
 Proceedings of the 2002 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2002

ISBN 0-7803-9850-5 /$10.00  2002 IEEE Page 130

Abstract—We introduce the notion of an intelligent software
decoy, and provide both an architecture and event-based lan-
guage for automatic implementation of them. Our decoys
detect and respond to patterns of suspicious behavior, and
maintain a repository of rules for behavior patterns and de-
coying actions. As an example, we construct a model of system
behavior from an initial list of event types and their attributes
in the interaction between computer worms and an operating
system. The model represents patterns of suspicious or mali-
cious events that the software decoy should detect, and specific
actions to be taken in response. Our approach explicitly treats
both standard and nonstandard invocations of components,
with the latter representing an attempt to circumvent the public
interface of the component.a

Index terms—Behavior modeling, computer security, com-
puter worm, deception, event trace, software decoy, intru-
sion detection, information operations, intrusion tolerance

I. INTRODUCTION

Software components with poorly designed interfaces are
susceptible to misuse or modification by rogue programs.
Consider, for example, the result of unleashing the Morris
Internet worm (vid. Spafford [1]): Some integral compo-
nents of the UNIX operating system permitted the worm
to propagate itself over the Internet. What were some of
shortcomings of some versions of Unix in 1988? One
was that some components permitted incorrect argument
types to be executed, such as the sendmail program ac-
cepting commands instead of user addresses. Another
weakness was that some components allowed for errone-
ous argument values to be passed to functions, such as a
string of 536 bytes passed to the input buffer of the fin-
gerd program: That string exceeds the size of the buffer,
but fingerd and the functions it calls in the C language I/O
library do not check, resulting in a buffer overflow.

Software patches were made to sendmail and fingerd in
response to the Morris worm. The patches consisted of

a Manuscript submitted on December 28, 2001; accepted for
publication on April 18, 2002.
 J. B. Michael, N. C. Rowe, and R. D. Riehle are with the
Department of Computer Science, Naval Postgraduate School,
833 Dyer Rd., Monterey, Calif. 93943-5118 (e-mail: {bmichael,
ncrowe, rdriehle}@nps.navy.mil).
 M. Auguston is with the Department of Computer Science,
New Mexico State University, Las Cruces, N.M. 88003-0001 (e-
mail: mikau@cs.nmsu.edu).

exception-handling routines for catching errors in input
arguments to these programs. The effectiveness of the
patches was low at first because of delays between the
release and installation.

History continues to repeat itself. Distributed systems are
plagued by worms descended from the Morris worm, such
as the well-publicized “Code Red” worm [2] that exploits
weaknesses in the public interfaces of components of the
Microsoft Windows NT operating system that manipulate
the registry.1 The “patch-and-pray” approach to dealing
with such weaknesses in interfaces has not been effective.
Shortly after the introduction of the original, a variant of
the Code Red worm appeared which took advantage of
other weaknesses in the interfaces of those same compo-
nents of the operating system [3].

In this paper we explore a new way of thinking about the
challenges associated with protecting components within
distributed systems from the effects of attacks. In par-
ticular, we develop the mechanisms needed to realize a
modified version of what Michael and Riehle call an in-
telligent software decoy [4]. Intelligent software decoys
adapt in order to reveal and tolerate both intrusions into
systems by unauthorized users and misuse of software
components, instead of either indicating to the intruder or
offending process that a violation of security policy has
been detected or terminating the interaction with the
process. Intelligent software decoys perform what could
be termed cyber Akido, in which the decoy tolerates an
attack and learns about the opponent’s weaknesses (e.g.,
that the opponent relies on the use of buffer-overflow
techniques) while simultaneously trying to neutralize the
opponent by, in the following order, reducing or elimi-
nating the will of the attacker (e.g., by inserting delays
into responses to method calls made by the opponent),
changing the proximity of attack (e.g., directing the atten-
tion of the opponent to a honeypot), and as a last resort
reducing or eliminating the ability of the opponent to at-
tack (e.g., closing a communication port, killing a proc-
ess, or launching a counter denial-of-service attack), at
which point the effectiveness of deception techniques will
likely be reduced because the opponent becomes aware or

1 The registry is the repository of the local security policy used
by the security reference manager and monitor to control access
by threads to objects.

Software Decoys: Intrusion Detection and
Countermeasures

James Bret Michael, Senior Member, IEEE, Mikhail Auguston, Neil C. Rowe, and Richard D. Riehle

 Proceedings of the 2002 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2002

ISBN 0-7803-9850-5 /$10.00  2002 IEEE Page 131

suspicious that the software decoy knows of the presence
or weaknesses of the attacker.

In contrast, most intrusion-detection and response systems
apply a form of cyber Karate: “if you try to kill me, I will
try to kill you” by immediately terminating interaction
with the attacker and thus indicating to the attacker that
the attack was noticed and that countermeasures are al-
ready being applied. A counterexample is that of pH [5]
which tries to initially tolerate potentially malicious inter-
action between a calling process and a wrapped compo-
nent of the operating system by inserting delays into the
responses to such calls so as to provide the intrusion-de-
tection system with as much time as possible to distin-
guish between real attacks and false positives. The termi-
nation of a process based on a false positive would result
in a legitimate process being denied service.

