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Abstract—We introduce the notion of an intelligent software 
decoy, and provide both an architecture and event-based lan-
guage for automatic implementation of them.  Our decoys 
detect and respond to patterns of suspicious behavior, and 
maintain a repository of rules for behavior patterns and de-
coying actions.  As an example, we construct a model of system 
behavior from an initial list of event types and their attributes 
in the interaction between computer worms and an operating 
system.  The model represents patterns of suspicious or mali-
cious events that the software decoy should detect, and specific 
actions to be taken in response.  Our approach explicitly treats 
both standard and nonstandard invocations of components, 
with the latter representing an attempt to circumvent the public 
interface of the component.a 
 
Index terms—Behavior modeling, computer security, com-
puter worm, deception, event trace, software decoy, intru-
sion detection, information operations, intrusion tolerance 

I. INTRODUCTION 

Software components with poorly designed interfaces are 
susceptible to misuse or modification by rogue programs.  
Consider, for example, the result of unleashing the Morris 
Internet worm (vid. Spafford [1]):  Some integral compo-
nents of the UNIX operating system permitted the worm 
to propagate itself over the Internet. What were some of 
shortcomings of some versions of Unix in 1988?  One 
was that some components permitted incorrect argument 
types to be executed, such as the sendmail program ac-
cepting commands instead of user addresses.  Another 
weakness was that some components allowed for errone-
ous argument values to be passed to functions, such as a 
string of 536 bytes passed to the input buffer of the fin-
gerd program:  That string exceeds the size of the buffer, 
but fingerd and the functions it calls in the C language I/O 
library do not check, resulting in a buffer overflow. 

Software patches were made to sendmail and fingerd in 
response to the Morris worm.  The patches consisted of 
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exception-handling routines for catching errors in input 
arguments to these programs.  The effectiveness of the 
patches was low at first because of delays between the 
release and installation. 

History continues to repeat itself.  Distributed systems are 
plagued by worms descended from the Morris worm, such 
as the well-publicized “Code Red” worm [2] that exploits 
weaknesses in the public interfaces of components of the 
Microsoft Windows NT operating system that manipulate 
the registry.1  The “patch-and-pray” approach to dealing 
with such weaknesses in interfaces has not been effective.  
Shortly after the introduction of the original, a variant of 
the Code Red worm appeared which took advantage of 
other weaknesses in the interfaces of those same compo-
nents of the operating system [3]. 

In this paper we explore a new way of thinking about the 
challenges associated with protecting components within 
distributed systems from the effects of attacks.  In par-
ticular, we develop the mechanisms needed to realize a 
modified version of what Michael and Riehle call an in-
telligent software decoy [4].  Intelligent software decoys 
adapt in order to reveal and tolerate both intrusions into 
systems by unauthorized users and misuse of software 
components, instead of either indicating to the intruder or 
offending process that a violation of security policy has 
been detected or terminating the interaction with the 
process.  Intelligent software decoys perform what could 
be termed cyber Akido, in which the decoy tolerates an 
attack and learns about the opponent’s weaknesses (e.g., 
that the opponent relies on the use of buffer-overflow 
techniques) while simultaneously trying to neutralize the 
opponent by, in the following order, reducing or elimi-
nating the will of the attacker (e.g., by inserting delays 
into responses to method calls made by the opponent), 
changing the proximity of attack (e.g., directing the atten-
tion of the opponent to a honeypot), and as a last resort 
reducing or eliminating the ability of the opponent to at-
tack (e.g., closing a communication port, killing a proc-
ess, or launching a counter denial-of-service attack), at 
which point the effectiveness of deception techniques will 
likely be reduced because the opponent becomes aware or 

                                                           
1 The registry is the repository of the local security policy used 
by the security reference manager and monitor to control access 
by threads to objects. 

Software Decoys:   Intrusion Detection and 
Countermeasures

James Bret Michael, Senior Member, IEEE, Mikhail Auguston, Neil C. Rowe, and Richard D. Riehle 



 Proceedings of the 2002 IEEE 
 Workshop on Information Assurance 
 United States Military Academy, West Point, NY  June 2002 
 

ISBN 0-7803-9850-5 /$10.00    2002 IEEE  Page 131 

suspicious that the software decoy knows of the presence 
or weaknesses of the attacker. 

