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In the Internet age, malware (such as viruses, trojans, ransomware, and bots) has posed serious and evolv-
ing security threats to Internet users. To protect legitimate users from these threats, anti-malware software
products from different companies, including Comodo, Kaspersky, Kingsoft, and Symantec, provide the major
defense against malware. Unfortunately, driven by the economic benefits, the number of new malware sam-
ples has explosively increased: anti-malware vendors are now confronted with millions of potential malware
samples per year. In order to keep on combating the increase in malware samples, there is an urgent need
to develop intelligent methods for effective and efficient malware detection from the real and large daily
sample collection. In this article, we first provide a brief overview on malware as well as the anti-malware
industry, and present the industrial needs on malware detection. We then survey intelligent malware detec-
tion methods. In these methods, the process of detection is usually divided into two stages: feature extraction
and classification / clustering. The performance of such intelligent malware detection approaches critically
depend on the extracted features and the methods for classification/clustering. We provide a comprehensive
investigation on both the feature extraction and the classification/clustering techniques. We also discuss the
additional issues and the challenges of malware detection using data mining techniques and finally forecast
the trends of malware development.
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1. INTRODUCTION

As computers and Internet are increasingly ubiquitous, the Internet has been essential
in everyday life. It has been reported by the ITU (International Telecommunication
Union) that the number of Internet users worldwide, who always use Internet services
such as e-banking, e-commerce, instant communication, education, and entertainment,
has reached 2.92 billion as of 2014 [ITU 2014]. Just like the physical world, there
are people with malicious intentions (i.e., cyber-criminals) on the Internet. They try
to take advantage of legitimate users and benefit themselves financially. Malware
(short for malicious software), is a generic term widely used to denote all different
types of unwanted software programs. These programs include viruses, worms, trojans,
spyware, bots, rootkits, ransomware, and so on. Malware has been used by cyber-
criminals as weapons in accomplishing their goals. In particular, malware has been
used to launch a broad range of security attacks, such as compromising computers,
stealing confidential information, sending out spam emails, bringing down servers,
penetrating networks, and crippling critical infrastructures. These attacks often lead
to severe damage and significant financial loss. To put this into perspective, according
to a recent report from Kaspersky Lab, up to $1 billion was stolen in roughly 2 years
from financial institutions worldwide due to malware attacks [Kaspersky 2015]. In
addition, Kingsoft reported that the average number of infected computers per day
was between 2-5 million [Kingsoft 2016].

Numerous malware attacks have posed serious and evolving security threats to In-
ternet users. To protect legitimate users from these threats, anti-malware software
products from different companies provide the major defense against malware, such as
Comodo, Kaspersky, Kingsoft, and Symantec. Typically, the signature-based method is
employed in these widely-used malware detection tools to recognize various threats.
A signature is a short sequence of bytes, which is often unique to each known mal-
ware, allowing newly encountered files to be correctly identified with a small error
rate [Ye et al. 2011]. However, due to the economic benefits, malware authors quickly
developed automated malware development toolkits (e.g., Zeus [Song et al. 2008]).
These toolkits use techniques, such as instruction virtualization, packing, polymor-
phism, emulation, and metamorphism to write and change malicious codes that can
evade the detection [Beaucamps and ric Filiol 2007; Filiol et al. 2007]. These malware
creation toolkits greatly lower the novice attackers’ barriers to enter the cyber-crime
world (allowing inexperienced attackers to write and customize their own malware
samples) and lead to a massive proliferation of new malware samples due to their
wide availability. As a result, malware samples have been rapidly gaining prevalence
and have spread and infected computers at an unprecedented rate around the world.
In 2008, Symantec reported that the release rate of malicious programs and other
unwanted codes might exceed that of benign software applications [Symantec 2008].
This suggests that traditional signature-based malware detection solutions may face
great challenges since they can be outpaced by the malware writers. For example, ac-
cording to Symantec’s report, about 1.8 million malware signatures were released in
2008, which resulted in 200 million detections per month [Symantec 2008]. In 2013,
the suspicious files collected by the anti-malware lab of Kingsoft reached 120 million,
41.26 million (34%) of which were detected as malware [Kingsoft 2014]. While many
malware samples have been detected and blocked, a large number of malware samples
(e.g., the so-called “zero-day” malware [Wikipedia 2017f]) have been generated or mu-
tated and they tend to evade traditional signature-based anti-virus scanning tools. This
has prompted the anti-malware industry to rethink their malware detection methods,
as these approaches are mainly based on variants of existing signature-based models.

In order to remain effective, many anti-malware companies started to use cloud
(server) based detection [Nachenberg and Seshadri 2010; Ye et al. 2011; Stokes et al.
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2012]. Cloud-based malware detection is conducted in a client-server manner with
the cloud-based architecture [Ye et al. 2011]: the anti-malware products use a light
signature base at the client (user) side to authenticate valid software programs and
block invalid software programs, while predicting any unknown files (i.e., the gray
list) at the cloud (server) side, and quickly produce the verdict results to the clients.
With the development of malware writing and creating techniques, the number of
file samples in the gray list is constantly increasing (e.g., more than new 500,000 file
samples are collected per day by Kingsoft Cloud Security center). Thus, intelligent
methods to automatically detect malware samples from the newly collected files at the
cloud side are in urgent need. Consequently, many studies have been reported on using
data mining and machine learning techniques to develop intelligent malware detection
systems [Schultz et al. 2001; Kolter and Maloof 2004; Karim et al. 2005; Lee and Mody
2006; Ye et al. 2007; Moskovitch et al. 2008a; Kolbitsch et al. 2009; Ye et al. 2010, 2011,
Karampatziakis et al. 2013; Tamersoy et al. 2014; Saxe and Berlin 2015; Ni et al. 2016].

In this article, we first provide a brief overview on malware as well as the anti-
malware industry and present the industrial needs on malware detection. We then
survey intelligent malware detection methods. In these methods, malware detection is
a two-step process: feature extraction and classification/clustering. The performance
of such malware detection methods critically depend on the extracted features and the
categorization techniques. We provide a comprehensive investigation on both feature
extraction and classification/clustering steps. We also discuss the additional issues and
challenges of malware detection using data mining techniques and finally forecast the
trends of malware development. The rest of this article is organized as follows: Sec-
tion 2 presents the overview of the malware and anti-malware industry. Section 3 intro-
duces the overall process of malware detection using data mining techniques. Section 4
describes the file representation methods of malware and Section 5 systematically dis-
cusses the feature selection methods for malware detection. Section 6 introduces the
classification for malware detection, while Section 7 describes clustering for malware
detection. Section 8 further discusses the additional issues of malware detection us-
ing data mining techniques. Section 9 forecasts the trends of malware development.
Finally, Section 10 concludes the article.

2. OVERVIEW OF MALWARE AND ANTI-MALWARE INDUSTRY

Malware is the software program that deliberately meets the harmful intent of ma-
licious attackers [Bayer et al. 2006b]. It has been designed to achieve the goals of
attackers. These goals include disturbing system operations, gaining access to com-
puting system and network resources, and gathering personal sensitive information
without user’s permission. As a result, malware often creates a menace to the integrity
of the hosts, availability of the Internet, and the privacy of the users.

Malware can reach the systems in different ways and through multiple channels.
These different ways are summarized below: (1) The vulnerable services over the net-
work allow malware to infect accessible systems automatically. (2) The downloading
process from the Internet: It has been shown that 70-80% of the malware come from
popular websites [Rehmani et al. 2011]. By exploiting the web browser’s vulnerability,
a drive-by download is capable to fetch malicious codes from the Internet first and then
execute the codes on the victims’ machines [Egele et al. 2012]. (3) The attackers can
also lure the victims into deliberately executing malicious codes on their machines.
Typical examples include asking the users to install a provided “codec” to watch the
movies which are hosted on the website, or clicking/opening images attached to spam
emails [Egele et al. 2012]. In some cases, malware may only affect the system perfor-
mance and create overload processes. In case of spying, malware hides itself in the
system, steals critical information about the computer, and sends information to the
attackers.

ACM Computing Surveys, Vol. 50, No. 3, Article 41, Publication date: June 2017.



41:4 Y. Ye et al.

To protect legitimate users from the malware attacks, the major defense is the
software products from anti-malware companies. However, the more successful the
anti-malware industry becomes in detecting and preventing the attacks, the more
sophisticated malware samples may appear in the wild. As a result, the arms race
between malware defenders and malware authors is continuing to escalate. In the fol-
lowing sections, we introduce the taxonomy of malware, elaborate the development of
malware industry, and then describe the progress of malware detection.

2.1. Taxonomy of Malware

Based on the different purposes and proliferation ways, malware can be categorized into
various types. This section provides a brief overview of most common types of malware,
such as viruses, worms, trojans, spyware, ransomware, scareware, bots, and rootkits.

Viruses: A virus is a piece of code that can append itself to other system programs,
and when executed, the affected areas are “infected” [Wikipedia 2017b]. Viruses cannot
run independently since they need to be activated by their “host” programs [Spafford
1989]. The Creeper virus written by Bob Thoma was an experimental self-replicating
program, which was first detected in the early 1970s [Wikipedia 2017b].

Worms: Unlike a virus which requires its “host” program be run to activate it, a
worm is a program that is able to run independently. Note that a worm can propagate
a fully working copy of itself to other machines [Spafford 1989]. The Morris worm
(unleashed in 1988) was the first publicly known program instance that exhibited
worm-like behavior [Spafford 1989]. During the Morris appeal process, based on the
estimate of the U.S. Court of Appeals, the cost of removing the Morris worms was around
$100 million [Wikipedia 2017c]. The infamous worms, such as Love Gate, CodeRed,
SQL Slammer, MyDoom, and Storm Worm, have successfully attacked tens of millions
of Windows computers and caused great damages. For example, during its first day of
release, the Code Red worms (first released in 2001) infected about 359,000 hosts on
the Internet [Moore and Shannon 2002], while the worms of MyDoom (sighted in 2004)
slowed down global Internet access by 10% and caused the access of certain websites
to be reduced by 50% [Bizjournals 2011].

Trojans: Compared with a worm, which is apt to propagate a fully working version
of itself to other machines, Trojan is a software program that pretends to be useful
but performs malicious actions in the backend [Schultz et al. 2001]. One of the recent
notable trojans, Zeus (also called Zbot) is capable of carrying out many malicious
and criminal tasks. Zeus has often been used to steal banking-related information by
keystroke logging and form grabbing [Wikipedia 2017g]. In June 2009, security com-
pany Prevx discovered that over 74,000 FTP accounts had been compromised by Zeus
on the websites of many companies (including ABC, Amazon, BusinessWeek, Cisco,
NASA, Monster.com, Oracle, Play.com, and the Bank of America) [Wikipedia 2017g].

Spyware: Spyware is a type of malicious program that spies on user activities with-
out the users’ knowledge or consent [Borders and Prakash 2004]. The attackers can
use spyware to monitor user activities, collect keystrokes, and harvest sensitive data
(e.g., user logins, account information).

Ransomware: Ransomware is one of the most popular malware in recent years
[Symantec 2016], which installs covertly on a victim’s computer and executes a cryp-
tovirology attack that adversely affects it [Wikipedia 2017d]. If the computer is infected
by this malware, the victim is demanded to pay a ransom to the attackers to decrypt it.

Scareware: Scareware is a recent type of malicious file that is designed to trick a
user into buying and downloading unnecessary and potentially dangerous software,
such as fake antivirus protection [Wikipedia 2016], which has posed severe financial
and privacy-related threats to the victims.

