBSD don’t carry closed source software anywhere near as often as open source software, and the software management systems for closed source OSes like MS Windows usually don’t handle any third-party software at all anyway. This means that rapid fix distribution for closed source software usually relies on end users hunting down news of fixes, then acquiring and installing patched versions of software, themselves.

8. Corporate responsibility is an important factor for patch distribution too; it is usually in a corporate vendor’s best short term financial interest to downplay security vulnerabilities, which often involves deferring development of security patches (sometimes indefinitely) and even hindering the ability of users to find reliable information about vulnerabilities and fixes.

9. Identification, development, and testing of security fixes depends on the availability of developers and testers. Releasing software under the terms of an open source license tends to increase the number of available developers and testers significantly.

10. As David Wheeler pointed out in the Secure Programming for Linux and Unix HOWTO, you cannot very easily make changes to closed source software on the spot the way you can with open source software, given the necessary in-house expertise.

None of these disadvantages for closed source software are inflexible or absolute. There’s no reason closed source software developed by a corporate vendor can’t be as secure as an open source equivalent. It should be pretty obvious that, all else being equal, the trend is for circumstances to favor the security of open source software — at least as far as these principles of software security are concerned.

Typo-squatting isn’t new. Criminals, unethical merchandisers, and general malcontents have for years leveraged our inability to consistently type the right letters every time when entering a domain name. The cautious were able—and still are for the most part—to differentiate between a false, squatter page and the real thing. However, criminals are apparently taking their growing penchant for secrecy to a new level, declaring squatter rights on e-mail messages.

In this post, I define typo-squatting in general and how it’s being employed for more insidious purposes. I then explore recommendations for dealing with this emerging data leakage threat.

What is “typo-squatting”
According to Microsoft researchers, Typo-squatting refers to the practice of registering domain names that are typos of their target domains, which usually host websites with significant traffic. From the business perspective, many of the typo-squatting cases involve “bad-faith” domain registrations or trademark violations. Worse yet, it is not uncommon to see a typo domain displaying ads from competitors of the target-domain owner or even negative ads against the owner.
Source: Strider Typo-Patrol: Discovery and Analysis of Systematic Typo-squatting, Yi-Min Wang, Doug Beck, Jeffrey Wang, Chad Verbowski, and Brad Daniels, Microsoft Research, 2006

It’s not difficult to hit the wrong key and not know it until you click Send or press Enter. Most squatter domain names are based on common mistakes related to key proximity. For example, instead of typing adventuresinsecurity.com, my pinky might slip and type z or q instead of a, resulting in zdventuresinsecurity.com or tom.olzak@qdventuresinsecurity.com. (See your keyboard for key placement.) If an outside entity was sending sensitive information in an e-mail body or its attachment, a squatter might now have it. Can you say HIPAA violation? Of course, everyone adheres to regulatory restrictions, like using encrypted e-mail, don’t they?

Squatting a domain consists of three steps:

1. Identify the target domain. The domain selected depends on the squatter’s objectives. He or she might want to garner advertising revenue or recruit bots. In these cases, high traffic domains are best. However, squatters seeking to defame or besmirch target the focus of their ire, regardless of traffic potential. This means any organization is a potential victim.

2. Construct a typo-list. There are many different ways to misspell or incorrectly construct a domain name. Squatters can either spend the night recording all the possibilities, or they can use one of the tools available to quickly construct them. Figure 1 is a clip from web-professor.net. His Typo Squatter tool allegedly shows not only possible names. It also lists whether the name is available, who owns it, and its potential squatting value (based on Overture Score). I tried testing the search capabilities to include in this article, but I repeatedly received an error.

3. Purchase and setup the domains. The final step is selecting the domain names and setting them up on what are often ethically questionable provider sites. Delivery of ads, malware, or collection of email containing sensitive information is now possible. Figure 2 depicts an overall view of today’s typo-squatting environment.

Figure 1: Web Professor Typo Squatter

Figure 2: The Typo-Squatting Industry (Microsoft 2006)
Mounting a typo-squatting defense

The first step in mounting a defense against squatter data theft is understanding the threat. This article is just the beginning. There are many sources of information about typo-squatting on the Internet, including the Microsoft research provided above.
Next, ensure all email from external domains is properly protected. Insist that customers, vendors, employees and anyone else using external email services only send sensitive information via protected channels. One way to ensure this is implementation of a secure mail system. We use Tumbleweed. No client installs necessary, and it allows on-the-fly enrollment.

