
The 2011 Mid-Year Top Cyber
Security Risks Report

Table of contents

Contributors	 2
Overview	 2
Vulnerability trends	 4
	 Discovery and disclosure of new vulnerabilities	 5
	 Further analysis: Zero Day Initiative	 7
	 Seeing the big picture: where the vulnerabilities are	 9
	 Static analysis	 10
	 Dynamic analysis	 11
	 Manual analysis	 13
Attack trends	 14
	 New vulnerabilities are unnecessary; attacks continue to 	
	 rise regardless	 15
	 Cross-Site Scripting	 17
	 SQL Injection plays a starring role	 18
Mitigation	 20
	 Cross-Site Request Forgery	 21
	 SQL Injection	 21
	 Cross-Site Scripting	 23
	 Remote File Includes	 24
References	 24

2

Contributors
Producing the Top Cyber Security Risks Report is a collaborative effort among HP DVLabs and other
HP teams, such as Fortify and the Application Security Center. We would like to sincerely thank the
Open Source Vulnerability Database (OSVDB) for allowing print rights to their data in this report. For
information on how you can help OSVDB:

https://osvdb.org/account/signup

http://osvdb.org/support

Contributor Title

Mike Dausin Advanced Security Intelligence Team Lead

Adam Hils Application Security Center Product Manager

Dan Holden Director, HP DVLabs

Prajakta Jagdale Web Security Research Group Lead

Jason Jones Advanced Security Intelligence Engineer

Rohan Kotian Digital Vaccine Team Lead

Jennifer Lake Product Marketing, HP DVLabs

Mark Painter Application Security Center Content Strategist

Taylor Anderson McKinley Director, Fortify on Demand

Alen Puzic Advanced Security Intelligence Engineer

Bob Schiermann Senior Technical Publications Writer

Overview
Increasingly, organizations face security risks imposed upon them by attackers intent on achieving fame,
glory, or profit. Attackers, familiar with common vulnerabilities inherent in many of today’s websites,
know how to exploit those vulnerabilities with attacks designed specifically to take advantage of them.
Examples of such destructive activities have recently hit the news in stories about “hacktivist” groups such
as LulzSec and Anonymous.

The HP 2011 mid-year edition of the biannual Top Cyber Security Risks Report features in-depth analysis
and attack data from HP DVLabs, Application Security Center, and Fortify security units as well as
vulnerability disclosure data garnered from the OSVDB. Given the media attention paid to these recent
attacks, as well as data HP obtained from its partners and customers, the bulk of this report is focused
on Web applications, including the vulnerabilities that exist and the attacks that are exploiting those
weaknesses.

This report is intended for IT, network, and security administrators who are responsible for securing the
public-facing communication with an organization’s customers, partners, and employees. The primary
objective of this edition of the Top Cyber Security Risks Report is to clearly articulate the risks and
weaknesses inherent in Web applications. We’ll highlight the overall vulnerability landscape, including
vulnerabilities in commercially available and custom-built applications that can lead to attacks, as well as
how often these are being reported. The report will also highlight the rising number of attacks that are
leveraging the vulnerabilities discussed throughout the paper.

https://osvdb.org/account/signup
http://osvdb.org/support

3

Key findings from this report include:

The number of Web application vulnerabilities that are reported differs significantly from the number
that actually exist.

The Open Source Vulnerability Database (OSVDB) monitors vulnerability discovery and reporting through
disclosure programs. Data from the first six months of 2011 shows a distinct and significant decrease in
the disclosure of new vulnerabilities. While this might seem like good news, it is actually the opposite.
Data collected from scans of actual customer Web application deployments indicates that the number of
vulnerabilities is not decreasing; it is only the number of reported new vulnerabilities that is decreasing.
Production websites for some of the world’s leading organizations are still bursting with vulnerabilities
that leave the websites open to devastating attacks.

Web application attacks are on the rise, despite the lack of new vulnerabilities being disclosed.

HP DVLabs compiled attack data from its network of HP TippingPoint intrusion prevention systems (IPS)
to determine the danger these vulnerabilities pose to Internet security. Information pulled from these
systems shows that the number of attacks on Web applications is ten times the number of vulnerabilities
being reported. This fact leads us to believe that attackers either don’t need any new vulnerabilities to
achieve their goals, or that there are plenty of vulnerabilities in custom applications that are unknown or
untracked, increasing the attack surface to attackers. The reality is likely a mixture of both.