Bots: A bot is a malicious application that allows the bot master to remotely control
the infected system [Stinson and Mitchell 2007]. Typical spread methods of bots are
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exploiting software vulnerabilities and employing social engineering techniques. Once
a system has been infected, the bot master can install worms, spyware, and trojans,
and transform the individual victimized systems into a botnet. Botnets are widely
used in launching Distributed Denial of Service (DDoS) attacks [Kanich et al. 2008],
sending spam emails, and hosting phishing fraud. Agobot and Sdbot are two of the
most notorious bots.

Rootkits: A rootkit, a stealthy type of software, is designed to hide certain processes
or programs and enable continued privileged access to computers [Wikipedia 2017e].
Rootkit techniques can be used at different system levels: they can instrument Applica-
tion Programming Interface (API) calls in user-mode or tamper with operating system
structures as a device driver or a kernel module.

Hybrid Malware: Hybrid malware combines two or more other forms of malicious
codes into a new type to achieve more powerful attack functionalities.

Some other categories of commonly encountered Internet pests can also be a nuisance
to computer users, such as “Spamware,” “Adware,” and the like. Actually, these typical
types of malware are not mutually exclusive. In other words, a particular malware
sample may belong to multiple malware types simultaneously.

2.2. Development of Malware Industry

Viruses were the first instances of malware. The initial motivation for malware writers
was often to highlight/identify the vulnerabilities of security or simply to demonstrate
their technical capability. In addition, in order to evade the detection of anti-malware
scanners, malware authors and attackers developed and applied various concealment
techniques: (1) Encryption: Encrypted malware consists of an encryption algorithm,
encryption keys, encrypted malicious code, and a decryption algorithm [Sung et al.
2004]. The key and decryption algorithm are used to decrypt the malicious compo-
nent in the malware. Attackers use new generated key and encryption algorithms
and produce new versions of the malware to evade the detection. (2) Packing: Packing
is a technique that is used to encrypt or compress the executable file [Kendall and
McMillan 2007]. Usually, a phase of unpacking is necessary to reveal the overall se-
mantics of the packed malicious program. (3) Obfuscation: Obfuscation [Sung et al.
2004] aims to hide the program’s underlying logic and prevent others from having any
related knowledge of the code. Typical obfuscation techniques include adding garbage
commands, unnecessary jumps, and the like. By applying obfuscation, the malicious
codes and all their harmful functionality remain incomprehensible until they are ac-
tivated. (4) Polymorphism [Bazrafshan et al. 2013]: A polymorphic malware is pro-
grammed to look different each time it is replicated, while keeping the original code
intact. Different from simple encryption, a polymorphic malware can use an unlimited
number of encryption algorithms, and in each execution, a part of the decryption code
will change. Depending on the malware types, different malicious actions performed by
the malware can be placed under the encryption operations. Usually, a transformation
engine is embedded in the encrypted malware. Note that at any change the engine gen-
erates a random encryption algorithm. Then, the engine and malware are encrypted
using the produced algorithm and a new decryption key is connected to them. (5) Meta-
morphism [Bazrafshan et al. 2013; Crandall et al. 2005]: Metamorphic malware is the
most complex type of malware. In metamorphic malware, the malicious codes change
themselves so that a new instance has no resemblance to the original one. The malware
does not have any coding engine. In each transmission, changes occur automatically in
the malware source code.

The motivations of malware writers changed as time passed by. With the pervasive-
ness of computers and the high development of the Internet, e-commerce has gained its
popularity especially in banking and financial industries. eMarketer’s latest forecasts
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reported that worldwide business-to-consumer (B2C) e-commerce sales would reach
$1.5 trillion [EMarketer 2014]. As a result, there is a flourishing underground mal-
ware economy in today’s e-commerce [Zhuge et al. 2008]. By spreading a destructive
payload, malware can first infect and gain control of vulnerable computer systems and
use them to obtain illegal money [Zhuge et al. 2008]. The money prospect, instead of
the fun factor, becomes the driving force of the malware development. Driven by con-
siderable economic benefits, both the diversity and sophistication of malware samples
have significantly increased over the last few years [Hu 2011]. For example, Ramnit,
originally a generic worm detected in 2010, was altered by malware writers to steal
45,000 Facebook accounts. With some codes taken from the Zeus trojan to capture data
from web sessions, the current version of Ramnit is a hybrid version of the original
worm which allows hackers to commit financial fraud. Trojans, designed to provide
unauthorized and remote access to computers, allowing hackers to steal sensitive in-
formation (e.g., Facebook accounts or e-bank accounts), have increased in popularity
and currently account for the majority (73%) of malware collection [Ye 2010].

Nowadays, there has been a mature industrial chain of Trojans (as shown in Figure 1)
that is profitable in terms of economic benefits: from Trojan creation to evading detec-
tion, propagation, bot controlling, account stealing, and sale. The division of labors
is quite clear and the whole process and organization form a sound and complete
assembly-line. In China, the growth of such a black chain is very fast and its output
value can reach over $1 billion per year [Ye 2010].

However, despite the fact that malware is more sophisticated, the required knowl-
edge to write and customize malware samples has actually decreased greatly [Hu
2011]. This is mainly because of the availability of many automatic malware cre-
ation toolkits, which are also easy-to-use, such as Zeus [TrendMicro 2010] and SpyEye
[Coogan 2010]. These toolkits allow inexperienced attackers to customize and create
malware programs to commit cyber crime, which leads to a massive proliferation of
malware variants. Furthermore, many malware samples are constantly mutated to by-
pass anti-malware vendors detection. Instead of writing a new malware from scratch,
the malware authors always adopt a more cost-effective strategy to refine existing mal-
ware samples (either source codes or binaries) by slightly modifying them to bypass
anti-malware scanners’ detection, using a diverse set of tools and technologies which
typically include instruction re-ordering, garbage insertion, equivalent code substitu-
tion, and runtime packing. As a result, such variants of malware samples have evolved
into a stream-lined process [Ollmann 2010]. Since malware variants can be generated
automatically and rapidly, malware writers can replace the malware that are outdated
and grant their variants with a favorable attack window before new detection signa-
tures are developed and updated [Hu 2011]. The ease of this malware mutation process
has resulted in an exponential growth of new malware file samples [Ye et al. 2009c].
Based on the data provided by Kingsoft Cloud Security Center [Kingsoft 2014, 2015,
2016], Figure 2 demonstrates the increasing trend of malware samples in China from
2003 to 2015. The figure shows that the number of malware samples has increased
sharply since 2008 and the total number of new malware samples collected in 2015
reached over 40.66 million [Kingsoft 2016]. Unfortunately, this trend is likely to con-
tinue, and malware will remain as one of the greatest security threats faced by Internet
users.

2.3. Progress in Malware Detection

2.3.1. Signature-based Malware Detection. To protect legitimate users from malware
threats, software products from anti-malware companies (e.g., products from Comodo,
Kaspersky, Kingsoft, MacAfee, and Symamtec) provide the major defense. Typically,
they use the signature-based method to identify the known threats. A signature is a
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short sequence of bytes unique to each known malware, which allows newly encoun-
tered files to be correctly identified with a small error rate [Ye et al. 2011]. Figure 3
shows an example signature used for the detection of an online game Trojan.

Signature-based method identifies unique strings from the binary code [Moskovitch
et al. 2009]. The process of this traditional detection method can be illustrated in
Figure 4. Whenever a new type of malware is unleashed, anti-malware vendors need
to obtain an instance of the new malware, analyze the instance, create new signatures,
and deploy in their clients [Micropoint 2008; Moskovitch et al. 2009]. Traditionally, the
signature bases are often manually generated, updated, and disseminated by domain
experts. This process is often known as time and labor consuming. This kind of detection
method makes the anti-malware software tools less responsive to new threats. It may
even allow some malware samples to bypass the detection and stay undetected for a
long time. For example, a typical time window between a malware’s release and its
detection by anti-malware software tools is about 54 days [Hu 2011]. In the worse case,
after 180 days, 15% of samples are still undetected [Damballa 2008].

2.3.2. Heuristic-based Malware Detection. By applying the counter-measures described
above (e.g., encryption, packing, obfuscation, polymorphism, and metamorphism), mal-
ware writers can easily bypass the signature-based detection. From the late 1990s until
2008, the heuristic-based method was the most important way for malware detection.
Heuristic-based detection is based on rules/patterns determined by experts to dis-
criminate malware samples and benign files. These rules/patterns should be generic
enough to be consistent with variants of the same malware threat, but not falsely
matched on benign files [Egele et al. 2012]. However, the analysis of malware sam-
ples and the construction of rules/patterns by domain experts is often error-prone and
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time-consuming. More importantly, as introduced above, driven by economic benefits,
the malware industry has invented automated malware development toolkits (such as
Zeus [TrendMicro 2010]) to create and mutate thousands of malicious codes per day
which can slip through such traditional signature-based or heuristic-based detection
[Symantec 2008]. As a result, manual analysis has become a major bottleneck in the
workflow of malware analysis, demanding for intelligent techniques to analyze incom-
ing samples automatically. Such intelligent techniques can allow anti-malware vendors
to keep pace with the rapid malware generation and deployment and also reduce their
response time to new malware threats. Besides, the speed of malware creation (e.g.,
over 10,000 new malware/day) is faster than signature generation and the increase of
the signatures makes the clients becoming more and more “heavy.”

2.3.3. Cloud-based Malware Detection. To overcome the above challenges and in order to
remain effective, many anti-malware vendors have used cloud (server) based detection.
The cloud-based detection workflow is presented in Figure 5. In particular, the scheme
can be described below [Ye et al. 2011]:

(1) Users receive new files from the Internet via different channels on the client side.

(2) The signature sets on the clients are first used by anti-malware products for scan-
ning the new files. The files will be marked as “unknown” if they can not be detected
by existing signatures.

(3) Information of the unknown files (e.g., file reputations, file features, and/or even
the files) will be collected and sent to the cloud sever.

(4) On the cloud sever, the classifier(s) will classify the unknown file samples and
generate the verdicts (either benign or malicious).

(5) The verdict results will be sent to the clients immediately.

(6) Based on the results from the cloud server, the scanning process on the client side
then performs the detection.

(7) With the quick response and feedback from the cloud server, client users will have
the up-to-date security solutions.
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To summarize, malware detection is now conducted in a client-server manner with
the cloud-based architecture [Ye et al. 2011]: blocking invalid software programs
from a blacklist and authenticating valid software programs from a white list at the
client(user) side, and predicting any unknown files (i.e., the gray list) at the cloud
(server) side and quickly producing the verdict results to the clients. The gray list
contains unknown software files and these files could be either benign or malicious.
Traditionally, the gray list was rejected or authenticated manually by malware an-
alysts. With the development of the malware writing and creating techniques, the
number of file samples in the gray list is constantly increasing. For example, the gray
list collected by either Kingsoft or Comodo Cloud Security center usually contains
more than 500,000 file samples per day [Ye 2010]. There is thus an urgent need for the
development of intelligent techniques for supporting efficient and effective malware
detection on the cloud (server) side.

In recent years, commercial products including Kingsoft’s security products [Ye et al.
2009c¢, 2010], Comodo’s AntiVirus (AV) products [Ye et al. 2011; Chen et al. 2015; Hardy
et al. 2016], Symantec’s AntiMalware (AM) products [Chau et al. 2011], and Microsoft’s
Internet Explorer [Stokes et al. 2012] have started using data mining techniques to
perform malware detection.