Finally, assess and mitigate your risk. Tools are available to help identify squatters and their potential threat to your organization. Tools like Web Professor’s Typo Squatter (Figure 1) can be turned against squatters, although it is fairly slow and doesn’t dig as deep as you might wish. Vera Labs also has a nice online tool. See Figure 3. However, after testing these and other tools, I found Strider URL Tracer with Typo-Patrol to be my preferred squatter detection and analysis tool. (The tool doesn’t like IE7, but it works fine with IE8 BETA in IE7 emulation mode.)

Figure 3: Vera Labs Anti-type-squatter Tool
Figure 4 shows URL Tracer’s main window. To test the speed and effectiveness of this tool downloaded from Microsoft, I typed in my domain name and clicked on the Generate button. Within seconds, I had a list of 295 variations. To save time, I selected the first 10 and clicked on Scan. Figure 5 shows the results.

Figure 4: Strider URL Tracer with Typo Patrol

Figure 5: Results from Strider URL Tracer Scan
Only one variation, wdventuresinsecurity.com, was found. And it was found at OpenDNS.com. The findings are highlighted in red because the scan detected cookies. This was interesting, since I use OpenDNS for my home DNS service. Using Sandboxie, I loaded IE7 and attempted to navigate to wdventuresinsecurity.com. The result was an OpenDNS page asking if I actually meant adventuresinsecurity.com. After a few seconds, the page reverted to the normal search/ad page OpenDNS provides when it has no idea where the URL you entered resides. No big threat here, but at least I know the tool works and quickly delivers results.

The scan list generated above can also be used to minimize squatting opportunities. Companies with sufficient funds might consider buying the most probable targets to keep them out of the hands of individuals or organizations over which they have no control.

The final word

Typo-squatting is more than a way for scammers to make a quick buck. It can also lead to data leakage. The more secretive attacker doesn’t even put up a page to correspond with the squatted-domain. Only a DNS MX record exists to forward emails to the appropriate, potentially malicious, mail server. Organizations that follow proven practices for protecting their email and good name are reasonably safe. However, those who ignore the growing threat posed by these attacks are facing increasing risks.

The following is a list of ten security mistakes I see all the time. They’re not just common, though — they’re also extremely basic, elementary mistakes, that anyone with a modicum of security knowledge should know better than to make.

1. Sending sensitive data in unencrypted email: Stop sending me passwords, PINs, and account data via unencrypted email. Please. I understand that a lot of customers are too stupid or lazy to use encryption, but I’m not. Even if you’re going to give them what they want, in the form of unencrypted sensitive data sent via email, that doesn’t mean you can’t give me what I want — secure communications when sending sensitive data.

2. Using “security” questions whose answers are easily discovered: Social security numbers, mothers’ maiden names, first pets, and birthdays do not constitute a secure means of verifying identity. Requiring an end user to compromise his or her password by specifying a question like that as a means of resetting the password basically ensures that the password itself is useless in preventing anyone that is willing to do a little homework from gaining unauthorized access.

3. Imposing password restrictions that are too strict: The number of cases I’ve seen where some online interface to a system that offers the ability to manage one’s finances — such as banking Web sites — impose password restrictions that actually make the interface less secure is simply unacceptable. Six-character numeric passwords are dismayingly common, and the examples only go downhill from there. See a previous article, “How does bad password policy like this even happen?” for another example in more detail.

4. Letting vendors define “good security”: I’ve said before that there’s no such thing as a vendor you can trust. Hopefully you were listening. Ultimately, the only security a corporate vendor really cares about protecting is the security of its own profits and market share. While this sometimes prompts a vendor to improve the security of its products and services, it sometimes prompts exactly the opposite. As such, you must question a vendor’s definition of “good security”, and you must not let vendors tell you what’s important to you.