In contrast, most intrusion-detection and response systems 
apply a form of cyber Karate:  “if you try to kill me, I will 
try to kill you” by immediately terminating interaction 
with the attacker and thus indicating to the attacker that 
the attack was noticed and that countermeasures are al-
ready being applied.  A counterexample is that of pH [5] 
which tries to initially tolerate potentially malicious inter-
action between a calling process and a wrapped compo-
nent of the operating system by inserting delays into the 
responses to such calls so as to provide the intrusion-de-
tection system with as much time as possible to distin-
guish between real attacks and false positives.  The termi-
nation of a process based on a false positive would result 
in a legitimate process being denied service. 

Some key ways in which intelligent software decoys dif-
fer from honeypots are that software decoys actively de-
fend components rather than just collect data, are not in-
tended to be used solely to attract the attention of adver-
saries, and do not rely on the concept of a perimeter of 
defenses (i.e., any component within a distributed system 
can be decoy-enabled and either operate autonomously or 
in a cooperative mode with other software decoys).  
Moreover, we envision software decoys as being inte-
grated into a larger joint (across the Armed Services) war-
fighting and enforcement arsenal used to shape the cyber 
environment in real-time.  Although software decoys 
could be used to help thwart the actions of “script kid-
dies” and hackers, the motivation for work reported here 
is to provide enabling technology for the warfighter to 
conduct automated information operations against so-
phisticated terrorist cells and nation states; deceiving, 
deterring, and dissuading such adversaries requires em-
bedding into systems the ability for software components 
to adapt, through learning, their strategies for conducting 
information operations as feedback is received by those 
components on the effectiveness of such operations. 

Each decoy-enabled software component has a contract 
consisting of a class invariant and one or more precondi-
tions and postconditions; communication with a compo-
nent is only permitted via its contract interface.  Class 
invariants govern the nature and extent of any change to 
objects within a component by a nonstandard invocation 
(i.e., circumvention) of the component’s public interface. 

When a calling process passes arguments—via local or 
remote procedure call, or remote method invocation—that 
violate the contract of a component, the component tran-
sitions from its nominal operating mode to a deception 
mode, in which it attempts to both deceive the calling 
process into concluding that its violation of the contract 
has been successful, while simultaneously both containing 
the interaction and assessing the nature of the violation.  

For example, suppose a precondition in a contract asserts 
that input strings shall not exceed 512 bytes.  If the com-
ponent receives a string that violates this condition, then 
the component could respond by simulating a buffer over-
flow with the aim of keeping the process engaged in in-
teracting with the component. 

Here we describe decoy strategy along with an architec-
ture and event-based language for automatic implementa-
tion of software decoys. 

II. APPROACH 

We start with the introduction of a precise behavior model 
for the system under consideration. This model is speci-
fied in terms of events and two binary relations over those 
events:  precedence and inclusion. 

We provide a formalism to specify rules for runtime in-
trusion detection and corresponding countermeasures 
based on behavior patterns over event traces and a catalog 
of decoy actions, such as blocking or substituting certain 
system commands.  This implies an implementation based 
on automatic instrumentation for event detection derived 
from the behavior model. Intrusion detection rules are 
textually separated from the source code of the system, 
which allows for accumulating and formalizing knowl-
edge of typical intrusion patterns and decoy strategies. 

A. Event Traces 

An event is an abstraction of any detectable action per-
formed at runtime. An event has a beginning, end, du-
ration, and some other attributes, such as program states 
at the beginning and end of the event, source code associ-
ated with the event, and so on.  Two binary relations are 
defined for events.  One event may precede another event.  
For example, one statement execution may precede an-
other.  In addition, one event may be included in another.  
For instance, a statement-execution event may appear in-
side a procedure-call or method-invocation event.  Each 
of these binary relations defines a partial ordering of 
events. System execution may be represented as a set of 
events with the two basic relations between them—an 
event trace.  An event grammar [6] is a set of axioms that 
determines possible configurations of events of different 
types within the event trace.  We use the notion of com-
putations over event traces to specify behavior patterns 
and decoy actions.  This mechanism is a basis for auto-
matic instrumentation of the source code. 