3. OVERALL PROCESS OF MALWARE DETECTION BY APPLYING
DATA MINING TECHNIQUES

In the past years, many research efforts have been reported on malware detection based
on data mining techinques. These techniques are capable of classifying previously un-
seen malware samples, identifying the malware families of malicious samples, and/or
inferring signatures. In these systems, the detection is generally a two-step process:
feature extraction and classification/clustering. Figure 6 shows the overall process of
malware detection using data mining techniques. In the first step, various features (see
Section 4) such as API calls, binary strings, and program behaviors are extracted stati-
cally and/or dynamically to capture the characteristics of the file samples. In the second
step, intelligent techniques such as classification or clustering are used to automati-
cally categorize the file samples into different classes/groups based on the analysis of
feature representations. Note that these data-mining-based malware detectors mainly
differ on the feature representation and the employed data mining techniques.

Classification: To classify any unknown file, which could be either benign or ma-
licious, the classification process can be divided into two consecutive steps: model
construction and model usage. In the first step, training samples including malware
and benign files are provided to the system. Then, each sample is parsed to extract the
features representing its underlying characteristics. The extracted features are then
converted to vectors in the training set. Both the feature vectors and the class label
of each sample (i.e., malicious or benign) are used as inputs for a classification algo-
rithm (e.g., Artificial Neural Network (ANN), Decision Tree (DT), and Support Vector
Machines (SVM)). By analyzing the training set, the classification algorithm builds a
classification model (or a classifier). Then, during the model usage phase, a new collec-
tion of unknown file samples, which could be either benign or malicious, are presented
to the classifier generated from the training set. Note that the representative vectors of
the new file samples are first extracted (using the same feature extraction techniques
as in the training phase). The classifier will then classify the new file samples based
on the extracted feature vectors.

Clustering: In many cases, very few labeled training samples exist for malware
detection. Hence, researchers have proposed the use of clustering to automatically
group malware samples that exhibit similar behaviors into different groups. Clustering
is the task of grouping a set of objects such that objects in the same group (called a
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Fig. 6. The overall process of malware detection using data mining techniques.

Table I. Measures of Classification-Based Malware Detection Performance

Measures Specification

True Positive (TP) Number of file samples correctly classified as malicious
True Negative (T'N) | Number of file samples correctly classified as benign
False Positive (FP) Number of file samples wrongly classified as malicious
False Negative (FN) | Number of file samples wrongly classified as benign

TP Rate(TPR) TP/(TP + FN)
FP Rate(FPR) FP/(FP + TN)
Accuracy (ACY) (TP + TN)/(TP + TN + FP + FN)

cluster) are more similar (e.g., using certain distance or similarity measures) to each
other than to those in other groups (clusters). Clustering allows automatic malware
categorization and also enables the signature generation for detection.

For evaluation purposes, the following classical measures shown in Table I are usu-
ally employed to evaluate the performance of classification-based malware detection.
Note that in malware detection, malware samples are often used as positive instances.
The True Positive Rate (TPR) measure is the rate of malware samples (i.e., posi-
tive instances) correctly classified by the classification model, while the False Posi-
tive Rate (FPR) is the rate of benign files (i.e., negative instances) wrongly classified
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(i.e., misclassified as malware samples). The Accuracy (ACY) measures the rate of the
correctly classified file instances, including both positive and negative instances. The
evaluation approach using the traditional measures is often called as the cumulative
approach [Nachenberg and Seshadri 2010]. The cumulative approach measures the
performance of malware detection methods/systems at the instance level (i.e., per file
level). There is another type of measurement approach, named the interactive-based
measurement approach [Ramzan et al. 2013], which attempts to measure the perfor-
mance of malware detection methods/systems at the transaction level (i.e., considering
different user bases). The interactive-based measurement approach measures the true
protection and false positive impact of malware detection methods/systems based on
the actual user base. For example, imagine that at time 7', there are two testing mal-
ware files, A (which has 1 million users) and B (which has 10 users), and the malware
detection method/system wrongly classified the first file A (e.g., a false negative, clas-
sifying the malware as a benign file), but classified the second file B correctly as a
malware sample. Based on just these two files, the cumulative measurement would
give the ACY of 50%, since it classified one file correctly and one file incorrectly; but
in the interactive-based measurement approach, it would assign different weights to
the false negatives and true positives based on the users of file A and B. For the clus-
tering-based methods, the performance of different algorithms are usually evaluated
by using Macro-F1 and Micro-F1 measures, which emphasize the performance of the
system on rare and common categories, respectively [Sebastiani 2002].

4. FEATURE EXTRACTION

Feature extraction method extracts the patterns used for representing the file samples.
In this article, we mainly discuss the detection on Windows Portable Executable (PE)
files. Note that PE is a common file format for Windows operating systems and PE
malware is the majority of malware samples. Note that CIH, CodeBlue, CodeRed,
Killonce, LoveGate, Nimda, Sircam, and Sobig all aim at PE files [Ye et al. 2007].
There are mainly two different types of feature extraction in malware detection: static
analysis and dynamic analysis.

4.1. Static Analysis

Static analysis analyzes the PE files without executing them. The target of static anal-
ysis can be binary or source codes [Christodorescu and Jha 2003]. A PE file needs to
be decompressed/unpacked first if it is compressed by a third-party binary compres-
sion tool (e.g., UPX and ASPack Shell) or embedded within a homemade packer [Ye
et al. 2007]. To decompile windows executables, the disassembler and memory dumper
tools can be used. Disassemble tools (e.g., IDA Pro [IDAPro 2016]) display malware
codes as Intel x86 assembly instructions. Memory dumper tools (e.g., OllyDump [2006]
and LordPE [2013]) are used to obtain protected codes located in the main memory and
dump them to a file [Gandotra et al. 2014]. Memory dump is quite useful for analyzing
packed executables that are difficult to disassemble. After the executable being un-
packed and decrypted, the detection patterns used in static analysis can be extracted,
such as Windows API calls, byte n-grams, strings, opcodes (operational codes), and
control flow graphs.

—Windows API Calls: Windows API calls are used by almost all programs to send
the requests to the operating system [Orenstein 2000]. Thus, Windows API calls can
reflect the behavior of program code pieces. For example, the Windows API of “GetVer-
sionExA” in “KERNEL32.DLL” can be used by malware to check the version of the
current OS, which is achieved by invoking a system call. Therefore, the associations
and relationships among the Windows APIs may capture the underlying semantics
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of the malware behaviors and can be used as essential features for malware de-
tection, such as, the Windows API calls in the “KERNEL32.DLL” of “OpenProcess,”
“CopyFileA,” “CloseHandle,” “GetVersionEx A,” “GetModuleFileNameA,” and “Write-
File” always co-occur in malware sample collection while rarely show together in a
benign file set [Ye et al. 2007].

—N-grams: N-grams are all substrings in the program code with a length of
N [Henchiri and Japkowicz 2006a]. For example, the “82EDD875” sequence is seg-
mented (represented) into 5-gram as “82EDD,” “2EDDS8,” “EDD87,” and “DD875.”
Over the past decade, many researches have conducted unknown malware detection
based on the binary code content; see the studies in Kolter and Maloof [2004], Abou-
Assaleh et al. [2004], Karim et al. [2005], Elovici et al. [2007], Masud et al. [2007],
and Anderson et al. [2012].

—Strings: The interpretable strings are the high-level specifications of malicious
behaviors. These strings can reflect the attacker’s intent and goal since they of-
ten contain the important semantic information [Ye et al. 2009]. For example,
“<html> <scriptlanguage = ‘javascript’>window.open(‘readme.eml’)” always exists
in the worms of “Nimda,” implicating that the worms try to infect the scripts. Another
example is the string “&gameid = %s& pass = %s; myparentthreadid = %d; myguid =
%s,” which indicating the attackers’ intention of stealing the password of the online
game and sending it back to the server. Besides, the strings are robust features and
it is not easy for the malware authors to evade the string-based detection. This is
because even if the malware variants can be generated by re-compiling or adopting
obfuscation techniques, modifying all the interpretable strings is not practical in
most programs [Ye et al. 2009].

—Opcodes: An OpCode (i.e., Operational Code) is the subdivision of a machine
language instruction that identifies the operation to be executed [Wikipedia 2017a].
More specifically, a program is defined as a series of ordered assembly instructions.
An instruction is a pair composed of an operational code and an operand or a list
of operands (e.g., “mov ebx ebx,” “add eax 1,” “xor eax eax,” and “call sub_401BCD”).
Instruction segments can often reflect the program functionality. Studies have shown
that, in practice, malware samples derived from the same source code or belong to
the same family often share a large number of instruction blocks/segments [Ye et al.
2010].

—Control Flow Graphs (CFGs): A CFG is a graph that represents the control flow
of a program. CFGs are widely used in software analysis and have also been widely
studied [Anderson et al. 2012].

There are also many other static features to represent the file samples, such as
file property, file resource information, and export table. Static analysis is able to
explore/investigate all possible execution paths in malware samples. Hence, it has
the advantage of being exhaustive in detecting malicious logic. In other words, static
analysis does not have the coverage problem that dynamic analysis suffers from. An-
other advantage of static analysis is that the analyzer’s machines cannot be attacked
by the malware under study. One disadvantage of static analysis is, when dealing
with certain situations, its inability due to undecidability (e.g., indirect control trans-
fer through function pointers). So tradeoffs between precision and efficiency have to
be made whenever points-to analysis is involved. Other drawbacks of static analysis
include a lack of support for runtime packing code and the limitation related to com-
plex obfuscation. Moser et al. [2007] discussed the drawbacks of static analysis. They
suggested that dynamic analysis can be a necessary and useful complement to static
analysis.
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4.2. Dynamic Analysis

Dynamic analysis techniques (e.g., debugging and profiling) observe the execution (on
a real or virtual processor) of the PE files to derive features [Egele et al. 2012]. Various
techniques, such as autostart extensibility points, function parameter analysis, func-
tion call monitoring, information flow tracking, and instruction traces can be applied
to perform dynamic analysis [Egele et al. 2012; Gandotra et al. 2014]. Typical dynamic
analysis tools include Valgrind [Nethercote and Seward 2007], QEMU [Qemu 2016],
and strace. There has been a substantial amount of studies on dynamic analysis of
malware, varying in the execution environment for the malware and analysis granu-
larity. Below we categorize the dynamic analysis techniques according to the execution
environment:

—Debugger: A debugger such as GDB [Loukides and Oram 1996], Windbg [Robbins
1999], or Softice [of Compuware 1999] can be used for fine-grained analysis of binary
code, including malware, at the instruction level. However, most if not all malware
have become smart enough to detect the existence of a debugger by monitoring
changes to their code that are necessary to support breakpoints, a chief vehicle for
debugging. To counter such anti-debug malware, new ways of debugging have been in-
vestigated. VAMPIRE [Vasudevan and Yerraballi 2005] supports stealth breakpoints
to assist in debugging of self-modifying and/or self-checking malware by leveraging
virtual memory and hardware single-stepping mechanisms. Built on top of VAM-
PiRE, Cobra [Vasudevan and Yerraballi 2006] is a fine-grained malware analysis
framework that can be selectively deployed only on malware-specific code streams
to improve analysis efficiency. Finally, Ether [Dinaburg et al. 2008] is a debugging
tool leveraging hardware virtualization extensions such as Intel VT [Intel 2013] to
remain invisible to the malware.

—Simulator: This group of tools runs the malware in a controlled environment and
monitors its actions. For example, Detours [Hunt and Brubacher 1998] is a dynamic
instrumentation tool that can detect Windows APIs invoked by a malware sample,
and CWSandbox [Willems et al. 2007] monitors Windows API calls by the malware
by performing API hooking and DLL injection.

—Emulator: TTAnalyze [Bayer et al. 2006a] is a QEMU-based dynamic malware
analysis framework that monitors Windows API calls and Windows native system
calls, as well as function call parameters. TEMU in the BitBlaze [Song et al. 2008]
binary analysis platform is an emulator that supports dynamic instrumentation
at the instruction level and whole-system taint tracking. A number of specialized
analysis tools [Caballero et al. 2007; Kang et al. 2007; Yin et al. 2007] have been
built on top of TEMU. K-Tracer [Lanzi et al. 2009] dynamically traces the execution
of Windows kernel-level rootkits to find their system data manipulation behaviors.