Some key ways in which intelligent software decoys dif-
fer from honeypots are that software decoys actively de-
fend components rather than just collect data, are not in-
tended to be used solely to attract the attention of adver-
saries, and do not rely on the concept of a perimeter of
defenses (i.e., any component within a distributed system
can be decoy-enabled and either operate autonomously or
in a cooperative mode with other software decoys).
Moreover, we envision software decoys as being inte-
grated into a larger joint (across the Armed Services) war-
fighting and enforcement arsenal used to shape the cyber
environment in real-time. Although software decoys
could be used to help thwart the actions of “script kid-
dies” and hackers, the motivation for work reported here
is to provide enabling technology for the warfighter to
conduct automated information operations against so-
phisticated terrorist cells and nation states; deceiving,
deterring, and dissuading such adversaries requires em-
bedding into systems the ability for software components
to adapt, through learning, their strategies for conducting
information operations as feedback is received by those
components on the effectiveness of such operations.

Each decoy-enabled software component has a contract
consisting of a class invariant and one or more precondi-
tions and postconditions; communication with a compo-
nent is only permitted via its contract interface. Class
invariants govern the nature and extent of any change to
objects within a component by a nonstandard invocation
(i.e., circumvention) of the component’s public interface.

When a calling process passes arguments—via local or
remote procedure call, or remote method invocation—that
violate the contract of a component, the component tran-
sitions from its nominal operating mode to a deception
mode, in which it attempts to both deceive the calling
process into concluding that its violation of the contract
has been successful, while simultaneously both containing
the interaction and assessing the nature of the violation.

For example, suppose a precondition in a contract asserts
that input strings shall not exceed 512 bytes. If the com-
ponent receives a string that violates this condition, then
the component could respond by simulating a buffer over-
flow with the aim of keeping the process engaged in in-
teracting with the component.

Here we describe decoy strategy along with an architec-
ture and event-based language for automatic implementa-
tion of software decoys.

II. APPROACH

We start with the introduction of a precise behavior model
for the system under consideration. This model is speci-
fied in terms of events and two binary relations over those
events: precedence and inclusion.

We provide a formalism to specify rules for runtime in-
trusion detection and corresponding countermeasures
based on behavior patterns over event traces and a catalog
of decoy actions, such as blocking or substituting certain
system commands. This implies an implementation based
on automatic instrumentation for event detection derived
from the behavior model. Intrusion detection rules are
textually separated from the source code of the system,
which allows for accumulating and formalizing knowl-
edge of typical intrusion patterns and decoy strategies.

A. Event Traces

An event is an abstraction of any detectable action per-
formed at runtime. An event has a beginning, end, du-
ration, and some other attributes, such as program states
at the beginning and end of the event, source code associ-
ated with the event, and so on. Two binary relations are
defined for events. One event may precede another event.
For example, one statement execution may precede an-
other. In addition, one event may be included in another.
For instance, a statement-execution event may appear in-
side a procedure-call or method-invocation event. Each
of these binary relations defines a partial ordering of
events. System execution may be represented as a set of
events with the two basic relations between them—an
event trace. An event grammar [6] is a set of axioms that
determines possible configurations of events of different
types within the event trace. We use the notion of com-
putations over event traces to specify behavior patterns
and decoy actions. This mechanism is a basis for auto-
matic instrumentation of the source code.

B. Specification of Events

The behavioral model consists of the definition of event
types and the attributes of the events. Our event grammar
is used to describe the structure of events. The behavioral
model consists of two parts: (i) a specification of axioms

 Proceedings of the 2002 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2002

ISBN 0-7803-9850-5 /$10.00  2002 IEEE Page 132

that define constraints on the behavior of components;
this specification is given in terms of inclusion and prece-
dence relations, and (ii) a description of patterns of be-
havior expressed in terms of event patterns.

The event grammar is not intended for actual parsing of
an event trace. Each event defined in the behavior model
should be detectable by some independent means, for ex-
ample, by proper instrumentation of the source code.
There always is a main event execute-program,
which encompasses all other events. Event type and event
attribute declarations, and event grammar rules (i.e., axi-
oms) constitute the behavior model, or “lightweight” se-
mantics specification for the system under consideration.
The following is an example of an event-grammar rule
that specifies that an event of type execute-
assignment always contain (i.e., the inclusion relation)
two ordered events: evaluate-right-hand-part
and perform-destination.

execute-assignment::
(evaluate-right-hand-part
perform-destination)

Intrusion detection and other monitoring activities are
defined in terms of this behavior model. This model
opens the way for automatic source program instrumenta-
tion, and provides a formalism for describing different
kinds of behavior patterns, for example, typical intrusion
patterns.