B. Specification of Events 

The behavioral model consists of the definition of event 
types and the attributes of the events.  Our event grammar 
is used to describe the structure of events.  The behavioral 
model consists of two parts: (i) a specification of axioms 
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that define constraints on the behavior of components; 
this specification is given in terms of inclusion and prece-
dence relations, and (ii) a description of patterns of be-
havior expressed in terms of event patterns. 

The event grammar is not intended for actual parsing of 
an event trace. Each event defined in the behavior model 
should be detectable by some independent means, for ex-
ample, by proper instrumentation of the source code. 
There always is a main event execute-program, 
which encompasses all other events. Event type and event 
attribute declarations, and event grammar rules (i.e., axi-
oms) constitute the behavior model, or “lightweight” se-
mantics specification for the system under consideration.  
The following is an example of an event-grammar rule 
that specifies that an event of type execute-
assignment always contain (i.e., the inclusion relation) 
two ordered events: evaluate-right-hand-part 
and perform-destination. 

execute-assignment::
(evaluate-right-hand-part
perform-destination)

Intrusion detection and other monitoring activities are 
defined in terms of this behavior model.  This model 
opens the way for automatic source program instrumenta-
tion, and provides a formalism for describing different 
kinds of behavior patterns, for example, typical intrusion 
patterns. 

C. Computations over Event Traces 

Event pattern A matches successfully any event of the 
type A. The event pattern can contain additional context 
conditions, which typically involve event attributes, for 
instance, X: perform-destination & source-
code(X) = 'V'. This event pattern matches an event 
of type perform-destination, such that source-
code attribute of this event is 'V'.  Notice the use of aux-
iliary variable X to denote the event under consideration. 

Event patterns are used in aggregate operations to select 
sequences of events from other event sets. For example, 
[X:utility-call & name(X) = 'sendmail'
FROM execute-program] yields a sequence of 
events matching the pattern X: utility-call &
name(X) = 'sendmail' selected from the whole 
event trace. An aggregate operation may produce a result 
different from just a sequence of events.  For instance, 
SUM/[X:utility-call & name(X) =
'sendmail' FROM execute-program APPLY
duration(X)] yields a total duration of events se-
lected. 

Event patterns can be combined in order to specify path 
expressions:  patterns of event sequences. For instance, 

the following path expression specifies a sequence of 
events starting with event of type A followed by zero or 
more events of types B or C:  A (B | C)* 

A probe is a Boolean expression involving event attrib-
utes and standard arithmetic and logic operations. It might 
also contain calls of subroutines written in some general 
programming language. Probes may be included in path 
expressions interlaced with event patterns. A probe is 
evaluated immediately after the preceding event pattern 
has been matched successfully. A probe is successful if it 
evaluates to the value True. For example, the following 
path expression specifies a utility call that does not 
change the value of variable V. 

X: utility-call
Probe

(value(V at begin X) =
value (V at end X))

These operations provide a basis for computational tasks 
such as filtering events to create views of the event trace 
subspace, evaluating the truth of assertions, and comput-
ing specific values (e.g., counting the number of events in 
a sequence or the maximum elapsed time for an event 
pattern).  An important feature of this formalism is that 
computations over event traces are separated from the 
source code itself, and the instrumentation of the source 
code can be automated, based on the behavior model (i.e., 
event grammar) and the text of the trace computation. 

D. Code Instrumentation 

Code instrumentation is needed to recognize patterns of 
events and to perform computations over the event trace. 
Our approach is to selectively specify and automatically 
instrument, on a component-by-component basis, only 
those event types and event attributes that are of interest.  
For example, one would likely specify events corre-
sponding to popping (i.e., deleting an item from) the 
stack, reading, writing, or handling threads (e.g., create, 
reschedule, delete) as events of interest in the context of 
the behavior of components comprising an operating sys-
tem; only the source code corresponding to these and 
other events of interest would be instrumented.  For other 
components within the operating system, there may not be 
any events of interest and therefore the source code of 
those components would not be instrumented. 