—YVirtual Machine: Strider HoneyMonkeys [Wang et al. 2006a] determines malicious
web sites by visiting them in a Microsoft Virtual PC- and Virtual Server-based
environment and identifying persistent system state changes caused by such visits.
vGrounds [Jiang et al. 2005] studies worm behavior in a User Mode Linux (UML)
based virtual environment.

In dynamic feature extraction, the configuration- or environment-dependent infor-
mation (such as variable value, system configuration, and program input) has been
resolved during the extraction. This is one big advantage of dynamic analysis. Those
environment- or configuration-dependent pose difficulty for static analysis because they
are beyond the code itself. Dynamic analysis is especially useful in analyzing packed
malware because in most cases, when the malware runs, at some point the malware has
to unpack itself, and its original code will be in the main memory. Renovo [Kang et al.
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2007] is such a tool that extracts hidden code by tracking the newly-written memory
areas of the malware program, even if it is hidden through multiple layers of compres-
sion and encryption. The limited coverage is a disadvantage of dynamic analysis. The
reason is that one execution session can only explore one particular program path in
the malware. But some malware behaviors may depend on some special condition (e.g.,
on a particular time, when a particular file is received, or a certain command/operation
is executed).

Besides, since it takes time for a malware sample to expose all its behaviors while
running, dynamic analysis is often more time consuming and requires more resources
than static analysis. As a result, these properties limit the adoption of dynamic analysis
in commercial analysis systems.

4.3. Hybrid Analysis

Both static and dynamic feature extraction approaches have their own advantages and
limitations. Compared with dynamic feature representation, the static approach is
cheaper and can cover all code paths (including the program pieces that are not always
executed), therefore providing a more accurate and complete characterization of the
program functionalities [Hu 2011]. However, it has high performance overhead due
to low-level mutation techniques (such as obfuscation and packing). On the contrary,
dynamic analysis is resilient to low-level obfuscation and is suitable for detecting
malware variants and new families, but often performs poorly on trigger-based malware
samples. Besides, dynamic analysis is cost expensive and not scalable due to its limited
coverage. Based on the statistics from Comodo Cloud Security Center, about 80% of
the file samples can be well-represented using static features, while just around 40%
of the file samples can successfully run dynamically [Ye et al. 2011].

Due to their respective pros and cons, neither static nor dynamic-based feature ex-
traction approaches can provide a perfect solution to the feature extraction in malware
analysis [Hu 2011]. Therefore, a comprehensive approach that integrates both static
and dynamic analysis and gains the benefits of both would be desirable. Hybrid anal-
ysis is such an approach that combines the respective advantages of both static and
dynamic analysis. For example, the packed malware can first go through a dynamic
analyzer such as PolyUnpack [Royal et al. 2006], where the hidden-code bodies of a
packed malware instance are extracted by comparing the runtime execution of the mal-
ware instance with its static code model. Once the hidden-code bodies are uncovered,
a static analyzer can continue the analysis of the malware.

4.4. Other Novel Features

There is also some research using the semantics of file content to represent the file
samples. For example, a semantics-aware malware detection method is proposed in
Christodorescu et al. [2005]. In the proposed framework, malicious behavior was de-
scribed using templates, which were instruction sequences where variables and sym-
bolic constants were used. Based on the extracted features, a semantics-aware match-
ing algorithm was proposed for malware detection.

Besides static and dynamic features extracted from file content, are there any other
features that can represent malware or benign files? As the moral says, “man is known
by the company he keeps.” Actually, the relationships among different file samples may
imply their interdependence and can provide critical information about their prop-
erties and characteristics [Ye et al. 2011; Tamersoy et al. 2014]. More precisely, a
file’s legitimacy can be inferred by analyzing its relations (co-occurrences) with other
labeled (either benign or malicious) peers. For example, if an unknown file always co-
occurs with many trojans, then there is a high possibility that the file is a malicious
trojan-downloader [Ye et al. 2011] that can download and install multiple unwanted
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applications (e.g., trojan, adware) from remote servers. Ye et al. combined both file rela-
tions and file content for malware detection. In particular, their proposed methods have
been successfully incorporated into Comodo’s anti-malware software products [Ye et al.
2011]. Recently, more commercial anti-malware products including Symantec’s AM
products [Nachenberg and Seshadri 2010] and Microsoft’s Internet Explorer [Stokes
et al. 2012] have started using the features beyond file contents for malware detec-
tion: (1) Symantec’s AM products inferred the file reputations by analyzing file-to-
machine relations [Chau et al. 2011] and also used file-relation graphs for malware
detection [Tamersoy et al. 2014]; (2) Microsoft’s Internet Explorer used file placements
for malware detection [Venzhega et al. 2013].

Table II summarizes some representative studies of different feature extraction
methods in malware detection.

5. FEATURE SELECTION

The previous section introduced methods for feature extraction for malware analysis
and detection. Before describing popular classification methods used for malware de-
tection in the next section, here we first discuss key methods used for feature selection
and how they have been used in malware detection. Feature selection is an important
step in many classification or prediction problems [Langley 1994; Jain et al. 2000;
Kwak and Choi 2002; Murphy 2012]. The need for feature selection is motivated by
the fact that, in certain classification and prediction problems, the number of features
could be quite large, at times running into the millions, and thus could significantly
exceed the capacity of the underlying machine to process within a reasonable time.
Further, improvement in classification performance and minimization of classification
errors could significantly depend on the ability of the system to quickly identify, select,
and use only the most representative features. For the case of malware detection in
particular, it might be impractical to construct the required model using each and ev-
ery extracted feature. For instance, the number of features generated using n-grams
grows exponentially with n, and using all the features could be quite computationally
intensive, in terms of both memory usage and CPU time. The large number of features
could also introduce unnecessary noise and large amounts of redundant and irrelevant
features, further confounding the classifier. To reduce these problems, malware clas-
sification methods often adopt a feature selection for dimensionality reduction and to
improve the compactness of the feature representation.

Feature Selection is essentially the process of selecting a subset of relevant and infor-
mative features from a larger collection of features for use in model construction [Guyon
and Elisseeff 2003]. The central assumption is that the data contains many redundant
or irrelevant features, which can be eliminated without a significant negative impact
on later classification or prediction performance. Redundant features are those that
provide no additional information beyond what is already provided by the currently
selected features. Irrelevant features are those that do not provide any useful informa-
tion in the given context. Thus, what is irrelevant could be dependent on the specific
application being considered. Three important considerations in feature selection are
determining the starting point for the selection process, how the selection proceeds
given this starting point, and the stopping criteria for the selection procedure. For in-
stance, in Forward Feature Selection (FFS), the process starts with an empty feature
set and with new features added successively to the set. An alternative is Backward
Feature Selection (BFS), whereby the process starts by using the set of all available
features, and then successively removes features from the set. Removal of features
(in BFS) or addition of features (as in FFS) are usually performed based on certain
selection criteria, for instance, by ranking the features based on their estimated dis-
crimination ability. Thus, independent of the direction of the search for features to
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Table Il. Summary of Some Typical Feature Extraction Methods in Malware Detection

Survey Static Analysis Dynamic Analysis Other Analysis

Kolter and Maloof [2004] Binary n-grams X X
Henchiri and Japkowicz 16-byte sequences X X
[2006b]

Ye et al. [2007, 2009a, Windows API calls X X
2009b]

Masud et al. [2007, 2008]  Binary n-grams, assembly X X
instruction sequences,
and DLL call information

Siddiqui et al. [2009] Variable length X X
instruction sequence

Ye et al. [2009¢] Windows API calls and X X
strings

Firdausi et al. [2010] X Behaviors extracted in X
sandbox environment

Santos et al. [2011b, n-gram distributions X X
2011a]
Ye et al. [2011] File content
combining file
relations

Santos et al. [2013] Sequence of operational System calls, operations, X

codes and raised exceptions

Karampatziakis et al. X X Graphs induced by
[2013] file relationships

Saxe and Berlin [2015] Byte entropy histogram,
PE import information,
and numerical PE fields
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select, another key consideration is how the feature subsets are evaluated for inclusion
in the selected subset.

There are three major approaches used for this evaluation: filter, wrapper, and em-
bedded methods. (1) Filter: Filters determine the best feature subsets by using statisti-
cal approaches. Each feature is scored individually on certain specified criteria and the
features are then ranked based on the scores. Feature selection then simply becomes
a manner of selecting the features based on this ranking. Alternatively, subsets of fea-
tures could be selected by computing some quantitative measures on the discriminative
capability of the feature subsets, based on which the subsets can be ranked [Guyon
and Elisseeff 2003]. Filter-based strategies consider the features as being independent
of the later classification stage, or of the specific prediction problem being addressed.
Thus, they exploit the general characteristics of the training datasets to select certain
features while eliminating others. One key advantage of filter methods is that they are
generally fast but still often capture the essence of the feature sets. Another is the inde-
pendence from the specific method used for later classification, implying that the filters
could provide a powerful mechanism for pre-processing before actual prediction or clas-
sification is performed. (2) Wrapper: With wrapper methods, the actual classification or
prediction algorithm is used to evaluate the performance of different feature subsets.
Here, a candidate feature subset is used to perform the required analysis (whether clas-
sification or prediction), and the performance in the analysis task using some training
data is then used to evaluate the feature subset [Langley 1994]. Clearly, training a
new model for each given feature subset is a very computationally intensive process.
How to choose the subsets efficiently, and yet maintain a good performance in terms of
robustness and accuracy still remains a challenge. However, for a given classification
algorithm, the wrapper approach often leads to the best performing feature subsets.
Another key advantage is the general applicability of the approach, independent of
any specific classification algorithm. (3) Embedded: With embedded methods, feature
selection is performed as part of the model construction process. An embedded method
is usually specific to a given classification algorithm [Guyon and Elisseeff 2003]. Some
view embedded approaches as a type of wrapper method [Wald et al. 2013], while others
view them as lying between filters and wrappers in terms of computational complexity.
For instance, some embedded methods perform more efficiently than wrapper methods
by directly optimizing an objective function, often defined by two or more parameters —
one to encourage the goodness-of-fit and the other to penalize for a large number of vari-
ables [Rakotomamonjy 2003; Perkins et al. 2003]. But these are still generally slower
than filter methods. The close interaction with the specific classification scheme, and
the added ability to factor in potential interactions between the features, provide some
important advantages in terms of robustness and classification performance.

From the foregoing, we can see that each category of techniques has its own benefits
and drawbacks [Guyon and Elisseeff 2003; Wald et al. 2013]. Filter techniques are
much faster than the other methods (since they evaluate each feature once, rather
than evaluating a large number of feature subsets), but they might require larger
feature subset sizes before finding the best sets of features. Wrapper and embedded
techniques are both significantly slower, but they often select better performing feature
subsets for the specific classification algorithm used. Thus, each class of techniques still
has its place in the general problem of feature selection. Given that filter techniques
are highly scalable (important and critical for high-dimensional datasets), relatively
simple and efficient, and independent of the underlying classification algorithms [Saeys
et al. 2007], they represent the most popular feature selection approach in malware
detection.

In a filter approach, each feature is ranked based on some measure of significance
and the highest ranked features are selected. Most filter techniques and significance
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measures used in malware detection are univariate. Typical examples include in-
verse document frequency, information gain, gain ratio, Fisher Score (F'S), maximum-
relevance algorithm, hierarchical approach, and max-relevance algorithm. We describe
these briefly below.