C. Computations over Event Traces

Event pattern A matches successfully any event of the
type A. The event pattern can contain additional context
conditions, which typically involve event attributes, for
instance, X: perform-destination & source-
code(X) = 'V'. This event pattern matches an event
of type perform-destination, such that source-
code attribute of this event is 'V'. Notice the use of aux-
iliary variable X to denote the event under consideration.

Event patterns are used in aggregate operations to select
sequences of events from other event sets. For example,
[X:utility-call & name(X) = 'sendmail'
FROM execute-program] yields a sequence of
events matching the pattern X: utility-call &
name(X) = 'sendmail' selected from the whole
event trace. An aggregate operation may produce a result
different from just a sequence of events. For instance,
SUM/[X:utility-call & name(X) =
'sendmail' FROM execute-program APPLY
duration(X)] yields a total duration of events se-
lected.

Event patterns can be combined in order to specify path
expressions: patterns of event sequences. For instance,

the following path expression specifies a sequence of
events starting with event of type A followed by zero or
more events of types B or C: A (B | C)*

A probe is a Boolean expression involving event attrib-
utes and standard arithmetic and logic operations. It might
also contain calls of subroutines written in some general
programming language. Probes may be included in path
expressions interlaced with event patterns. A probe is
evaluated immediately after the preceding event pattern
has been matched successfully. A probe is successful if it
evaluates to the value True. For example, the following
path expression specifies a utility call that does not
change the value of variable V.

X: utility-call
Probe

(value(V at begin X) =
value (V at end X))

These operations provide a basis for computational tasks
such as filtering events to create views of the event trace
subspace, evaluating the truth of assertions, and comput-
ing specific values (e.g., counting the number of events in
a sequence or the maximum elapsed time for an event
pattern). An important feature of this formalism is that
computations over event traces are separated from the
source code itself, and the instrumentation of the source
code can be automated, based on the behavior model (i.e.,
event grammar) and the text of the trace computation.

D. Code Instrumentation

Code instrumentation is needed to recognize patterns of
events and to perform computations over the event trace.
Our approach is to selectively specify and automatically
instrument, on a component-by-component basis, only
those event types and event attributes that are of interest.
For example, one would likely specify events corre-
sponding to popping (i.e., deleting an item from) the
stack, reading, writing, or handling threads (e.g., create,
reschedule, delete) as events of interest in the context of
the behavior of components comprising an operating sys-
tem; only the source code corresponding to these and
other events of interest would be instrumented. For other
components within the operating system, there may not be
any events of interest and therefore the source code of
those components would not be instrumented.

An automated tool for generating the instrumentation
would accept as input the program’s source code and the
text of trace computation. We define the event pattern
language and aggregate operations in such a way that
event detection, event pattern matching, and other com-
putations over event traces can be performed at runtime.
Based on similar levels of instrumentation as reported by
Sekar and Uppuluri [7] and Ko et al. [8], we anticipate
runtime overhead associated with optimized instrumenta-

 Proceedings of the 2002 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2002

ISBN 0-7803-9850-5 /$10.00  2002 IEEE Page 133

tion to fall within the range of four to seven percent. This
effect of event-trace computations is important for high-
performance systems, especially for components that are
called frequently, such as those comprising either the
scheduler or memory manager of an operating system.

As an example of how instrumentation would be selec-
tively applied, consider a component that implements the
Transmission Control Protocol (TCP); TCP is a fre-
quently called component and known to be susceptible to
certain types of attacks, such as that of the “Cheese”
worm [9] that attempts to execute commands on a specific
TCP port of a system and then masquerade as the httpd
program on that system. The change to the httpd program
via a Trojan horse is an example of an attack for which a
class invariant could be used to guard against unauthor-
ized changes to the behavior of this component. One of
the events of interest would be the invocation of shell
commands on a TCP port. Due to the fact that there is a
sequence of calls resulting from the shell commands, the
events at other components may need to be instrumented;
this is the case for the Cheese worm. Some of the events
of interest would be changing process names, overwriting
system files (e.g., /etc/inetd.conf), and repeated attempts
to restart a system command (e.g., inetd). The compiler
used for generating instrumentation would only do so for
these types of events. Specific examples of how to spec-
ify events, their attributes, and actions (i.e., responses to
events) are given in the remainder of the paper for the
Morris worm.

III. DOMAIN MODELS OF SYSTEM BEHAVIOR

Domain models of system behavior serve as the founda-
tion from which to specify both patterns of suspicious
behavior (i.e., slices of event histories) and the corre-
sponding responses (i.e., actions) of software decoys. A
domain model consists of a list of generic event types,
along with their attributes, both of which are associated
with a particular class of behavior and detectable. In this
section, we report our work to date to develop a domain
model of detectable events that can be triggered within an
operating system by computer worms: that is, rogue pro-
grams that propagate themselves across computer net-
works. In other words, we treat the interaction between a
worm and a particular type of software component as a
unique domain for modeling purposes. Our motivation
here is to both describe an event-trace language for im-
plementing software decoys and give specific examples of
how one would instrument code for runtime checking.
Our examples are based on the behaviors of components
of the Unix operating system with the Morris worm.
More recent worms, such as “Code Red” and “Cheese,”
are variants of the Morris worm in at least two ways: (i)
they are composed from the same set of generic event
types, or “building blocks,” and (ii) share the same basic

structure, in some cases initiating similar patterns of
events.