An automated tool for generating the instrumentation 
would accept as input the program’s source code and the 
text of trace computation.  We define the event pattern 
language and aggregate operations in such a way that 
event detection, event pattern matching, and other com-
putations over event traces can be performed at runtime. 
Based on similar levels of instrumentation as reported by 
Sekar and Uppuluri [7] and Ko et al. [8], we anticipate 
runtime overhead associated with optimized instrumenta-
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tion to fall within the range of four to seven percent.  This 
effect of event-trace computations is important for high-
performance systems, especially for components that are 
called frequently, such as those comprising either the 
scheduler or memory manager of an operating system. 

As an example of how instrumentation would be selec-
tively applied, consider a component that implements the 
Transmission Control Protocol (TCP); TCP is a fre-
quently called component and known to be susceptible to 
certain types of attacks, such as that of the “Cheese” 
worm [9] that attempts to execute commands on a specific 
TCP port of a system and then masquerade as the httpd 
program on that system.  The change to the httpd program 
via a Trojan horse is an example of an attack for which a 
class invariant could be used to guard against unauthor-
ized changes to the behavior of this component.  One of 
the events of interest would be the invocation of shell 
commands on a TCP port.  Due to the fact that there is a 
sequence of calls resulting from the shell commands, the 
events at other components may need to be instrumented; 
this is the case for the Cheese worm.  Some of the events 
of interest would be changing process names, overwriting 
system files (e.g., /etc/inetd.conf), and repeated attempts 
to restart a system command (e.g., inetd).  The compiler 
used for generating instrumentation would only do so for 
these types of events.  Specific examples of how to spec-
ify events, their attributes, and actions (i.e., responses to 
events) are given in the remainder of the paper for the 
Morris worm. 

III. DOMAIN MODELS OF SYSTEM BEHAVIOR 

Domain models of system behavior serve as the founda-
tion from which to specify both patterns of suspicious 
behavior (i.e., slices of event histories) and the corre-
sponding responses (i.e., actions) of software decoys. A 
domain model consists of a list of generic event types, 
along with their attributes, both of which are associated 
with a particular class of behavior and detectable.  In this 
section, we report our work to date to develop a domain 
model of detectable events that can be triggered within an 
operating system by computer worms:  that is, rogue pro-
grams that propagate themselves across computer net-
works.  In other words, we treat the interaction between a 
worm and a particular type of software component as a 
unique domain for modeling purposes.  Our motivation 
here is to both describe an event-trace language for im-
plementing software decoys and give specific examples of 
how one would instrument code for runtime checking.  
Our examples are based on the behaviors of components 
of the Unix operating system with the Morris worm.  
More recent worms, such as “Code Red” and “Cheese,” 
are variants of the Morris worm in at least two ways:  (i) 
they are composed from the same set of generic event 
types, or “building blocks,” and (ii) share the same basic 

structure, in some cases initiating similar patterns of 
events.  

A. Interaction between the Worm and Operating 
System 

Although it is still debated as to whether the intent of the 
author of the worm was to just experiment out of aca-
demic interest and the worm “got loose” due to an egre-
gious use of contracts at the interfaces of the components 
it called, the interaction of the worm with software com-
ponents resulted in a temporary denial of service across 
much of the Internet. 

The Morris worm interacts with the components of the 
operating system by repeatedly accessing a data structure 
(e.g., the system password and network configuration 
files), calling a program to obtain state information (e.g., 
netstat), or repeatedly invoking a program and permuting 
the arguments before each invocation (e.g., rsh).  The 
worm also invokes sequences of functions and proce-
dures, such as issuing the DEBUG command to the send-
mail program followed by a sequence of commands (i.e., 
the vector portion of the worm program) to be acted on by 
procedures available in that operating mode. 

In addition to accessing components, the Morris worm 
attempts to write to files (e.g., set a flag) and execute 
copies of itself in the form of Trojan horses.  It also at-
tempts to propagate itself while simultaneously eluding 
detection or spoofing by forking itself after a pre-speci-
fied number of tries at infecting other computers or elapse 
of time, and then deleting both the parent process and all 
of the temporary files created by the parent process. 