—Document Frequency (DF): This follows the earlier study by Salton et al. [1975],
which a vector space model is proposed to represent a textual document as basi-
cally a bag of words. The Term Frequency Inverse Document Frequency (TF-IDF),
sometimes denoted simply as Document Frequency (DF), measures to what extent
the occurrence of a given word (term) tends to be predominantly on relatively few
documents. The TF-IDF is easy to compute.

Let fi; be the frequency of term i in document j. Let N be the number of documents
in the collection. Let n; be the documents (out of the N documents), where term :
appeared. The term frequency T'Fj;; is given by:

TF;; = fis . D
maxy, fz;
Essentially, TF;; is simply f;; normalized using the maximum number of occurrences
of any term in the given document. The inverse document frequency (IDF) for the
i-th term is given as:

IDF; =log, (N/(1 + n;)). (2)
The TF — IDF is the computed as follows:
TFIDF = TF;; x IDF;. (3)

Often times, the terms with the highest TF-IDF scores correspond to those that best
capture the topic of the document. With respect to malware detection, file samples
can be viewed as analogous to documents, while file features such as byte n-grams
and OpCode n-grams can be seen as terms (words). Thus, the TF-IDF has been used
as the basis for selecting top features for malware detection for given training sets
[Moskovitch et al. 2008a].

—Information Gain (IG): The notion of IG was originally introduced in the context of
the construction of DTs [Quinlan 1986]. Suppose we divide the samples in the train-
ing set based on their values for a given feature, say A. The information gain captures
the expected reduction of entropy that will result from the partitioning. Thus, the
information gain attempts to quantify the effectiveness of the given attribute (A in
this case) in classifying the samples. More formally, let S be a set of items that can be
divided into C non-overlapping subsets or subclasses. Let S, denote the c-th subset.
The entropy of S is given by:

_ xS IS
H(s) = Z S| x log, 5 4)

ceC

Let V be the set of possible values for the feature A, and let S, be the subset of
samples with feature value v for the feature A. The IG for attribute A is then given
by:

IS, |

o x H(S,). (5)

IGS. H=HES) -
veV(A)

We can observe that for categorical variables, the information gain IG(S, A) defaults
to I(S, A), the mutual information between S and A [Murphy 2012]. Based on the
byte n-grams, Kolter and Maloof [2006], Zhang et al. [2007], and Masud et al. [2011]
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performed malware detection by using the IG as a measure to select the best features
from the training set.

—Information Gain Ratio (IGR): Given that entropy essentially measures the un-
certainty in the input data, the IG tends to favor features or attributes whose values
show more diversity (more entropy). The IGR attempts to reduce this bias. The idea
is to consider how the given feature partitions the input samples (Equations (6) and
(7). Let SI(S, A) be the entropy of S after dividing the samples according to the given
attribute A. Then we have,

4

1S, | IS,
SIS, A)=-) — x1lo . (6)

UZZI S8 s

Using SI and IG, we then compute the IGR as follows:
IG(S, A)

IGR(S,A) = ————. 7
S, &) SI(S, A) ™)
—FS: The FS provides a measure of the average inter-class distance when compared
with the average intra-class distance, using a given feature. Let {x1, x2, ..., x,} be

the set of input samples with corresponding labels {y1, y2, ...y,}. Suppose we have
C available labels (classes), i.e., y; € {1,2,...|C|}. Let n; be the number of samples
in class i. Further, let u; and o; be the mean and standard deviation for class i,
corresponding to the k-th feature. Denote 1 and o as the mean and standard deviation
for the entire dataset. The F'S is then given as :

_ Zizl Clni (i — p)?
Zl=1 Clno;

From the above, the F'S (F},) is essentially the ratio of the average inter-class distance
to the average intra-class distance. Thus, higher values of F} imply that members
belonging to different classes are further separated using the k-th feature, while
members in the same class are closer together. The discrimination ability for the
k-th feature increases with increasing values of F, [Golub et al. 1999]. For the mal-
ware detection, the issue is often a two-class problem—positive (malicious) class or
negative (benign) class. The F'S then reduces to a simple form.

A comparative analysis of the various feature ranking methods (DF, Gain Ratio
(GR), and FS) in malware detection was performed by Moskovitch et al. [2008a,
2008c]. Each method was used to select the top-ranked features for later classifica-
tion and detection of malware. More specifically, in Moskovitch et al. [2008¢], they
used byte n-gram features on sample sets with 7,688 malware and 22,735 benign
files. From the dataset, they extracted 16,777,216; 1,084,793,035; 1,575,804,954;
and 1,936,342,220 features, for the 3-gram, 4-gram, 5-gram, and 6-gram model, re-
spectively. Using each of the described feature selection techniques, they ranked the
features, and selected the top 50, 100, 200, and 300 features, respectively, for mal-
ware classification. Their evaluation results showed that the FS was very accurate
using just the top 50 features. This high-level of performance was observed to be
stable with an increasing number of features. On the other hand, when the number
of features is larger than 200, the accuracy of the DF decreased, while that of GR
increased significantly. In Moskovitch et al. [2008a], a similar comparative analysis
was reported using OpCode n-gram features rather than byte n-gram features. Their
results showed that the F'S performed very well (especially when the number of fea-
tures is small, e.g., top 50 or top 100 features) and the DF was also very accurate for
most of the top features.

Fy, (8)
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—Hierarchical Feature Selection (HFS): Rather than an approach that performed
explicit ranking of the features, in Henchiri and Japkowicz [2006a], a hierarchical
feature selection was presented, which performed selection by jointly considering the
frequency and coverage of the features. Under this approach, feature selection was
performed by considering the n-gram features that appeared frequently at rates more
than certain thresholds in a specific malware family (i.e., frequency), and appeared,
as well, in above a minimal number of malware classes or families (i.e., coverage).

—Max-Relevance Algorithm (MRA): To minimize the classification error, feature
selection often requires that the target class ¢ has maximal statistical depen-
dency on the selected features. One approach to realize maximal dependency (Max-
Dependency) is maximal relevance (Max-Relevance) feature selection [Peng et al.
2005]: selecting the features that have the highest relevance with the target class
c. Relevance is usually measured in terms of correlation or mutual information, of
which the latter is a popular approach to define dependency between variables. In Ye
et al. [2007, 2008], the authors used the Max-Relevance algorithm for feature se-
lection in malware detection. The extracted Windows API calls were ranked using
Max-Relevance and then a subset of API calls with the highest relevance to the tar-
get class was selected for later classification given a;, which represents the API with
ID i, and the class of file sample ¢ (“0” represents benign file and “1” is for malware).
Their mutual information is defined using their appearance frequencies p(a;), p(c),
and p(a;, ¢) as

Ia.o) = [ [ plas.ciog ’Z( = O dad) ©)
Using Equation (9), the top m APIs were ranked in the descending order of I(a;, ¢),
and the best m individual features correlated to the classes of the file samples were
then selected.

6. CLASSIFICATION FOR MALWARE DETECTION

After feature extraction (and feature selection), each file sample is now represented
in a feature space using the extracted feature vectors. The feature space is the basis
for subsequent analysis stages, such as classification or clustering. Classification is
performed by using the feature space generated from a sample training set as the
input to a learning algorithm. By analyzing the input vectors, the learning algorithm
determines parameters and factors that will be applied on the feature vectors in order
to classify them into some pre-defined classes. At the time of testing, a testing set
containing a separate collection of malware and benign file samples is used. Similar
to the training samples, representative features are extracted from each test sample.
Each sample in the testing is then classified as either benign or malicious, using the
same set of parameters and factors determined from the training samples. Popular
classification algorithms include ANN, DT, Naive Bayes (NB), SVM, and recently Deep
Learning (DL). Below, we first briefly describe these popular classification methods,
and then we survey how these schemes have been used for the specific task of malware
detection.

6.1. Typical Classification Methods and Their Applications in Malware Detection

6.1.1. Typical Classification Methods.

DT: In DT learning [Quinlan 1993], the classifier is represented as a tree, where
the internal nodes represent the input variables. Each internal node has an outgoing
edge corresponding to each possible value of the variable represented at the node. A
path from the root to a leaf node captures the sequence of feature values for each
given variable on the path. Thus, a given leaf node represents the class label (final

ACM Computing Surveys, Vol. 50, No. 3, Article 41, Publication date: June 2017.



A Survey on Malware Detection Using Data Mining Techniques 41:21

classification decision), given the feature values of the nodes encountered on the path
from the root node to the leaf node. In practice, a greedy heuristic scheme is often
used to generate the tree using the input data, for instance, by splitting the features or
variables using the expected information gain. The problem of over-fitting is handled
by pruning the tree. With the principled splitting of the nodes based on the feature
values, the DT can be easily represented or implemented in the form of simple rules.
The studies, such as Kolter and Maloof [2004], Henchiri and Japkowicz [2006a], Elovici
et al. [2007], Moskovitch et al. [2008a], Siddiqui et al. [2009], Tian et al. [2010], and
Santos et al. [2013], have applied DTe for malware detection.

An improved technique based on DTs is Random Forests [Breiman 2001]. This has
become very popular in recent years given its performance on different classification
problems. The random forest algorithm grows a collection of DTs, called a forest, and
uses these for classifying a data point into one of the classes. Two types of randomness,
bootstrap sampling and random selection of input variables, are used in the algorithm
to ensure that the classification trees grown in the forest are dissimilar and uncor-
related from each other. Growing a forest of trees, and using randomness in building
each classification tree in the forest, leads to better predictions as compared to a single
classification tree, and helps to make the algorithm robust to noise in the data set.
Compared to a single DT, the random forest approach decreases the variance in the
prediction results and has been used for malware detection [Siddiqui et al. 2009; Tian
et al. 2010; Islam et al. 2013].

Naive Bayes Classifier (NBC): NBC [John and Langley 1995] is based on the
Bayes rule assuming that the attributes are conditionally independent. With the Bayes
rule, given an observation, NBC computes the class conditional probabilities using the
joint probabilities of sample observations and classes. It assigns an instance x with
attribute values (A; = vy, Ag = vg, ..., A, = vp,) to class C; with the maximum posterior
probability Prob(C;|(vy, va, ..., v,)) for all i.

P((v1, v, ..., v)|C;) x P(C;)
P(vi, vg, ..., vp) '

Prob(Ci|(v1, V2, ..., Um)) = (10)

Prob((vl, V9, ..., Um)|Ci) = P(A1 = U1|Ci) X P(A2 = U2|Ci) X - X P(Am = Um|Ci)

]‘[ P(A;, = vp|C)). (11)

h=1

NBC is simple but has been empirically shown to perform well in a variety of appli-
cation domains [Domingos and Pazzani 1997]. In malware detection, there have been
several researches using NBC for model construction [Schultz et al. 2001; Kolter and
Maloof 2004; Henchiri and Japkowicz 2006a; Moskovitch et al. 2008¢; Firdausi et al.
2010].

Bayesian network (BN), also called belief network, is a graphical model representing
a set of variables and their causal influences [Pearl 1987]. It is a graphical structure
which enables the explicit representation of dependencies among variables. Different
from NB, the variables in BN are not assumed to be conditionally independent. A
standard Bayesian network consists of two components: (1) a directed acyclic graph
where random variables are represented as nodes, and the edges represent probabilistic
dependence between corresponding variables, and (2) Conditional Probability Tables
(CPT) for the variables. BN has also been used in malware detection [Elovici et al.
2007].