A. Interaction between the Worm and Operating
System

Although it is still debated as to whether the intent of the
author of the worm was to just experiment out of aca-
demic interest and the worm “got loose” due to an egre-
gious use of contracts at the interfaces of the components
it called, the interaction of the worm with software com-
ponents resulted in a temporary denial of service across
much of the Internet.

The Morris worm interacts with the components of the
operating system by repeatedly accessing a data structure
(e.g., the system password and network configuration
files), calling a program to obtain state information (e.g.,
netstat), or repeatedly invoking a program and permuting
the arguments before each invocation (e.g., rsh). The
worm also invokes sequences of functions and proce-
dures, such as issuing the DEBUG command to the send-
mail program followed by a sequence of commands (i.e.,
the vector portion of the worm program) to be acted on by
procedures available in that operating mode.

In addition to accessing components, the Morris worm
attempts to write to files (e.g., set a flag) and execute
copies of itself in the form of Trojan horses. It also at-
tempts to propagate itself while simultaneously eluding
detection or spoofing by forking itself after a pre-speci-
fied number of tries at infecting other computers or elapse
of time, and then deleting both the parent process and all
of the temporary files created by the parent process.

B. Description of the Domain Model

Here we provide a first approximation of the description
of the model. We begin by specifying five event types
and their attributes:

fingerd_call
 Attributes: caller_id
 begin_time
param_pass
 Attributes: length
read
utility_call
 Attributes: begin_time

caller_id
caller_process_type

sendmail_call
 Attributes: in_debug_mode

Next we introduce an axiom that specifies the event
fingerd_call contains another event, param_pass:

Axiom: fingerd_call:: (param_pass)

 Proceedings of the 2002 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2002

ISBN 0-7803-9850-5 /$10.00  2002 IEEE Page 134

Based on the foregoing specification of events and axi-
oms, we can start to build a behavioral specification for
the Morris worm as follows:

fingerd_call:: (x: param_pass)
& length(x) > max_buffer_size
read +
probe(buffer_overflow)

This behavior pattern, described in terms of a violation of
the contract for fingerd calls, states that first an event of
the type fingerd_call is detected, such that the value
of attribute length of the included event param_pass
exceeds a given constant max_buffer_size; in this
case, x is a tentative name associated with the event
param_pass. Next, one or more events of the type
read should appear, and finally a probe (i.e., an evalua-
tion of a Boolean expression) specifying buffer overflow
should evaluate to the value True. Successful detection of
those events and conditions in the specified order indi-
cates that the system might be under attack by the Morris
worm or some other worm. Now let us specify yet an-
other behavior pattern:

x: sendmail_call::
([utility_call +]
&& CONST(caller_id)
&& CONST(caller_process_type)
&& FREQUENCY(time_interval)
)
& in_debug_mode(x) = True

Here sendmail_call is specified with the attribute
in_debug_mode equal to the value True. This event
contains a sequence of utility_call events with the
same caller_id and caller_process_type at-
tribute values, such that the time between those
utility_call events does not exceed
time_interval.

C. Summary

In summary, our event-trace language integrates the lan-
guage constructs that are necessary for specifying event
patterns, probes, and actions. An event pattern is a par-
ticular interval-based signature constructed from a struc-
tural model of events of interest (e.g., system calls to
write to a file). The probe is a Boolean expression; for
instance, a probe can be used to compare the values of
two attributes over the same interval of time, or the value
of the same attribute at different points in time. An action
is a message that is generated based on the recognition
that a particular pattern of behavior has been observed.
The pattern of behavior can be composed from one or
more slices of the same or different event traces. The
messages are used to trigger rules that embody the target
component’s decoy-mode response to its interaction with

the calling process whose interaction with the component
may be malicious or benign.

IV. DECOY STRATEGY

Decoy methods can show a wide spectrum of complexity.
A key dimension is information in the mathematical sense
they provide to the attacker [10]. One might ask: Why
provide any information to one’s adversary? This is the
nature of deception, such as providing misinformation or
misleading information to one’s adversary. Our decoy
strategy borrows from military tactics for deceiving one’s
adversary (e.g., viz. [11]), which is only one of the five
pillars of information operations, the others being psy-
chological operations, electronic warfare, computer-net-
work attack, and operational security.