B. Description of the Domain Model 

Here we provide a first approximation of the description 
of the model.  We begin by specifying five event types 
and their attributes: 

fingerd_call
 Attributes: caller_id 
   begin_time
param_pass
 Attributes: length 
read
utility_call
 Attributes: begin_time

caller_id
caller_process_type 

sendmail_call
 Attributes: in_debug_mode 

Next we introduce an axiom that specifies the event 
fingerd_call contains another event, param_pass: 

Axiom:  fingerd_call:: ( param_pass ) 
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Based on the foregoing specification of events and axi-
oms, we can start to build a behavioral specification for 
the Morris worm as follows: 

fingerd_call:: ( x: param_pass )
& length(x) > max_buffer_size
read +
probe( buffer_overflow )

This behavior pattern, described in terms of a violation of 
the contract for fingerd calls, states that first an event of 
the type fingerd_call is detected, such that the value 
of attribute length of the included event param_pass 
exceeds a given constant max_buffer_size; in this 
case, x is a tentative name associated with the event 
param_pass.  Next, one or more events of the type 
read should appear, and finally a probe (i.e., an evalua-
tion of a Boolean expression) specifying buffer overflow 
should evaluate to the value True.  Successful detection of 
those events and conditions in the specified order indi-
cates that the system might be under attack by the Morris 
worm or some other worm.  Now let us specify yet an-
other behavior pattern: 

x: sendmail_call::
( [ utility_call + ]
&& CONST(caller_id)
&& CONST(caller_process_type)
&& FREQUENCY(time_interval)
)
& in_debug_mode(x) = True 

Here sendmail_call is specified with the attribute 
in_debug_mode equal to the value True.  This event 
contains a sequence of utility_call events with the 
same caller_id and caller_process_type at-
tribute values, such that the time between those 
utility_call events does not exceed 
time_interval. 

C. Summary 

In summary, our event-trace language integrates the lan-
guage constructs that are necessary for specifying event 
patterns, probes, and actions.  An event pattern is a par-
ticular interval-based signature constructed from a struc-
tural model of events of interest (e.g., system calls to 
write to a file).  The probe is a Boolean expression; for 
instance, a probe can be used to compare the values of 
two attributes over the same interval of time, or the value 
of the same attribute at different points in time.  An action 
is a message that is generated based on the recognition 
that a particular pattern of behavior has been observed.  
The pattern of behavior can be composed from one or 
more slices of the same or different event traces.  The 
messages are used to trigger rules that embody the target 
component’s decoy-mode response to its interaction with 

the calling process whose interaction with the component 
may be malicious or benign. 

IV. DECOY STRATEGY 

Decoy methods can show a wide spectrum of complexity.  
A key dimension is information in the mathematical sense 
they provide to the attacker [10].  One might ask:  Why 
provide any information to one’s adversary?  This is the 
nature of deception, such as providing misinformation or 
misleading information to one’s adversary.  Our decoy 
strategy borrows from military tactics for deceiving one’s 
adversary (e.g., viz. [11]), which is only one of the five 
pillars of information operations, the others being psy-
chological operations, electronic warfare, computer-net-
work attack, and operational security. 

A decoy that provides the same canned response to a user 
command in all circumstances transmits zero bits of 
information.  A decoy that simulates an arbitrary pro-
tected file by generating a fake file with random choices 
transmits information equal to the logarithm of the num-
ber of possible fake files it can create for a given request.  
A decoy that simulates a denial-of-service attack, provid-
ing additional operating-system delays monotonically 
increasing with the number of requests in a recent time 
interval, transmits information equal to the logarithm of 
the number of distinguishable time intervals it can pro-
vide.  A decoy that simulates attempts to change a module 
of the operating system transmits information equal to the 
logarithm of the size of that module (or perhaps the part 
of it relevant to a particular attacker activity). It might 
seem that the ultimate decoy would simulate all aspects of 
a computer and its software as proposed by Thimbley et 
al. [12], requiring information equal to the logarithm of 
the size of the complete description of the computer and 
programming environment, and thus be equivalent to a 
universal Turing machine.  However, we claim a truly 
ultimate decoy would be “intelligent” and need to do 
more:  It would need to analyze properties of arbitrary 
code of viruses and Trojan horses to predict their con-
ceptual consequences.  But such ultimate decoying ap-
pears impossible in light of the undecidability of nontriv-
ial properties of recursive functions (vid. Rice’s Theorem 
[13]). 