5. Underestimating required security expertise: People in positions of authority in corporations often fail to understand the necessity for specific security expertise. This applies not only to nontechnical managers, but to technical IT managers as well. In fact, standards working groups such as the one that produced the WEP standard often include a lot of very smart technologists, but not a single cryptographer, despite the fact they intend to develop security standards that rely explicitly on cryptographic algorithms.

6. Underestimating the importance of review: Even those with security expertise specific to what they’re trying to accomplish should have their work checked by others with that expertise as well. Peer review is regarded in the security community as something akin to a holy grail of security assurance, and nothing can really be considered secure without being subjected to significant, punishing levels of testing by security experts from outside the original development project.

7. Overestimating the importance of secrecy: Many security software developers who make the mistake of underestimating the importance of review couple that with overestimation of the importance of secrecy. They justify a lack of peer review with hand-waving about how important it is to keep security policies secret. As Kerckoffs’ Principle — one of the most fundamental in security research — points out, however, any system whose security relies on the design of the system itself being kept secret is not a system with strong security.

8. Requiring easily forged identification: Anything that involves faxing signatures, or sending photocopies or scans of ID cards, is basically just a case of security theater — putting on a great show without actually providing the genuine article (security, in this case) at all. It is far too easy to forge such second-generation (or worse) low quality copies. In fact, for things like signatures and ID cards, the only way for a copy to serve as useful verification is for it to actually be a good enough copy that it is not recognized as a copy. Put another way, only a successful forgery of the original is a good enough copy to avoid easy forgery.

9. Unnecessarily reinventing the wheel: Often, developers of new security software are recreating something that already exists without any good reason for doing so. Many software vendors suffer from Not Invented Here disease, and end up creating new software that doesn’t really do anything new or needed. That might not be a big deal, if not for the fact that the new software is often not peer reviewed, makes security mistakes that have already been ironed out of the previous implementation of the idea, and generally just screws things up pretty badly. Whenever creating a new piece of software, consider whether you’re replacing something else that already does that job, and whether your replacement actually does anything different that is important. Then, if it is doing something important and different, think about whether you might be able to just add that to the already existing software so you will not create a whole new bundle of problems by trying to replace it.

10. Giving up the means of your security in exchange for a feeling of security: This is a mistake so absurd to make that I have difficulty formulating an explanation. It is also so common that there’s no way I can leave it out of the list. People give up the keys to their private security kingdoms to anyone who comes along and tells them, “Trust me, I’m an expert,” and they do it willingly, eagerly, often without thought. “Certificate Authorities” tell you who to trust, thus stripping you of your ability to make your own decisions about trust; Webmail service providers offer on-server encryption and decryption, thus stripping you of end-to-end encryption and control over your own encryption keys; operating systems decide what to execute without your consent, thus stripping you of your ability to protect yourself from mobile malicious code. Don’t give up control of your security to some third party. Sure, you may not be able to develop a good security program or policy yourself, but that doesn’t mean the program or policy shouldn’t give you control over its operation on your behalf.

Defcon talk by MIT students stopped by court order

A Defcon presentation by three MIT students that was initially scheduled on Sunday was canceled following a lawsuit by the Massachusetts Bay Transportation Authority (MBTA).

Excerpt from Network World:

The MBTA filed a lawsuit Friday seeking to stop three Massachusetts Institute of Technology students and MIT from giving the talk. Judge Douglas Woodlock of the United States District Court for the District of Massachusetts issued a court order in favor of the MBTA Saturday afternoon.

Some of the topics to be covered included techniques to clone and reverse-engineer the MBTA’s CharlieCard, which is based on the same Mifare Classic RFID technology that was broken earlier this year. Of course, the title of the talk — “The Anatomy of a Subway Hack: Breaking Crypto RFIDs & Magstripes of Ticketing Systems,” probably did little to help in this case.

The restraining order also sought to suppress conference slides distributed on the Defcon CD-ROM, though it proved too late as they were already distributed on Friday afternoon. The irony in this case is that a now publicly available vulnerability assessment report (pdf) filed as a supporting document for the court order appears to be more explicit than the conference slides about the vulnerabilities pertaining to the MBTA ticketing system.

Though a more secure version of Mifare is available — the Mifare DESfire, it will probably take some time before transport operators switch over, due to the sheer cost of replacing every RFID card reader in order to support it.