Web application vulnerabilities are easy to exploit with a variety of attack techniques and tools.

Two of the most common Web application attack types, Cross-Site Scripting (XSS) and SQL Injection
(SQLi), are covered in-depth in this report. Based on data obtained from HP TippingPoint IPS devices,
these are two of the most frequently used attack types—though many times for different reasons. 	
XSS, which is often used for spam or phishing attempts, provides an easy way to distribute an attack 	
on a wide scale. Conversely, SQLi can be used not only for overwriting a database and then 	
redirecting visitors to a malicious site—similar in fashion to how XSS is leveraged—but also for massive
database theft.

The information in this report comes from various sources, allowing HP DVLabs to obtain a broad set of
data from which to correlate meaningful findings. These sources include:
•	A worldwide network of HP TippingPoint Intrusion Prevention Systems
•	Vulnerability information from OSVDB and the Zero Day Initiative (ZDI)
•	Web application data from the ASC Web Security Research Group, the EB SW BTO Professional

Services Organization, and Fortify on Demand

4

Figure 1

Disclosed vulnerabilities according to OSVDB, 2000–2010

2000

To
ta

l v
ul

ne
ra

bi
lit

ie
s

11K

8.8K

6.6K

4.4K

2.2K

0
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Vulnerability trends
To better understand the threat landscape, it is important to start with the weaknesses present in
computing infrastructures. These weaknesses typically manifest themselves as application vulnerabilities,
which are the focus of this section of the report. The vulnerability landscape is discussed in the following
three sections:
•	Discovery and disclosure of new vulnerabilities: This section describes current trends in vulnerability

reporting, highlighting vulnerabilities that have been disclosed in commercially available computing
systems, including Web applications. Based on the trend information, one can discern the volume and
category of newly discovered vulnerabilities, which provides insight into how such vulnerabilities attract
attackers’ attention.

•	Trends in vulnerability research: This section highlights data from the HP DVLabs’ Zero Day Initiative
(ZDI) vulnerability research program. It provides a deeper look into the types of vulnerabilities that the
ZDI researches and discovers in an effort to get a better sense of what drives a security attack.

•	Vulnerabilities discovered in production Web application environments: This section highlights results
from scans of live Web applications. Data in this section demonstrates the vulnerabilities that are
present in real-world Web applications, including new vulnerabilities that are unreported as well as
those that were previously disclosed, and as-yet unfixed vulnerabilities.

5

Figure 2

Vulnerability disclosure according to OSVDB, 2000–2011, broken down by month

1.3K

1.04K

780

To
ta

l v
ul

ne
ra

bi
lit

ie
s

520

280

0

Discovery and disclosure of new vulnerabilities
Based on data pulled from OSVDB, the total number of new vulnerabilities reported for the first half
of 2011 is about 25 percent lower than the number of new vulnerabilities reported at mid-year 2010
and previous years. As of June 30, 2011, OSVDB cataloged 3,087 (Figure 1) reported vulnerabilities in
Internet-based systems, applications, and other computing tools, as compared to 4,091 cataloged in the
corresponding period in 2010.

After peaking in 2006, vulnerability reporting—for commercially available products—has been in a slow
decline (Figure 2). The reasons for this decline are varied, but several likely reasons stand out. Software
makers and system developers have increased their security awareness and have taken steps to reduce
vulnerabilities prior to releasing their products. The second reason is a reduction in the disclosures of
discovered vulnerabilities, motivated by a desire to instead sell the vulnerability for profit. Another is that
some organizations would rather announce details regarding vulnerabilities only after they’ve been fixed.

Despite the overall decline in new vulnerabilities being discovered and reported, it is important to note
that the ratio of vulnerabilities discovered in Web applications still makes up 31 percent (Figure 3) of all
vulnerabilities disclosed. It is worth noting that roughly half of all vulnerability disclosures since 2006
have involved Web applications, so the downward trend for the first half of 2011 is yet another proof
point for the overall drop in vulnerability disclosure thus far.