Applying these ideas to the Morris worm, the propagation 
of the worm could be decoyed by having the operating 
system count the number of recent buffer-overflowing 
fingerd calls (requiring a single integer of memory) and 
provide additional process-suspension time in all operat-
ing-system activities; this could most easily be done by 
just inserting delays into a frequently used utility like file 
reading, delays that would only occur for the process 
threads created by the perceived attacker and would be 
monotonic with the number of ongoing threads they have 
created. The sendmail trapdoor could be decoyed by per-
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mitting normal debugging behavior except for commands 
writing or executing parts of memory, which would ap-
pear to execute but would be prevented from changing 
memory. 

Consider some examples of decoy strategies for the 
Morris worm.  The propagation of the worm could be de-
coyed by providing additional process-suspension time 
for all utility calls within the same process, creating an 
illusion to the intruder that a delay has been introduced 
(assuming that the intruder monitors response times) 
while the other non-offending processes will continue to 
execute unhindered. 

detect [ x: fingerd_call::
( y: param_pass )
& length(y) > max_buffer_size
read + ] && CONST(process_id)
probe (buffer_overflow) 

from execute-program  
do enable delay (t) to z: utility_call  

& process_id(x) = process_id(z)

The sendmail trapdoor could be decoyed by directing its 
invoker to a decoy function protected_read() that 
simulates the behavior with correct read commands and 
by deactivating write commands via the decoy function 
dummy()to substituting write operations: 

detect x: sendmail_call::
( [ utility_call + ]
&& CONST(caller_id)
&& CONST(caller_process_type)
&& FREQUENCY(time_interval)
) & in_debug_mode(x) = True 

from execute-program 
do substitute z: write  

& process_id(x) = process_id(z)  
by dummy()
substitue w: read
& process_id(x) = process_id(w)  
by protected_read() 

Finally, the fingerd buffer-overflow to change the oper-
ating system’s stack could be simulated via the instru-
mentation of the pop operations on the stack to simulate a 
jump to the new designated area of memory and execu-
tion of its commands with the current execution environ-
ment, requiring a full simulation of what happens there 
but on a copy of the operating system designated only for 
the offending process.  Decoy methods like these can be 
generalized for broader applicability (by inserting code to 
call a general decoy monitor into many executables and 
parts of the operating system) or specialized for efficiency 
(by compiling separate decoy-enabled versions of execu-
tables that can be called when suspicious activities occur) 
depending on design priorities. 

A software decoy should try to fool an intruder into 
thinking it is real.  A necessary condition is that it returns 
most of the bits of information that would be returned by 
the real component corresponding to the simulated com-
ponent.  (This is not a sufficient condition because the 
type of information returned may be important even for 
the same number of bits.)  A necessary information-theo-
retic condition for this is that the size of the decoy in bits 
must be most of the size of the amount of information it 
must transmit—and in the case of complex decoys that 
are too hard to summarize in an input-response table, per-
haps larger still to model the decoying behavior in an 
easy-to-debug and easy-to-update way.  However, in 
many practical situations it is sufficient that the decoy 
provide only a sample of all possible behaviors in re-
sponse to only a sample of possible attacker inputs.  For 
instance, a software decoy need only provide convincing 
fakes for the protected files that an attacker asks to see.  
For such situations, a good measure of decoy quality is 
the difference between the number of bits expected by the 
attacker and the number of bits transmitted.  So if the 
same response is given to each of three actions, the num-
ber of bits transmitted remains the same as if one response 
is given to one action, but the number of bits expected is 
tripled. 

Our behavior model provides means for specifying a 
broad spectrum of decoying strategies from specific ones 
for a particular intrusion type to a more generic when it is 
possible to come up with a generic description of intru-
sion patterns common to a whole class of attacks. 

V. SOFTWARE-DECOY ARCHITECTURE 

We turn now to the implementation of the event-trace 
language to support software decoys.  The structural (i.e., 
domain behavior) model will consist of event types, event 
attributes, and axioms.  Event types and attributes should 
be detectable independently. 

We envision the possible implementation as an instru-
mentation of kernel libraries and log monitors available 
on the chosen platform.  The basic instrumentation pro-
vides for the detection of events and event attributes 
specified in the generic behavior model and the interface 
for executing monitoring programs.  A specialized com-
piler will generate monitoring programs from our high-
level language for specifying both deception strategies 
and rules to be used by the software decoys.  An option 
that permits the user to store event traces for debugging 
purposes may also be included in the general monitoring 
framework. 