A decoy that provides the same canned response to a user
command in all circumstances transmits zero bits of
information. A decoy that simulates an arbitrary pro-
tected file by generating a fake file with random choices
transmits information equal to the logarithm of the num-
ber of possible fake files it can create for a given request.
A decoy that simulates a denial-of-service attack, provid-
ing additional operating-system delays monotonically
increasing with the number of requests in a recent time
interval, transmits information equal to the logarithm of
the number of distinguishable time intervals it can pro-
vide. A decoy that simulates attempts to change a module
of the operating system transmits information equal to the
logarithm of the size of that module (or perhaps the part
of it relevant to a particular attacker activity). It might
seem that the ultimate decoy would simulate all aspects of
a computer and its software as proposed by Thimbley et
al. [12], requiring information equal to the logarithm of
the size of the complete description of the computer and
programming environment, and thus be equivalent to a
universal Turing machine. However, we claim a truly
ultimate decoy would be “intelligent” and need to do
more: It would need to analyze properties of arbitrary
code of viruses and Trojan horses to predict their con-
ceptual consequences. But such ultimate decoying ap-
pears impossible in light of the undecidability of nontriv-
ial properties of recursive functions (vid. Rice’s Theorem
[13]).

Applying these ideas to the Morris worm, the propagation
of the worm could be decoyed by having the operating
system count the number of recent buffer-overflowing
fingerd calls (requiring a single integer of memory) and
provide additional process-suspension time in all operat-
ing-system activities; this could most easily be done by
just inserting delays into a frequently used utility like file
reading, delays that would only occur for the process
threads created by the perceived attacker and would be
monotonic with the number of ongoing threads they have
created. The sendmail trapdoor could be decoyed by per-

 Proceedings of the 2002 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2002

ISBN 0-7803-9850-5 /$10.00  2002 IEEE Page 135

mitting normal debugging behavior except for commands
writing or executing parts of memory, which would ap-
pear to execute but would be prevented from changing
memory.

Consider some examples of decoy strategies for the
Morris worm. The propagation of the worm could be de-
coyed by providing additional process-suspension time
for all utility calls within the same process, creating an
illusion to the intruder that a delay has been introduced
(assuming that the intruder monitors response times)
while the other non-offending processes will continue to
execute unhindered.

detect [x: fingerd_call::
(y: param_pass)
& length(y) > max_buffer_size
read +] && CONST(process_id)
probe (buffer_overflow)

from execute-program
do enable delay (t) to z: utility_call

& process_id(x) = process_id(z)

The sendmail trapdoor could be decoyed by directing its
invoker to a decoy function protected_read() that
simulates the behavior with correct read commands and
by deactivating write commands via the decoy function
dummy()to substituting write operations:

detect x: sendmail_call::
([utility_call +]
&& CONST(caller_id)
&& CONST(caller_process_type)
&& FREQUENCY(time_interval)
) & in_debug_mode(x) = True

from execute-program
do substitute z: write

& process_id(x) = process_id(z)
by dummy()
substitue w: read
& process_id(x) = process_id(w)
by protected_read()

Finally, the fingerd buffer-overflow to change the oper-
ating system’s stack could be simulated via the instru-
mentation of the pop operations on the stack to simulate a
jump to the new designated area of memory and execu-
tion of its commands with the current execution environ-
ment, requiring a full simulation of what happens there
but on a copy of the operating system designated only for
the offending process. Decoy methods like these can be
generalized for broader applicability (by inserting code to
call a general decoy monitor into many executables and
parts of the operating system) or specialized for efficiency
(by compiling separate decoy-enabled versions of execu-
tables that can be called when suspicious activities occur)
depending on design priorities.

A software decoy should try to fool an intruder into
thinking it is real. A necessary condition is that it returns
most of the bits of information that would be returned by
the real component corresponding to the simulated com-
ponent. (This is not a sufficient condition because the
type of information returned may be important even for
the same number of bits.) A necessary information-theo-
retic condition for this is that the size of the decoy in bits
must be most of the size of the amount of information it
must transmit—and in the case of complex decoys that
are too hard to summarize in an input-response table, per-
haps larger still to model the decoying behavior in an
easy-to-debug and easy-to-update way. However, in
many practical situations it is sufficient that the decoy
provide only a sample of all possible behaviors in re-
sponse to only a sample of possible attacker inputs. For
instance, a software decoy need only provide convincing
fakes for the protected files that an attacker asks to see.
For such situations, a good measure of decoy quality is
the difference between the number of bits expected by the
attacker and the number of bits transmitted. So if the
same response is given to each of three actions, the num-
ber of bits transmitted remains the same as if one response
is given to one action, but the number of bits expected is
tripled.

Our behavior model provides means for specifying a
broad spectrum of decoying strategies from specific ones
for a particular intrusion type to a more generic when it is
possible to come up with a generic description of intru-
sion patterns common to a whole class of attacks.

V. SOFTWARE-DECOY ARCHITECTURE

We turn now to the implementation of the event-trace
language to support software decoys. The structural (i.e.,
domain behavior) model will consist of event types, event
attributes, and axioms. Event types and attributes should
be detectable independently.