Joomla CMS suffers from a critical vulnerability

A critical vulnerability has been discovered in the password reset function of the Joomla Content Mangement System (CMS). All versions of Joomla from 1.5 up to 1.5.5 are affected by this flaw.
Excerpt from heise Security: When a password reset is requested a token is sent to the user by email. The flaw occurs when a token is presented to the system; the validation system contains a flaw which allows an unauthenticated, unauthorised user to reset the password of the first enabled user and take control. Typically this first active user is the administrator.

Users are encouraged to upgrade to Joomla 1.5.6 or directly modify the reset.php file to remove the bug.

Bumper Patch Tuesday this month

This week’s Patch Tuesday saw a massive crop of 11 updates, with six of them deemed as “critical” by the Redmond-based company. And yes, I meant to report on this over the weekend, though a family emergency put a stop to my efforts. I am writing about this anyway due to the sheer number of patches released — such a high number of updates have not been seen in a while.

Excerpt from ZDNet UK:

Security vendor McAfee noted that Microsoft had not released this many bulletins simultaneously since February, and had not patched as many vulnerabilities at once for the past two years. “This is a mammoth Patch Tuesday, and we have not seen anything of this scale in a long time,” stated Karthik Raman, a research scientist at McAfee, in a Wednesday statement.

Anyway, these vulnerabilities affect multiple applications such as Windows Media Player, Internet Explorer, Microsoft Office,and also all currently supported versions of the Windows operating system — including Windows Vista.

If you have set your Windows Update settings to manual, perhaps due to frequent traveling, now would be a good time to get your system patched up.

States urged to do more to tackle cybercrime

A report has been released by two technology policy groups noting that most top state prosecutors have failed to address cybercrimes outside of high-profile child pornography or cases involving sexual predators.

Excerpt from SecurityFocus: The report, which collected information about consumer complaints from 30 states, found that 24 states had an Internet-related category in their top-10 list of complaints, and in four states, Internet-related complaints topped the list. For most states, the complaints consisted of problems with Internet auctions or Internet sales, with few states collecting information about spyware, spam or phishing attacks, according to the Center for Democracy and Technology (CDT) and the Center for American Progress (CAP), the two groups that published the report (pdf).
As a result, criminals are getting away even as they swindle, hack, or trick they way to riches, with little risk of being caught and punished. The vice president and chief operating officer at the Center for Democracy and Technology, Ari Schwartz, called upon state attorney generals to focus on this problem.
Which leads me to ask: Were you ever victim to a cybercrime?
Once upon a time, there was a manager, dedicated to his job, who sometimes took his laptop with him on vacation. Although the laptop held sensitive information, he wasn’t about to lug it around with him as he partook of the benefits offered by the local establishments located around his favorite vacation destination. Leaving it in a locked car seemed to be the smart thing to do. After all, who would think of breaking a window to steal a computer?
This manager’s employer also lived in a fairy tale world, believing password protection for laptops was sufficient security. Even when the laptops contained sensitive information about its customers.

This is a “close enough” description of the world in which an unnamed, fired manager lived and worked in the UK. According to The Register,

Colchester University Hospital has sacked one of its managers over the theft of his work laptop, which contained unencrypted patient records.
The PC - which was stolen from the manager’s care in June - contained copies of the personal details and treatment plans of several thousand patients. Thieves took the machine after breaking into the car, which was parked in Edinburgh at the time, where the unnamed manager was holidaying.”
Source: Colchester Hospital sacks manager over lost laptop, John Leyden, The Register, 12 August 2008

Of course, the hospital’s response prompted an immediate reaction from readers of the article. At the time I read the article, there were a total of 27 opinions on who should really be blamed for the data loss. It’s those comments I want to assess in this post. As a disclaimer, I want to note that the article did not go into a lot of detail about the specifics concerning why data was on the laptop, why the laptop was in a manager’s care while he was on vacation, or why the data wasn’t encrypted. I don’t care about these things at the moment. My biggest concern is the inevitable finger-pointing when something like this occurs.
Finger-pointing is a time wasting blame-game that usually accomplishes very little. It has similarities to Nero’s fiddling while Rome burned. The kinds of comments made when an unprotected laptop is stolen are reasonably represented in the following table.