The generated monitors will include mechanisms for 
monitoring behavior-pattern implementation, via the use 
of state-transition diagrams—similar in some respects to 



 Proceedings of the 2002 IEEE 
 Workshop on Information Assurance 
 United States Military Academy, West Point, NY  June 2002 
 

ISBN 0-7803-9850-5 /$10.00    2002 IEEE  Page 136 

the NetSTAT [14] approach to network monitoring—and 
buffers to maintain event-attribute values. 

Fig. 1 represents one possible architectural solution for 
implementing intelligent software decoys, in particular, 
for software components within an operating system.  The 
separation of the repository of rules and behavior patterns 
from the supervisor supports the maintenance of the re-
pository without changing the implementation (i.e., com-
ponent wrappers and supervisor); the repository and be-
havior model are confidential within the system under 
protection. 

Execution of system commands contributes the main part 
of the event types in our behavior model. The basic in-
strumentation assumes that each system command par-
ticipating in the model is enclosed in a wrapper, which is 
responsible for sending to the supervisor messages about 
event beginning and end and event attributes. The wrap-
per also contains a lightweight interface for implementing 
decoy actions, for example, inserting a delay or substi-
tuting the execution of the command by another subrou-
tine execution.  Behavior pattern detection is based on 
state transition diagrams maintained in the monitor.  The 
interpreter within the monitoring kernel is responsible for 
rule interpretation and triggering decoying actions. 

 

Wrapper 

System 
component 

Wrapper 

Intrusion 

Supervisor 

Interpreter 

Rules for behavior 
patterns and decoy actions 

Operating System 

System 
component 

Fig. 1.  Software decoy architecture 

In addition to the goal of supporting software-based de-
ception, our architecture is founded on two of the goals 
driving the specification and implementation of the 
Survivable Autonomic Response Architecture (SARA) 

[15]:  provision for both fast and coordinated responses to 
patterns of observed behavior.  In the software-decoy ar-
chitecture, the supervisor coordinates the actions among 
the decoyed-enabled components in order to both make 
decisions about how best to instrument components given 
the latest information about component interaction and 
select responses—that conform to information operations 
doctrine and policy—to effect the system-wide deception 
strategy. 

In contrast to SARA, our architectural framework pro-
vides for performing machine learning at both the local 
(i.e., decoy) and global (i.e., supervisory) level, although 
we realize the need to evaluate the consequences of this 
decision in terms of requirements for the architecture such 
as adaptability, extensibility, and scalability. 

VI. RELATED WORK 

The notions of event, path expression, and assertion lan-
guage are well known in testing and debugging automa-
tion research.  An event-based debugger for the C pro-
gramming language called Dalek [16] provides user-de-
fined events that typically are points within a program 
execution trace. A target program has to be instrumented 
manually in order to collect values of event attributes.  
The path expression technique was introduced for speci-
fying parallel programs in [17]. This technique has been 
used in several projects on high-level debugging tools 
(e.g., in [18]) where path rules are suggested as a kind of 
debugger command.  Assertions (or annotations) currently 
in use are mostly based on Boolean expressions attached 
to selected points of the target program (e.g., the assert 
macro in C).  The ANNA [19] annotation language for 
Ada supports assertions on variable and type declarations.  
In the TSL [20] annotation language for Ada, the notion 
of event is introduced to describe the behavior of tasks. 
The RAPIDE project [21] provides a rich event-based 
assertion language for software architecture description. 
In [22], a practical approach to assertions for the C lan-
guage is advocated.  Our language for computations over 
traces provides a flexible means for writing both local and 
global assertions, including those about temporal relations 
between events.  It supports all kinds of assertions used in 
the systems above in a uniform framework. 

Sekar and Uppuluri [7] describe a high-level formalism 
for specifying intended program behaviors using patterns 
over sequences of system calls.  The patterns also capture 
conditions on the values of system-call arguments.  Their 
intrusion prevention and detection system is based on 
intercepting system calls, comparing them against the 
specifications, and disallowing calls that deviate from the 
specifications of valid behaviors.  In their approach, it is 
possible to modify a system call before it is delivered to 
the operating system’s kernel, permitting the system to 
react before the execution by a process of any damage-
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causing system call. The paper also presents a low-over-
head algorithm for matching runtime behaviors against 
specifications. 