K-Nearest Neighbor (KNN): The kNN algorithm [Fix and Jr. 1951; Cover and Hart
1967; Aha et al. 1991] is among the oldest and simplest classification schemes. kKNN
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uses instance-based reasoning. The basic philosophy is that two objects in the same
class have some kind of similarity that can be measured using some distance metric
on the variables. An instance, with an unknown class, is thus classified into the same
category as its first nearest neighbor, or the winning class by the votes of its & nearest
neighbors, where % is usually a small odd number, e.g., 1, 3, 5, or 7. The number of
neighbors, % is often chosen by empirical cross-validation. Nearest neighbors are found
by a distance or dissimilarity measure. This is usually computed by considering the
objects as points or position vectors in a multidimensional feature space. The Euclidean
distance and its generalized form, the L, norm or Minkowski distance, are popular
distance measures often used with kNN. More complicated distance measures, such
as the Mahalanobis distance, and locally adaptive distance measures, have also been
used. The same approach can be applied for regression or prediction. Here, given an
object or sample, to predict the value for a given property or attribute of the object,
we simply use the average of the attribute value of its £ nearest neighbors. In some
cases, the contribution of the neighbors are weighted, for instance by their distance,
to ensure that the nearer neighbors provide more influence on the predicted value
when compared with the more remote neighbors. kNN, as a nonparametric model,
does not assume any parametric form for the underlying distributions of the random
variables. With this flexibility, it is usually a good classifier for many situations where
the joint distribution is hard to model or unknown. This is often the case for the high
dimensional datasets in malware classification [Firdausi et al. 2010; Santos et al. 2013].
Recently, the Random kNN (RkNN), a variation of the kNN method, specially designed
for classification of high dimensional datasets was introduced in Li et al. [2011, 2014].

Artificial Neural Network (ANN): ANN [Bishop 1995] is a computational model
inspired by biological nervous systems (e.g., human brain), which is presented as a
system of interconnected “neurons” that can compute values from inputs. Roughly
speaking, an ANN is a set of connected input/output units in which each connection
has an associated weight. During the training phase, the network adjusts the weights
to correctly predict the class label of the input tuples. Back-propagation [Werbos 1974]
is the most popular neural network learning algorithm. Equation (12) illustrates the
output computation of a two-layered ANN. Note f is the activation function, x is the
input vector, w;; is the weight of a hidden neuron, 6; is a weight in the output neuron,
and b; and b, are biases.

O) = f Zeif Zwijxj+bi+b0 . (12)
i J

In Elovici et al. [2007] and Moskovitch et al. [2008a, 2008¢], the authors have applied
ANN for malware detection.

SVM: SVM [Joachims 1998] is a binary classifier which searches for a hyperplane
that separates the two classes with the largest margin. Note that the margin is defined
as the distance between the hyperplane and its closest point within each class. Later,
extensions for handling multi-class classification were developed. SVM has the advan-
tage of handling high-dimensional data sets (e.g., with large feature representation)
without over-fitting and has achieved state-of-the-art results in binary classification
problems. A key technique in SVM is the kernel function which transforms the original
data into a high dimensional feature space for better separation. Note that a linear
boundary in the feature space corresponds to a nonlinear boundary in the original
space. The output of a linear SVM is u = w x x — b, where x is the input vector, w is the
normal weight vector to the hyperplane, and b is the bias. Maximizing the margin can
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be formulated as the optimization problem below:
... 1oy . .
minimize §||w|| , subject to y;(w - x; + b) > 1, Vi. (13)

Note that for the i-th training example, x;, y; is the correct output. Intuitively, classifiers
with a large margin will have low expected risks and, hence, good generalization. In
malware detection, SVMs also show good performance in discriminating malware from
benign files [Abou-Assaleh et al. 2004; Wang et al. 2006b; Ye et al. 2009, 2009c¢; Firdausi
et al. 2010; Anderson et al. 2012].

Associative Classifier (AC): Associative Classifier (AC) utilizes the association
mining techniques to construct classifiers [Thabtah 2007]. It can be considered as a
special case of association rule discovery where only the class attribute can appear
on the right-hand side (i.e., the consequent) of a rule. For example, in an association
rule X — Y, Y must be a class attribute. One of the main advantages of associative
classifier is that it makes the model interpretable because the output of an AC algorithm
can be easily represented as simple if-then rules. Furthermore, AC classifiers can be
incrementally updated or tuned [Thabtah 2007]. AC has also been applied in malware
detection [Ye et al. 2007, 2009a, 2009b].

DL: DL, a new frontier in data mining and machine learning, is starting to be
leveraged in industrial and academic research for different applications (e.g., Com-
puter Vision). A multilayer DL architecture is of superior ability in feature learning.
Furthermore, DL architectures overcome the learning difficulty through layerwise pre-
training, i.e. pre-training multiple layers of feature detectors from the lowest level to
the highest level to construct the final classification model. Typical DL models [Bengio
et al. 2007; Bengio 2009] include Stacked AutoEncoders (SAEs), Deep Belief Networks
with Restricted Boltzmann Machine, Convolutional Neural Networks, and the like.

In a recent comprehensive study of the performance of various classification al-
gorithms, Fernandez-Delgado et al. [2014] analyzed 179 classifiers from 17 families,
including the popular ones listed above, using 121 datasets, and concluded that the
random forest family of classification schemes produced the overall best performance,
followed closely by SVMs, using the Gaussian kernel. Their results point to the overall
performance of the algorithms on general classification problems. Below, we consider
how these classification schemes have performed on the specific problem of malware
detection.

6.1.2. Malware Detection by Applying Typical Classification Methods. Schultz et al. first intro-
duced the idea of applying data mining methods for different types of malware detection
based on three static features: Dynamic Link Library (DLL) call information, strings,
and byte sequences [Schultz et al. 2001]. A rule induction algorithm Ripper [Cohen
1995] was applied to discover patterns based on the DLL call’s data set, and NB was
used to build the classifiers resting on the strings and 2-byte sequences. Based on their
data collection consisting of 4,266 files (3,265 malicious and 1,001 benign), the NB
algorithm achieved the highest classification performance (i.e., with 97.11% accuracy).
The authors concluded that the malware detection rate using the data mining method
was twice of the signature-based method on their data collection.

In Henchiri and Japkowicz [2006a], the authors extracted 16-byte sequences from
their data collection consisting of 3,000 file samples, 1,512 of which were malware
and 1,488 of which were benign files. They applied different kinds of classifiers on the
extracted feature set, including ID3 and J48 DTs, NB, and SVM, and obtained better
results than those with traditional feature selection methods as shown in Schultz et al.
[2001].
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Note that associative classifiers can discover interesting relationships among file
features and malware/benign file classes. Ye et al. proposed Intelligent Malware Detec-
tion System (IMDS) for malware detection using Object Oriented Association (OOA)
mining based on the extracted Windows API calls [Ye et al. 2007]. In order to further
improve the efficiency and scalability for malware detection, the authors further pro-
posed a post-processing method, named CIDCFP [Ye et al. 2009b], for classification
model construction. To address the imbalance class distribution problem, they also
further developed the Hierarchical Associative Classifier (HAC) [Ye et al. 2009a] for
malware detection.

Moskovitch et al. [2008c] compared different classifiers based on the byte n-grams
extracted from 30,000 sample collection: ANN, DT, Boosted Decision Trees (BDT),
NB, Boosted Naive Bayes (BNB), and three types of SVMs. Their experiments were
conducted on various parameter settings including the feature selection method (e.g.,
Document Frequency, F'S, or Gain Ratio), the size of n-grams (e.g., 3, 4, 5, or 6), the
number of top selected features (e.g., 50, 100, 200, or 300), and the term representation
method (e.g., TF or TF-IDF). The best representation setting identified in the exper-
iments was the top 300 5-gram terms (represented using TF) based on the FS. The
classifiers were then compared based on the best representation setting. The classifi-
cation results showed that the ANN, DT, and BDT outperformed the BDT, BNB, NB,
and SVM classifiers in malware detection based on their collected sample set and ex-
perimental settings. Similar results were also given in Moskovitch et al. [2008a] based
on the n-gram OpCode sequence features.

Many researchers used dynamic analysis techniques for feature extraction to im-
prove the effectiveness and efficiency of malware detection. By running in a virtual
environment, Tian et al. [2010] extracted API call sequences from executables. Several
classifiers available in WEKA [Hall et al. 2009] were used for malware detection, in-
cluding SVM, Random Forest, DT, and Instance-based Classifier. A data set consisting
of 1,368 malware and 456 benign files is used in the experiments. Their work has over
97% accuracy in the experiments.

In Firdausi et al. [2010], the authors extracted the behaviors of malware samples in a
sandbox environment using Anubis [2010]. The extracted features were pre-processed
into sparse vectors for five different classifiers: NB, J48 DT, kNN, Multilayer Perceptron
Neural Network (MLP), and SVM. A small data collection of 220 malware and 250
benign samples was used in the experiments. Their experimental results indicated
that the overall best performance was achieved by J48 DT, with a precision of 97.3%, a
recall of 95.9%, an accuracy of 96.8%, and a false positive rate of 2.4%.

A detection method based on instruction traces was proposed by Anderson et al.
[2011]. To dynamically collect the traces, the modified Ether malware analysis frame-
work was used [Firdausi et al. 2010]. The similarity matrix was constructed using
graph kernels between instances and the transition probabilities in the Markov chain
was estimated using 2-grams. Two distinct similarity measures, a Gaussian kernel, and
a spectral kernel were used to construct the kernel matrix. Note that the first kernel
measures the local similarity between graph edges, and the second kernel measures
the global similarity between the graphs. With the kernel functions, SVM was then
trained to classify the testing sample set. Based on the data collection with 1,615 mal-
ware and 615 benign files, the performance of their proposed multiple kernel learning
method was excellent. However, the computation complexity of their proposed work is
quite high, thus limiting its usage in real applications.

Note that both static analysis and dynamic analysis have limitations. Neither of them
is sufficient for classifying malicious file samples efficiently and accurately. Therefore,
researchers have used hybrid techniques which incorporate both dynamic and static
features to perform malware detection.
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Wang et al. [2006b] developed a surveillance spyware detection system that used
both static and dynamic extracted features. Static features were the DLLs and APIs
extracted from the file sample set, while dynamic features were the modifications upon
system files, registries, and network activities. Based on their data collection consisting
of 407 spyware and 740 benign programs, using the information gain method, they
selected 81 features from the ranked 790 features, 67 of which were static and 14
of which were dynamic. They then built an SVM classifier for detection. The overall
accuracy of their developed system reached 96.43% by using 10-fold cross validation.
They also claimed that the system’s performance was better than some well-known
anti-virus applications in spyware detection.

Anderson et al. [2012] conducted their researches for malware detection based on
multiple feature extractions: 2-gram byte sequences, control flow graph, disassembled
OpCodes, dynamic instruction traces, miscellaneous file information, and system call
traces. Kernels based on the Markov chain graphs were used for the 2-gram byte
sequences, disassembled OpCodes, dynamic instruction traces, and system call traces.

A graphlet kernel and a standard Gaussian kernel were used for the control flow
graph and the file information feature vector, respectively. A weighted combination of
the data sources was learned using multiple kernel learning. Finally, SVM was trained
as the classifier. Their proposed method achieved an accuracy of 98.07% based the
sample set of 780 malware and 776 benign files.

In Santos et al. [2013], the authors developed a hybrid malware detector by utilizing
both static and dynamic features. Static analysis extracts the features by modeling
executables as sequences of operational codes. Dynamic analysis extracts features by
monitoring operations, system calls, and raised exceptions. The experimental results
on the sample collection of 1,000 malware and 1,000 benign files demonstrated that
this hybrid approach enhanced the classification performance.

Islam et al. [2013] also classified the executables into malware and benign files by
using both static (e.g., function length frequency and printable sting) and dynamic
features (e.g., API function names along with parameters). Based on the sample col-
lection of 2,939 executable files (2,398 malware and 541 benign files), the experiments
were conducted on classifiers including SVM, Random Forest, DT, and Instance-based
Classifier. Their experimental results showed that integrating features improved the
classification performance and meta-Random Forest performed best for all the cases.