We envision the possible implementation as an instru-
mentation of kernel libraries and log monitors available
on the chosen platform. The basic instrumentation pro-
vides for the detection of events and event attributes
specified in the generic behavior model and the interface
for executing monitoring programs. A specialized com-
piler will generate monitoring programs from our high-
level language for specifying both deception strategies
and rules to be used by the software decoys. An option
that permits the user to store event traces for debugging
purposes may also be included in the general monitoring
framework.

The generated monitors will include mechanisms for
monitoring behavior-pattern implementation, via the use
of state-transition diagrams—similar in some respects to

 Proceedings of the 2002 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2002

ISBN 0-7803-9850-5 /$10.00  2002 IEEE Page 136

the NetSTAT [14] approach to network monitoring—and
buffers to maintain event-attribute values.

Fig. 1 represents one possible architectural solution for
implementing intelligent software decoys, in particular,
for software components within an operating system. The
separation of the repository of rules and behavior patterns
from the supervisor supports the maintenance of the re-
pository without changing the implementation (i.e., com-
ponent wrappers and supervisor); the repository and be-
havior model are confidential within the system under
protection.

Execution of system commands contributes the main part
of the event types in our behavior model. The basic in-
strumentation assumes that each system command par-
ticipating in the model is enclosed in a wrapper, which is
responsible for sending to the supervisor messages about
event beginning and end and event attributes. The wrap-
per also contains a lightweight interface for implementing
decoy actions, for example, inserting a delay or substi-
tuting the execution of the command by another subrou-
tine execution. Behavior pattern detection is based on
state transition diagrams maintained in the monitor. The
interpreter within the monitoring kernel is responsible for
rule interpretation and triggering decoying actions.

Wrapper

System
component

Wrapper

Intrusion

Supervisor

Interpreter

Rules for behavior
patterns and decoy actions

Operating System

System
component

Fig. 1. Software decoy architecture

In addition to the goal of supporting software-based de-
ception, our architecture is founded on two of the goals
driving the specification and implementation of the
Survivable Autonomic Response Architecture (SARA)

[15]: provision for both fast and coordinated responses to
patterns of observed behavior. In the software-decoy ar-
chitecture, the supervisor coordinates the actions among
the decoyed-enabled components in order to both make
decisions about how best to instrument components given
the latest information about component interaction and
select responses—that conform to information operations
doctrine and policy—to effect the system-wide deception
strategy.

In contrast to SARA, our architectural framework pro-
vides for performing machine learning at both the local
(i.e., decoy) and global (i.e., supervisory) level, although
we realize the need to evaluate the consequences of this
decision in terms of requirements for the architecture such
as adaptability, extensibility, and scalability.

VI. RELATED WORK

The notions of event, path expression, and assertion lan-
guage are well known in testing and debugging automa-
tion research. An event-based debugger for the C pro-
gramming language called Dalek [16] provides user-de-
fined events that typically are points within a program
execution trace. A target program has to be instrumented
manually in order to collect values of event attributes.
The path expression technique was introduced for speci-
fying parallel programs in [17]. This technique has been
used in several projects on high-level debugging tools
(e.g., in [18]) where path rules are suggested as a kind of
debugger command. Assertions (or annotations) currently
in use are mostly based on Boolean expressions attached
to selected points of the target program (e.g., the assert
macro in C). The ANNA [19] annotation language for
Ada supports assertions on variable and type declarations.
In the TSL [20] annotation language for Ada, the notion
of event is introduced to describe the behavior of tasks.
The RAPIDE project [21] provides a rich event-based
assertion language for software architecture description.
In [22], a practical approach to assertions for the C lan-
guage is advocated. Our language for computations over
traces provides a flexible means for writing both local and
global assertions, including those about temporal relations
between events. It supports all kinds of assertions used in
the systems above in a uniform framework.

Sekar and Uppuluri [7] describe a high-level formalism
for specifying intended program behaviors using patterns
over sequences of system calls. The patterns also capture
conditions on the values of system-call arguments. Their
intrusion prevention and detection system is based on
intercepting system calls, comparing them against the
specifications, and disallowing calls that deviate from the
specifications of valid behaviors. In their approach, it is
possible to modify a system call before it is delivered to
the operating system’s kernel, permitting the system to
react before the execution by a process of any damage-

 Proceedings of the 2002 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2002

ISBN 0-7803-9850-5 /$10.00  2002 IEEE Page 137

causing system call. The paper also presents a low-over-
head algorithm for matching runtime behaviors against
specifications.

We suggest a more powerful and expressive pattern speci-
fication language based on precise behavior models
(event grammars) that will be able to capture a broader
class of behaviors than those described by Sekar and
Uppuluri. We also expect that our implementation strat-
egy will be close to the guidelines presented by Sekar and
Uppuluri, thus keeping the runtime overhead at or below
four percent.

Neumann and Porras describe the architecture for
EMERALD—an environment for anomaly and misuse
detection—and subsequent analysis of the behavior of the
systems and networks [23]. The architecture of
EMERALD is based on component principles and can be
adjusted to various platforms and configurations. A pro-
duction-based expert system is used to analyze behavior
patterns and signatures.