This table represents, in general, the opinions of the 27 respondents to the article described above. It’s sorted from high to low, relative to number of comments supporting each of five positions.

The top three are statistically the same, with seven people placing the blame squarely on the employee, six blaming the hospital, and five believing the responsibility should be shared between the manager and the hospital. This is followed by a small number asking a very good question, why was the laptop with the manager while on vacation in the first place? Instead of finger pointing, I like taking an after action review approach, resolving a vulnerability or two.

An objective look at the situation, given the limited information provided, reveals the following contributors to the stolen patient data.

1. The laptop data was not encrypted

2. Sensitive data had been copied to the laptop

3. The laptop was left locked in a car, accessible to anyone with a hammer or a rock

Encrypting laptop drives where users might store sensitive information is simply the right thing to do. No organization, whether health care or other, should expect laptops to be safe from loss of theft. This is management’s responsibility. Expecting users not to store sensitive information on their portable computers is naive, which brings us to the second point.
Some respondents believe sensitive information should be kept off laptops. OK, maybe. Organizations that don’t encrypt mobile computing devices should probably prohibit this. But doesn’t lack of local information sort of defeat the purpose of mobile computing? Yes, I know. They should just connect via VPN or some other method and access information on centralized storage, but remote connectivity isn’t always available. If employees are given mobile computing devices, it’s the employer’s responsibility to ensure the devices are secure computing environments, regardless of how data is “supposed” to be stored and processed.
The final point is one I ask often, whenever one of our employees calls in to report a laptop stolen from his or her car. Why was it in the car, unattended, accessible with a big rock? The company’s responsibility? Policies should exist dictating how mobile users should protect laptops. They should be supported by employee awareness (e.g. having mobile users sign a document stating they understand relevant policies) and sanctions, including dismissal.
Should Colchester Hospital have terminated the manager’s employment? I don’t know. I don’t have enough information. On the surface, however, it appears that two of the three responsibilities I identified rest on the shoulders of the hospital’s executive management. Instead of trying to place blame, maybe everyone should sit down and calmly identify what happened, what should have happened, what are the gaps, and how to we do better next time? It might make everyone (except the manager) feel better to fire someone, but it doesn’t really accomplish anything if done without taking steps to fix the real problems.

On the third of July, I discussed Google’s Web vulnerability scanner, RatProxy — and the fact that Google released it under an open source license. Now, Google’s at it again. A post to the Google Online Security Blog yesterday announced that Keyczar has been released under an open source license.

The Keyczar Website describes it as:

an open source cryptographic toolkit designed to make it easier and safer for developers to use cryptography in their applications

The license terms for Keyczar are those of the Apache 2.0 license, the same Copyfree, Free Software, and Open Source license used for RatProxy.

Keyczar offers simple Java and Python APIs, and a C++ API is promised. Usage code examples in both Java and Python are extremely simple, living up to the promise of “a simple API”.

As the Keyczar homepage puts it:

Cryptography is easy to get wrong. Developers can choose improper cipher modes, use obsolete algorithms, compose primitives in an unsafe manner, or fail to anticipate the need for key rotation. Keyczar abstracts some of these details by choosing safe defaults, automatically tagging outputs with key version information, and providing a simple programming interface.

Keyczar is designed to be open, extensible, and cross-platform compatible. It is not intended to replace existing cryptographic libraries like OpenSSL, PyCrypto, or the Java JCE, and in fact is built on these libraries.

In short, Google is doing things right with regard to security software development. In my 22 May article, Not Invented Here has no place in open source development, I discussed in brief how isolated development leads to flawed security software. Needless reinvention is an all too common way for people to create security vulnerabilities where they didn’t exist before.

I’m increasingly encouraged by evidence of Google’s commitment to improving the selection of security tools available, and I look forward to more from the Google Security Team.

The 16th annual security conference begins

It’s an unlikely pairing: security officials and underground hackers. Every year, they make peace and share information at Defcon, Black Hat’s sister conference. CNET’s Kara Tsuboi reports from the 16th annual event that begins in Las Vegas this weekend.