In Saxe and Berlin [2015], based on the features of byte entropy histogram, PE import
information, and numerical PE fields, the authors applied deep neural network and
Bayesian calibration model for malware detection. Their developed system achieved a
95% detection rate at a 0.1% false positive rate, based on more than 400,000 software
binaries sourced directly from their customers and internal malware databases. Hardy
et al. also applied DL architecture, which used the SAEs model for malware detection
based on Windows API calls [Hardy et al. 2016].

6.2. Ensembles of Classifiers and Their Applications in Malware Detection

Ensemble methods construct a set of base (individual) classifiers and then clas-
sify new samples by taking a (weighted) vote of the predictions of base classifiers
[Dietterich 2000]. Ensemble methods are often used to overcome instability and im-
prove prediction performance. A typical ensemble framework contains: (1) individual
base classifiers whose error rates should be below 0.5 and are at least somewhat un-
correlated [Dietterich 2000], and (2) conclusion combiner, which is responsible for com-
bining the classification results of individual base classifiers. Many ensemble methods
have been proposed in machine learning literature [Dietterich 1997]: Bagging [Breiman
1996] and Boosting [Freund and Schapire 1997] are two popular ensemble learning al-
gorithms [Oza and Russell 2001]. Bagging generates K bootstrap samples from the
training data and builds base classifiers for each bootstrap sample [Breiman 1996]. A
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bootstrap sample is obtained by sampling (with replacement) the original training set
uniformly. Adaboost [Freund and Schapire 1997] dynamically changed the weights of
each instance being selected based on the classification results in the previous round.
For conclusion combination of the base classifiers, there are two main methods [Rokach
2010]: weighting methods (e.g., majority voting, Dempster-Shafer theory of evidence)
and meta-learning methods (e.g., stacking). Weighting methods are useful if the base
classifiers have a similar performance, while meta-learning methods are often useful
when based classifiers have a disparate performance (e.g., different classifiers may
consistently misclassify different instances) [Rokach 2010]. In malware detection, en-
sembles of classifiers are also employed to further improve the prediction accuracy
(e.g., the predication of different malware families).

In Kolter and Maloof [2004], based on the extracted binary n-gram feature set, the
authors applied different classification methods for malware detection, including DT
and their boosted versions. Their experimental results on a collected data set with 1,971
benign and 1,651 malicious executables demonstrated that boosted DTs outperformed
other classifiers.

Abou-Assaleh et al. [2004] used the Dempster-Shafer theory of evidence to combine
DT, SVM, and kNN classifiers. In their approach, class profiles of different lengths are
defined by the number of the most frequent n-grams, using various n-gram sizes.

Elovici et al. [2007] extracted two types of static features: 5-grams byte sequences
and PE header from 7,694 malware and 22,736 benign files for malware detection. For
the 5-grams byte sequences data set, they first applied TF-IDF to choose the top 5,500
features and then used FS to select the top 300 5-grams out of the 5,500 5-grams.
ANNSs, BNs, and DTs were used to induce the individual base classifiers trained on
the selected 5-grams byte sequences and PE head features. The ensemble of the base
classifiers using a simple voting algorithm is shown to be superior as it achieved the
best true positive rate along with a minimum false positive rate.

In Masud et al. [2007], based on the data collection of 3,887 executables, 1,967 of
which are benign files and 1,920 are malware, the authors created a hybrid feature set
using assembly instruction sequences (obtained from the disassembled executables),
binary n-grams from the executable, and DLL call information (extracted from the pro-
gram headers). Resting on the extracted feature set, they first used Information Gain
for feature selection and then applied SVM and boosted DTs for the classification. In
Masud et al. [2008], using the same feature extraction methods for malware detection,
the authors further extended their work by using different classifiers (e.g., DTs, NB,
SVM), boosted DTs, and boosted NB for comparisons.

Siddiqui et al. [2009] used a variable length instruction sequence for detecting worms
in the wild. Before disassembling the files, they detected compilers and packers. Rare
items (e.g., sequences whose frequency of occurrence is less than 10%) were removed.
DT, random forest, and bagging were used for classification. Their experimental results
showed that random forest performed best based on their data collection of 2,774
samples including 1,444 worms and 1,330 benign files.

In Ye et al. [2009], based on the “interpretable” strings, the authors used SVM en-
semble with bagging to predict the malware types. In Ye et al. [2009c], they further
developed an Intelligent File Scoring System (IFSS) using an ensemble of hetero-
geneous base classifiers (e.g., SVM and associative classifier) with different feature
representations (e.g., Windows API calls and strings) on dynamic training sets.

6.3. Other Methods for Malware Detection

In addition to the typical classification methods introduced above, some other existing
researches also adopted different data mining approaches for malware detection based
on various kinds of feature representations.
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Frequent pattern mining has been used in Christodorescu et al. [2007] to identify
the differences between malware samples and benign executables. Note that the differ-
ences may be used as specifications for characterizing malicious behaviors (malspecs).
Temporal event pattern mining can also be applied in malware detection to detect se-
quential/temporal relationships among different features [Li 2015; Zeng et al. 2017].
Kolbitsch et al. [2009] also applied supervised learning for malware detection. But they
extracted behavior graphs out of known malware samples from a given family and used
a specialized subgraph matching algorithm to detect similar malware, without resort-
ing to much data mining or machine learning techniques. HOLMES [Fredrikson et al.
2010] detected malware families using discriminative specifications by combining the
concept analysis and frequent subgraph mining. However, it had a limited coverage
of possible program paths during dynamic analysis. Combining HOLMES with other
classification methods based on different feature representations (i.e., ensemble clas-
sification) would increase the malware detection rate. It has been pointed out that,
for malware detection, a large amount of labeled executables (both malicious and be-
nign) is often required for supervised learning (classification) [Santos et al. 2011b].
Santos et al. proposed a semi-supervised learning approach for malware detection,
which was designed to build a classifier using both labeled and unlabeled file samples.
Based on the extracted n-gram distributions, a semi-supervised algorithm, Learning
with Local and Global Consistency (LLGC), was applied for model construction. The
semi-supervised algorithm was able to learn a good solution by exploiting the intrinsic
structure displayed by both labeled and unlabeled file samples. The main contribu-
tion of their research was to reduce required labeled file samples without sacrificing
the detection precision or accuracy much. However, it was shown that previous su-
pervised learning approaches presented in Kolter and Maloof [2004] and Moskovitch
et al. [2008c] obtained better results (above 90% of accuracy) than the proposed semi-
supervised learning approach. Further, in Santos et al. [2011a], a collective learning
approach was proposed to malware detection by utilizing partially-labeled data.

Besides file contents, file-to-machine relation graphs [Chau et al. 2011] and file-to-file
relation graphs [Ye et al. 2011; Tamersoy et al. 2014] were also used as the features for
malware detection. In Chau et al. [2011] and Tamersoy et al. [2014], based on the file-to-
machine and and file-to-file relation graphs, the authors used Belief Propagation (BP)
algorithm (a promising method for solving inference problems over graphs) for malware
detection. Note that BP has been successfully used in many domains (e.g., computer
vision, coding theory) [Yedidia et al. 2001]. In Ye et al. [2011], the authors studied how
file relations could help improve malware detection. They developed “Valkyrie,” a file
verdict system based on a semi-parametric classification model by integrating the file
content and file relations for malware detection. Their experiments were conducted
based on a large dataset from Comodo company. The dataset included 30,950 malware
samples (i.e., 225,830 benign files and 434,870 unknown files). Karampatziakis et al.
[2013] built regression classifiers based on graphs induced by file relationships for mal-
ware detection. They showed that the system’s detection accuracy could be significantly
improved using the proposed method.

Table IIT summarizes some typical classification methods used for malware detection.

7. CLUSTERING FOR MALWARE DETECTION

The classification methods typically require a large number of labeled samples. In re-
cent years, there have been research initiatives in automatic malware categorization
using unsupervised techniques (i.e., clustering techniques). Clustering, a form of un-
supervised learning, is the process of partitioning a given data set into groups (i.e.,
clusters) based on the pre-defined distance measures, such that the data points in a
cluster should be close to each other and data points in different clusters are far away
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Table Ill. Summary of Typical Classification Methods Used in Malware Detection

Survey Classification Methods Description

Kolter and Maloof [2004]  SVM, NB, DT, and their Using binary n-grams, based on their
boosted versions collected data set with 1,971 benign and
1,651 malicious executables, their
experimental results indicated that boosted
DTs performed best in malware detection.

Henchiri and Japkowicz NB, DTs, SVM, and Based on the 16-byte sequences, the obtained
[2006Db] Sequential Minimal results were better than those obtained

Optimization (SMO) through traditional feature selection.

Ye et al. [2007, 2009a, NB, DTs, SVM, Associative Based on the Windows API call features, the
2009b] Classification associative classifier outperformed other
classifiers.

Masud et al. [2007, 2008] SVM, DT, NB, BDT, and BNB  Based on the hybrid feature sets, the results
from Boosted J48 were almost the same as
SVM.

Siddiqui et al. [2009] DT, Random Forest, and Their experimental results showed that
Bagging Random Forest performed best based on the
variable length instruction sequences
extracted from 2,774 samples including 1,444
worms and 1,330 benign files.

Ye et al. [2009¢] Associative Classifier, SVM, The ensemble of heterogeneous base-level
Ensemble of heterogeneous classifiers using different learning methods
base-level classifiers (associative classifier and SVM), with

different feature representations (Windows
API calls and strings) on dynamic training
sets performed best in real application.

Firdausi et al. [2010] kNN, NB, DT, SVM, The obtained results based on the
Multilayer Perceptron dynamically extracted behaviors depicted
Neural Network (MLP) that overall best performance was achieved
by J48 DT.
(Continued)
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Table Ill. Continued

Survey Classification Methods Description

Santos et al. [2011a, Semi-supervised algorithm The main contribution of the research was to
2011b] LLGC , collective learning reduce the number of required labeled file
approach samples while maintaining high precision.

Ye et al. [2011] Semi-parametric classifier By combining file content and file relations,
model the experimental results demonstrated that
the accuracy and efficiency of their developed
system outperformed popular anti-malware
software tools and alternate
data-mining-based detection systems.

Santos et al. [2013] DT, kNN, BN, and SVM It has been found that the hybrid approach
enhanced the performance of both
approaches when run separately, based on
the static and dynamic analysis.

Karampatziakis et al. Regression Classifier Based on the graphs induced by file

[2013] relationships, the system’s detection accuracy
could be significantly improved using the
proposed method, particularly with low false
positive rates.

Saxe and Berlin [2015] Deep Neural Network and Using the statically extracted features, their

Bayesian Calibration Model system achieves a 95% detection rate at 0.1%
false positive rate, based on more than
400,000 software binaries.

from each other [Xu and Wunsch 2005]. In malware detection, a cluster is a group of file
samples sharing some common traits while being “dissimilar” to the malware samples
from different clusters. Partitioning and Hierarchical clustering are two common types
of clustering methods with different characteristics [Xu and Wunsch 2005]. Hierarchi-
cal clustering methods can handle data sets with irregular cluster structures, while
partitioning clustering (e.g., K-means) is generally effective when the clusters have
a globular shape. The choice of clustering algorithms in malware detection is largely
based on the extracted features and their underlying feature distributions.