The use of event traces for reasoning about the behavior
of information systems is not new. Event traces have
been used to reason about the correctness of the execution
of hardware-level instructions. For instance, Bressoud
and Schneider [24] present an approach to fault tolerance
based on the use of hypervisors that emulate the target
hardware architecture: Each hypervisor serves as a virtual
machine. The hypervisor is then instrumented to watch
for sequences of instructions, within an epoch (i.e., inter-
val of time), that are critical to the correct operation of
replicated hardware within a system.

Working at a higher level of abstraction, Erlingsson and
Schneider [25] introduce an approach known as Security
Automata SFI Implementation (SASI). In this approach,
the object code is instrumented so that as sequences of
events occur, the trusted computing base, which in this
case includes the software that analyzes and modifies ob-
ject code, can use the event traces to reason about whether
the traces are conformant to security policy (e.g., mem-
ory-protection policy).

Bressoud and Schneider [24] discuss some of the difficul-
ties in instrumentation of virtual machines and reasoning
over sequences of hardware instructions. Likewise,
Erlingsson and Schneider admit that it is difficult to rec-
ognize patterns of interest from specifications of object
and security policy represented in their security automa-
ton language (SAL), and that the development of such
specifications is an “awkward and error-prone” process.
Their new approach is to rely on the use of “annotations
of the object code that are easily checked and that expose
application-level abstractions,” rather than checking every
machine-level instruction. Our formalism of decoys relies
on specifying events for which the source code of compo-
nents can be instrumented.

Sekar and Uppuluri [7] attempt to defend against buffer-
overflow attacks by injecting code and addresses into
memory, and transferring control flow to the injected
code. They manually instrument system calls and their
arguments for each component to be protected against
buffer-overflow attacks. A run-time monitor then com-
pares these patterns of nominal and anomalous behavior
with that of the runtime behavior of the protected compo-
nent. Our approach differs from that of Sekar and
Uppuluri, especially in terms of the method of instru-
mentation: that is, in our approach, the software compo-
nents are automatically instrumented.

Liu and Jajodia [26] introduce specialized decoying meth-
ods and strategies for transaction-level intrusion tolerance
and damage confinement in database management sys-
tems (DBMS). The approach is bound to transaction
events within the DBMS and relies on the use of filtering
strategies. In contrast, our approach can be specialized to
different types of events and countermeasures.

VII. CONCLUSION

Our approach explicitly treats the two types of invoca-
tions of components: standard and nonstandard, with the
latter representing an attempt by a process to circumvent
the public interface of the component. For standard types
of invocations or components of legacy systems for which
the source code is not available, then certain types of
events of interest will not be detectable.

The behavior model based on event grammars provides a
uniform framework for behavior-pattern recognition and
decoying actions. In our opinion, this is a practical road
to formalizing knowledge about typical intrusion patterns
and constructing a flexible system of countermeasures.

Our next steps are to implement the architecture, develop
measures of effective, and conduct experiments (similar
in nature to those used by Turing in his experiments with
the “imitation game” [27]) with the decoys embedded in
real systems operating in test-and-evaluation mode (e.g.,
weapon control systems with live-fire disabled).

VIII. ACKNOWLEDGEMENTS

This research is supported by the Naval Research Laboratory
under contract no. N41756-01-WR-10433, Office of Naval
Research under contract N00014-01-10746, the U.S. Army
Research Laboratory under contract no. 40473-MA, and the
National Research Council. The views and conclusions con-
tained herein are those of the authors and should not be in-
terpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the U.S.
Government. The U.S. Government is authorized to repro-
duce and distribute reprints for Government purposes not-
withstanding any copyright annotations thereon.

 Proceedings of the 2002 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2002

ISBN 0-7803-9850-5 /$10.00  2002 IEEE Page 138

REFERENCES

[1] Spafford, E. H. The Internet worm: Crisis and after-
math. Comm. ACM 32, 6 (June 1989), 678-687.

[2] “Code Red” worm exploiting buffer overflow in IIS
indexing service DLL. Incident Note IN-2001-08, CERT
Coordination Center, Carnegie-Mellon Software Eng.
Inst., Pittsburgh, Penn., July 19, 2001.

[3] “Code Red II:” Another worm exploiting buffer over-
flow in IIS indexing service DLL. Incident Note IN-
2001-09, CERT Coordination Center, Carnegie-Mellon
Software Eng. Inst., Pittsburgh, Penn., Aug. 6, 2001.

[4] Michael, J. B. and Riehle, R. D. Intelligent software
decoys. In Proc. Monterey Workshop: Eng. Automation
for Software Intensive Syst. Integration, n.p., (Monterey,
Calif., June 2001), 178-187.

[5] Somayaji, A. B. Operating System Stability and Secu-
rity through Process Homeostasis. Ph.D. dissertation,
University of New Mexico, 2002.