When is the last time you asked WHY you perform backups? Those tapes sitting in off-site storage might just cause you and the other members of IS — as well as Legal and Internal Audit — more pain than you realize.
Backups? I can hear it now. “Not another security pundit talking at me about why I should do something I already do…” But that’s not what this is about. When is the last time you sat down with other members of the IS team to discuss WHY you perform backups. Those tapes sitting in off-site storage might just cause you and the other members of IS–as well as Legal and Internal Audit–more pain than you realize.

The challenge
I’ve been involved in many recovery activities over the past 26 years. In many instances, we found we needed to change our backup processes so we didn’t expend an extraordinary amount of resources, or risk sanctions because we were unable to recover discoverable data. One truth that has penetrated my gray matter after all these years is we can always do better anticipating and testing for the types of requests coming in from internal and external sources.
The activities that provide the most valuable information about backup process issues are proper data backup design and periodic testing. Both should be based on expected restoration scenarios. The following four scenarios seem the most common:

1. Recovering failed systems

2. Replying to litigation discovery requests

3. Recovering from user or programmer error

4. Ensuring data integrity

Recovering databases for failed systems
When we talk about backups, most of us immediately think system recovery. Initial backup solution configurations usually focus on this aspect of data recovery, planning for the day when systems fail. The reason we create these backups, usually on tape, is to recover from catastrophic events. However, many organizations keep tapes in off-site storage for years. Regulatory requirements (e.g. payroll records retention) are often used as an excuse. However, information you might have to provide to auditors or government agencies should be easily accessible. Instead of letting the bits deteriorate over time on forgotten tapes on dusty shelves, consider a better data archival system—one that uses inexpensive near line storage (e.g. cheap magnetic or optical disk) and contains only the information you absolutely need to meet legal requirements.

Further, you need to ensure quick recovery when the time comes to rebuild critical systems. The amount of negative impact on a business from a server or data center failure is directly proportional to how long it takes to recover. Recovery solutions must restore critical systems before the maximum tolerable downtime is reached. Innovative approaches can even allow restoration of environments to different hardware platforms. (See Review of Acronis True Image for Microsoft Windows SBS.)

Another problem caused by most DR backups is the tendency to copy everything to one or two sets of tapes. So in deciding to keep tapes indefinitely, you open yourself to issues related to the number two reason tapes are pulled and placed back into tape drives.

Replying to litigation discovery requests
Similar to the security adage, “You don’t have to secure what you don’t store,” you don’t have to produce for discovery what you don’t have. Information stored on tape or other backup media is potentially subject to discovery. Backup processes should conform to company records retention and legal hold policies. What to store, how long, and on what media are decisions based on regulatory constraints and the potential for litigation. Information destroyed in the normal course of business, in compliance with records retention policies, is not subject to discovery. And you don’t have to incur six-figure costs trying to extract if from outdated or poorly indexed backups intended for DR.

If your records retention policies call for saving several years worth of messages, word processing documents, spreadsheets, PDFs, etc., be sure to evaluate the best way to search for and recover this information. Design your electronic archive solutions accordingly. Consider solutions that index information based on content, protect documents and messages found to be relevant to legal hold via integrated search capabilities, and can age with the need to get to the information. In other words, the technology used should not be obsolete and unusable when the time comes to use it.

Recovering from programmer or user error
If I told you that during my 14 years as a programmer I never caused database issues in a production environment, would you believe me? Would you believe anyone who told you? If you answered yes, you haven’t been in the IT business very long.

Programmers and users occasionally whack (technical term) databases, resulting in system failure or questionable data integrity. Data restore solutions must allow “surgical recovery,” enabling an administrator to quickly search for and restore only what is needed. Recovering small amounts of easily located information reduces recovery time and downtime costs.

Ensuring data integrity
This recovery category is similar to programmer/user error, covering anything else that might taint data integrity. Again, surgical recovery methods should be available to administrators to restore confidence in the data without severe financial business ramifications.
Backup/Recovery plan maintenance
A backup solution is a potential business vulnerability unless it’s been tested and the rough spots smoothed. Regular testing against recovery scenarios defined during the design activities is the final step in ensuring recovery processes actually work as expected. Further, review system modifications, changes to retention policies, or shifts in the legal climate to ensure backup and recovery design remains acceptable.