We suggest a more powerful and expressive pattern speci-
fication language based on precise behavior models 
(event grammars) that will be able to capture a broader 
class of behaviors than those described by Sekar and 
Uppuluri.  We also expect that our implementation strat-
egy will be close to the guidelines presented by Sekar and 
Uppuluri, thus keeping the runtime overhead at or below 
four percent. 

Neumann and Porras describe the architecture for 
EMERALD—an environment for anomaly and misuse 
detection—and subsequent analysis of the behavior of the 
systems and networks [23].  The architecture of 
EMERALD is based on component principles and can be 
adjusted to various platforms and configurations. A pro-
duction-based expert system is used to analyze behavior 
patterns and signatures. 

The use of event traces for reasoning about the behavior 
of information systems is not new.  Event traces have 
been used to reason about the correctness of the execution 
of hardware-level instructions.  For instance, Bressoud 
and Schneider [24] present an approach to fault tolerance 
based on the use of hypervisors that emulate the target 
hardware architecture:  Each hypervisor serves as a virtual 
machine.  The hypervisor is then instrumented to watch 
for sequences of instructions, within an epoch (i.e., inter-
val of time), that are critical to the correct operation of 
replicated hardware within a system. 

Working at a higher level of abstraction, Erlingsson and 
Schneider [25] introduce an approach known as Security 
Automata SFI Implementation (SASI).  In this approach, 
the object code is instrumented so that as sequences of 
events occur, the trusted computing base, which in this 
case includes the software that analyzes and modifies ob-
ject code, can use the event traces to reason about whether 
the traces are conformant to security policy (e.g., mem-
ory-protection policy). 

Bressoud and Schneider [24] discuss some of the difficul-
ties in instrumentation of virtual machines and reasoning 
over sequences of hardware instructions.  Likewise, 
Erlingsson and Schneider admit that it is difficult to rec-
ognize patterns of interest from specifications of object 
and security policy represented in their security automa-
ton language (SAL), and that the development of such 
specifications is an “awkward and error-prone” process.  
Their new approach is to rely on the use of “annotations 
of the object code that are easily checked and that expose 
application-level abstractions,” rather than checking every 
machine-level instruction.  Our formalism of decoys relies 
on specifying events for which the source code of compo-
nents can be instrumented. 

Sekar and Uppuluri [7] attempt to defend against buffer-
overflow attacks by injecting code and addresses into 
memory, and transferring control flow to the injected 
code.  They manually instrument system calls and their 
arguments for each component to be protected against 
buffer-overflow attacks.  A run-time monitor then com-
pares these patterns of nominal and anomalous behavior 
with that of the runtime behavior of the protected compo-
nent.  Our approach differs from that of Sekar and 
Uppuluri, especially in terms of the method of instru-
mentation:  that is, in our approach, the software compo-
nents are automatically instrumented. 

Liu and Jajodia [26] introduce specialized decoying meth-
ods and strategies for transaction-level intrusion tolerance 
and damage confinement in database management sys-
tems (DBMS).  The approach is bound to transaction 
events within the DBMS and relies on the use of filtering 
strategies.  In contrast, our approach can be specialized to 
different types of events and countermeasures. 

VII. CONCLUSION 

Our approach explicitly treats the two types of invoca-
tions of components:  standard and nonstandard, with the 
latter representing an attempt by a process to circumvent 
the public interface of the component.  For standard types 
of invocations or components of legacy systems for which 
the source code is not available, then certain types of 
events of interest will not be detectable. 

The behavior model based on event grammars provides a 
uniform framework for behavior-pattern recognition and 
decoying actions.  In our opinion, this is a practical road 
to formalizing knowledge about typical intrusion patterns 
and constructing a flexible system of countermeasures. 

Our next steps are to implement the architecture, develop 
measures of effective, and conduct experiments (similar 
in nature to those used by Turing in his experiments with 
the “imitation game” [27]) with the decoys embedded in 
real systems operating in test-and-evaluation mode (e.g., 
weapon control systems with live-fire disabled). 
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