[6] Auguston, M. Tools for program dynamic analysis, test-
ing, and debugging based on event grammars. In Proc.
Twelfth Int. Conf. Software Eng. and Knowledge Eng.,
Skokie, Ill.: Knowledge Syst. Inst. (Chicago, Ill., July
2000), 159-166.

[7] Sekar, R. and Uppuluri, P. Synthesizing fast intrusion
detection/prevention systems from high-level specifica-
tions. In Proc. USENIX Sec. Symp., Berkeley, Calif.:
USENIX Assn. (Washington, D.C., Aug. 1999), 63-78.

[8] Ko, C., Fraser, T., Badger, L., and Kilpatrick, D. Detect-
ing and countering system intrusions using software
wrappers. In Proc. Ninth USENIX Sec. Symp., Berkeley,
Calif.: USENIX Assn. (Denver, Col., Aug. 2000), 145-
156.

[9] The “cheese” worm. Incident Note IN-2001-05, CERT
Coordination Center, Carnegie-Mellon Software Eng.
Inst., Pittsburgh, Penn., May 17, 2001.

[10] Evans, S., Bush, S. F., and Hershey, J. Information
assurance through Kolmogorov complexity. In Proc.
DARPA Inf. Survivability Conf. and Exposition, vol. 2,
IEEE (Anaheim, Calif., June 2001), 322-331.

[11] Fowler, C. A. and Nesbit, R. F. Tactical deception in air-
land warfare. J. Electronic Defense 18, 6 (June 1995),
37-44, 76-79.

[12] Thimbleby, H., Anderson, S., and Cairns, P. A frame-
work for modelling Trojans and computer virus infec-
tion. Comput. J. 41, 7 (1998), 444-458.

[13] Rice, H. G. Classes of recursively enumerable sets and
their decision problems. Trans. Amer. Math. Soc. 89
(1953), 25-99.

[14] Vigna, G. and Kemmerer, R. A. NetSTAT: A network-

based intrusion detection approach. In Proc. Fourteenth
Annual Computer Sec. Applications Conf., ACM
(Scottsdale, Ariz., Dec. 1998), 25-34.

[15] Lewandowski, S. M., Van Hook, D. J., O’Leary, G. C.,
Haines, J. W., and Rossey, L. M. SARA: Survivable
autonomic response architecture. In Proc. DARPA Inf.
Survivability Conf. and Expo., vol. 1, IEEE (Anaheim,
Calif., June 2001), 77-88.

[16] Olsson, R., Crawford, R., and Wilson, W. A dataflow
approach to event-based debugging. Software—Practice
& Experience 21, 2 (Feb. 1991), 19-31.

[17] Campbell, R. H. and Habermann, A. N. The specifi-
cation of process synchronization by path expressions.
In Goos, G. and Hartmanis, J., eds., Proc. Int. Symp. Op-
erating Syst., Lect. Notes Comput. Sci., vol. 16, Berlin:
Springer-Verlag (Rocquencourt, Fr., Apr. 1974), 89-102.

[18] Bruegge, B., and Hibbard, P. Generalized path expres-
sions: A high-level debugging mechanism. J. Syst. Soft-
ware 3, 4 (1983), 265-276.

[19] Luckham, D., Sankar, S., and Takahashi, S. Two-dimen-
sional pinpointing: Debugging with formal specifica-
tions. IEEE Software (Jan. 1991), 74-84.

[20] Luckham, D., Bryan, D., Mann, W., Meldal, S., and
Helmbold, D. P. An introduction to task sequencing lan-
guage, TSL version 1.5 (Preliminary version), Stanford
Univ., Feb. 1, 1990, pp. 1-68.

[21] Luckham, D. and Vera, J. An event-based architecture
definition language. IEEE Trans. Software Eng. 21, 9
(Sept. 1995), 717-734.

[22] Rosenblum, D. A practical approach to programming
with assertions. IEEE Trans. Software Eng. 21, 1 (Jan.
1995), 19-31.

[23] Neumann, P. G. and Porras, P. A. Experience with
EMERALD to date. In Proc. First USENIX Workshop
Intrusion Detection and Network Monitoring (Santa
Clara, Calif., Apr. 1999), 73-80.

[24] Bressoud, T. and Schneider, F. B. Hypervisor-based
fault-tolerance. ACM Trans. Comput. Syst. 14, 1 (Feb.
1996), 80-107.

[25] Erlingsson, Ú. and Schneider, F. B. SASI enforcement of
security policies: A retrospective. In Proc. New Sec.
Paradigms Workshop, ACM (Caledon Hills, Ont., Sept.
1999), 87-94.

[26] Liu, P. and Jajodia, S. Multi-phase damage confinement
in database systems for intrusion tolerance. In Proc.
Fourteenth Comput. Sec. Foundations Workshop, IEEE
(Cape Breton, N.S, June 2001), 191-205.

[27] Turing, A. M. Computing machinery and intelli-
gence. Mind 59, 236 (Oct. 1950), 433-460