In Karim et al. [2005], the authors created a malware phylogeny using permutation
of codes. In particular, n-grams were mutated to generate n-perms and the similarity
scores were computed by combining TF-IDF weighting and the cosine similarity. The
phylogeny model was obtained by clustering with these similarity scores.
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Lee and Mody [2006] applied K-medoids clustering algorithm on the collected se-
quences of system call events to group malware families. All the samples were exe-
cuted in virtual environments. The system calls and their associated arguments were
monitored. Then, a behavioral profile was created for each file sample based on its inter-
action with the system resources (e.g., files, network activities, and registry keys). The
similarities between samples were measured by their profiles and then K-medoids clus-
tering was used to group different samples into different clusters. Note for prediction,
new and unknown samples were assigned to the clusters with the closest “medoids.”

Bailey et al. [2007] extracted system call traces as features and employed Normal-
ized Compression Distance (NCD) to characterize malware similarities. They pointed
out that the characterizations of the malware were not concise in their semantics and
were also not consistent across different AV products. They first defined malware be-
haviors as non-transient state changes on the system, and then applied hierarchical
clustering algorithms for grouping malware samples. The activities (such as files writ-
ten, processes created, and network connections) were used to create the behavioral
fingerprint of malware.

Bayer et al. [2009] applied Locality Sensitive Hashing (LSH) [Indyk and Motwani
1998] on the behavior profiles (more concise than system call traces) to achieve efficient
and scalable malware clustering. Their proposed technique makes use of Anubis [2010]
to generate execution traces. The clustering algorithm based on LSH provided efficient
support for finding approximate nearest neighbors.

In Ye et al. [2010], using the function-based instruction sequences and instruction fre-
quency, the authors developed an Automatic Malware Categorization System (AMCS)
based on cluster ensemble to automatically group malware samples into families. To
construct the cluster ensemble, the base clustering algorithms included a hybrid hi-
erarchical clustering algorithm (an integrated version of the hierarchical clustering
and K-medoids clustering algorithms) and a weighted subspace K-medoids algorithm.
They also proposed a principled cluster ensemble framework for clustering combina-
tion, where the instance-level constraints can be easily incorporated.

8. ADDITIONAL ISSUES AND CHALLENGES

Previous studies proved that data mining techniques have been successfully used in
malware detection and in the anti-malware industry [Ye et al. 2009¢, 2010, 2011; Chau
et al. 2011; Stokes et al. 2012; Tamersoy et al. 2014]. However, there are still many
additional issues that need further investigation.

—Evaluation and use of the detection results: Though applying data mining tech-
niques, like classification/clustering methods, can detect malware from the unknown
file sample collection, the verification of the potentially malicious files is one of the
challenging issues in real application. This is because the inspection of these po-
tentially malicious files always requires the knowledge of domain experts and the
manual inspection is always time-consuming.

—Incremental learning: Training a classifier using an historical file sample collec-
tion (containing both benign and malicious samples) is able to detect newly released
malware. However, new malware samples are constantly produced on a daily ba-
sis and malware techniques are continuously evolving. To account for the temporal
trends of malware writing, data-mining-based malware detection systems need to
take the most recent file sample collection into consideration. In other words, to
make the classifier(s) remain effective, the training sets should dynamically change
to include new samples while retaining the main properties of historical data col-
lection. Therefore, incremental learning is one of the issues of data-mining-based
malware detection systems.
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—Active learning: To further improve the detection accuracy, selecting representa-
tive sample(s) from large unknown file collections for labeling is also very important.
For example, before being detected, the newly released Trojan-Downloader and its
related trojans are collected from the clients and marked as unknown. If we can
recognize the Trojan-Downloader and have it labeled, then, based on the extracted
features and using classification/clustering methods, its related trojans can be cor-
rectly detected. Active learning, as an effective paradigm to address the data scarcity
problem, optimize the learning benefit from domain experts’ feedback, and reduce
the cost of acquiring labeled examples for supervised learning, has been intensively
studied in recent years [Lewis and Gale 1994; Muslea et al. 2006; Seung et al. 1992;
Nguyen and Smeulders 2004]. In malware detection, there is limited research using
active learning to select a representative sample(s) from the large file sample col-
lection. For instance, to further improve the performance of a classifier, Moskovitch
et al. [2008b] applied active learning for the most important file selection in a stream
data.

—Prediction of malware prevalence: Except for detecting malware from the un-
known file collection, predicting the trend of malware prevalence is also very impor-
tant. However, there is little research on the prediction of malware prevalence.

—Adversarial Learning: In malware detection, using the data mining approaches
opens the possibility for the malware attachers to come up with ways to “mistrain”
the classifiers (e.g., by changing the data distribution or feature importance) [Dalvi
et al. 2004; Venkataraman et al. 2008]. Thus, questions arise as to how to develop
techniques that are robust and secure in adversarial scenarios.

9. THE TREND OF MALWARE DEVELOPMENT

2013 was called the the year of the mega breach [Symantec 2014a], and severe vul-
nerabilities such as Shellshock and Heartbleed [Kingsoft 2015] in 2014 also showed
that the Internet security still faces serious threats. The arms race between malware
attackers and protectors is likely to intensify: (1) The volume of malware threats in PC
platform is still very large; (2) With an exponential growth in the number of mobile
devices, more and more attacks are focusing on the smart devices explicitly; (3) With
the development of the Internet of Things (IoT), people will have increased connectivity
through their gadgets, devices, and machines. However, with this connectivity comes
the potential for a whole new range of security risks. Will the IoT usher in a new wave
of security attacks? (4) As cloud service becomes more and more popular, security of the
cloud will also be a major issue; (5) With the development of malware, what role will
data mining/machine learning play in malware detection? In this section, we forecast
the trend of malware development.

—The volume of malware threats in PC platform is still very large: According
to the report from Qihoo, which is the biggest Internet security company in China,
there were 324 million malware samples detected in 2014 [Qihoo 2015]. Compared
with 2013, though the number of malware collection in PC platform decreased in
2014, the online banking malware volume steadily rose throughout the first half of
2014 [Kingsoft 2015], which means there is still a flourishing underground economy
based on malware. Driven by considerable economic benefits, the black chain of
trojans won’t disappear in coming years and the growing threats posed by the trojans
will continue.

—Mobile devices turn to be even more attractive targets for malware attack-
ers: Mobile platforms are more and more popular. In recent years, there has been
an exponential growth in the number of mobile device users around the world: It is
estimated that 77.7% of all devices connected to the Internet will be smart phones
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in 2019, leaving PCs falling behind at 4.8% [Hou et al. 2016]. Mobile devices become
even more prevalent and valuable as many retail stores and mobile carriers transi-
tion to mobile payments [Symantec 2014b]. The increasing use of Google Wallet and
other similar payment modes also acts as a catalyst for mobile payment to become
mainstream. Cyber criminals are looking to monetize their exploits as simply and
efficiently as possible [Garnaeva et al. 2014]. Therefore, more and more crime packs
and tools are focusing on the smart devices explicitly. At the moment, the majority of
malware for non-Windows platforms is targeted at Android, with the vast majority of
it posing as legitimate applications and tricking the user into installing their nasty
code [Lyne 2014]. The number of Andriod malware has exponentially increased in
recent years [Garnaeva et al. 2014]. In 2014, there were 4,643,582 malicious instal-
lation packets detected by Kaspersky Lab, 53% of which were trojans designed to
steal the users’ money [Garnaeva et al. 2014]. In 2015, there were 280 million smart
phones infected by Andriod malware [Kingsoft 2015]. This trend will undoubtedly
continue [Tam et al. 2017].

—Attacks on the IoT move from proof-of-concept to mainstream risks: The
IoT means that consumer products (e.g., from TVs to refrigerators) are digitally con-
nected [WEBSENSE 2014]. We are bound to see greater adoption of smart devices
like smart cameras and TVs in the next few years. Though the popularity of the
embedded and small devices continues, many of these devices are deployed without
considering the Internet security. As factors like market pressure push device man-
ufacturers to launch more and more smart devices sans security in mind to meet
the rising demand, so will attackers increasingly find vulnerabilities to exploit for
their own gain [TrendLabs 2014]. When attackers begin to better understand the
IoT ecosystem, they will employ scarier tactics, such as ransomware and scareware,
to extort money from or blackmail device users [TrendLabs 2014]. For instance, they
can hold smart car drivers hostage until they pay up.

—Cloud security will also be a major issue: In the coming years, the cloud will
host more and more data. As the cloud gains more data, organizations facilitate data
access with various types of devices (e.g., desktop, tablet, or mobile) [WEBSENSE
2014]. For consumers, an infinite amount of personal information will also be hosted
remotely in the cloud. As a result, cyber-criminals will attack the mobile devices
to gain data access in the cloud [WEBSENSE 2014]. Therefore, the research issue
about the access right and control and the protection of the private data in the cloud
will be a hot topic in the years to come.

—In the fight against cyber crime, data mining/machine learning will be a
game changer: In malware detection, staying “proactive” against threats is a critical
need. Data mining/machine learning methods are able to help security vendors stay
one step ahead of cyber criminals instead of just reacting to them. The ability of
predicting cyber attacks will improve the detection rates and may be the key for
reversing the trend on cyber crime.

10. CONCLUSION

In recent years, a few research efforts have been conducted on surveys of data-mining-
based malware detection methods [Idika and Mathur 2007; Siddiqui et al. 2008;
Shabtai et al. 2009; Egele et al. 2012; Mathur and Hiranwal 2013; Bazrafshan et al.
2013; Damshenas et al. 2013; Gandotra et al. 2014]. In Idika and Mathur [2007] and
Damshenas et al. [2013], the authors reviewed the malware propagation, analysis and
detection; while in Siddiqui et al. [2008], Mathur and Hiranwal [2013], Bazrafshan
et al. [2013], and Gandotra et al. [2014], the researchers surveyed the feature repre-
sentation and classification methods for malware detection. Shabtai et al. conducted a
comprehensive study on static features using machine learning classifiers for malware
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detection [Shabtai et al. 2009], while Egele et al. [2012] surveyed automated dynamic
malware analysis techniques and tools. In this article, we not only overview the de-
velopment of malware and anti-malware industry and present the industrial needs
on malware detection, but also provide a comprehensive study on data-mining-based
methods for malware detection based on both static and dynamic representations as
well as other novel features. Furthermore, we also discuss the additional issues and
challenges of malware detection using data mining techniques and finally forecast the
trends of malware development.

Due to the exponential growth of malware samples, intelligent methods for efficient
and effective malware detection at the cloud (server) side are urgently needed. As a
result, much research has been conducted on developing intelligent malware detection
systems using data mining and machine learning techniques. In these methods, the
process of malware detection is generally divided into two steps: feature extraction and
classification / clustering. We provide a comprehensive investigation on both the feature
extraction and the classification/clustering steps. We conclude that data-mining-based
malware detection framework can be designed to achieve good detection performance
with high accuracy while maintaining low false positives. Many developed systems
have been successfully integrated into commercial anti-malware products.

The following are some practical insights from our view: (1) Based on different
data sets with different feature representation methods, there is no single classi-
fier/clustering algorithm always performing best. In other words, the performance of
such malware detection methods critically depend on the extracted features, data dis-
tributions, and the categorization methods. (2) Generally, compared with individual
classifiers, an ensemble of classifiers can always help improve the detection accuracy.
In real applications, a successful malware detection framework should utilize multiple
diverse classifiers on various types of feature representations. (3) For feature extrac-
tion, both static and dynamic analysis approaches have their own advantages and
limitations. In real applications, we suggest using static analysis at first, since over
80% of the file sample collection can be well-represented by static features. If the file
cannot be well-represented by static extraction, then we can try dynamic analysis.
Novel features, such as file-to-file relation graphs, can also provide invaluable infor-
mation about the properties of file samples. (4) In order to achieve the best detection
performance in real applications, it is often better to have enough training samples
with balanced distributions for both classes (malware and benign files).
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