6

Figure 3

Comparison of Web application vulnerabilities versus non-Web application vulnerabilities, January–June 2011

31%

69%

Web apps vulns

Other vulns

The reason for the high number of Web application vulnerabilities is a matter of opportunity and profit.
First, the number of Web applications in circulation grows steadily every day. A Web application in its
simplest form ties together an operating system, a Web server, a database, and some top-level
application that customers use to interact with the back-end systems. Many organizations have adopted
this model for interacting with customers through retail sites, online banking or finance applications, or
even appointment scheduling. In addition, many organizations have confidential or sensitive data stored
in the database(s) connected to these applications, offering an almost limitless field of opportunity for
attackers, who view it all as a very lucrative proposition.

When vulnerabilities are broken down by category, some interesting trends begin to emerge. Data
presented in Figure 4 shows that certain types of vulnerabilities are more frequently discovered and
disclosed. Cross-Site Scripting (XSS) still comprises the most significant amount of new Web application
vulnerability disclosures. XSS is commonly used for spam, phishing, and Web browser exploits. Buffer
Overflow and Denial of Service (DoS) vulnerabilities round out the top three.

Buffer Overflow
A buffer overflow attack occurs when attackers purposely overload a systems’ temporary memory (called a buffer) to wreak
havoc on a victim’s machine. Oftentimes attackers also include instructional code in information they use to overflow the memory.
That code can instruct the affected system to access or change confidential data or even send information back to the attacker.

Denial of Service (DoS)
A type of vulnerability that allows an attacker to exhaust computer resources on a vulnerable system to a point where legitimate
usage of that system is impossible.

Distributed Denial of Service (DDos)
A type of DoS attack that employs a number of separate computers, which simultaneously launch a Denial of Service attack
against a single application or system.

7

Figure 4

Disclosed vulnerabilities broken down by category, January 2000–June 2011

To
ta

l v
ul

ne
ra

bi
lit

ie
s

3K

2.4K

1.8K

1.2K

600

0

20
00

20
01

20
02

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

Cross Site Scripting Cross Site Request Forgery SQL Injection Buffer Overflow Remote File Include Denial of Service

It is interesting to note that the breakdown of popular vulnerabilities by category remains fairly consistent
over the past three years (Figure 5), likely because XSS vulnerabilities are relatively easy to find and are
very useful to attackers. Spammers and phishers are always looking for ways to make their trade more
profitable, and XSS continues to be a useful vulnerability for these purposes.

Further analysis: Zero Day Initiative
The Zero Day Initiative (ZDI), founded by HP TippingPoint in 2005, is a program for rewarding security
researchers for responsibly disclosing vulnerabilities. The program is designed so that researchers
provide HP TippingPoint with exclusive information about previously unpatched vulnerabilities they
have discovered. HP DVLabs validates the vulnerability and then works with the affected vendor until
the vulnerability is patched. At the same time, HP DVLabs develops a security solution that provides
preemptive protection for HP’s customers even before the application vendor distributes a fix for the
vulnerability.

From 2005 through June 2011, ZDI and HP DVLabs researchers have discovered and responsibly
disclosed more than 980 vulnerabilities in popular computing systems including Web browsers, media
players, and document readers.

In 2010, ZDI announced changes to its disclosure policy that incent vendors to introduce more timely
bug fixes into their products. Under the new policy, ZDI offers the affected vendors six months to issue
patches, fixes, or workarounds for undisclosed vulnerabilities reported to them via the ZDI program.
If, after six months, the vendor has not issued a fix or cleared an exception with ZDI, limited detail of
the vulnerability will be disclosed so that the defensive community and consumers of these affected
applications can find their own ways to mitigate the risk associated with these open bugs. Further
information regarding the ZDI disclosure policy can be found here: 	
http://www.zerodayinitiative.com/advisories/disclosure_policy/.

http://www.zerodayinitiative.com/advisories/disclosure_policy/

8

Figure 5

Three-year view: popular vulnerabilities by category

0
200
400
600
800

1000
1200
1400
1600
1800

2009 2010 2011

BO

DOS

PHP

SQLi

XSS

CSRF

(through 6/30/2011)

In the table (Figure 6) below you can see the top 10 applications with vulnerabilities disclosed through
the ZDI since the program was started in 2005.

For the first half of 2011, DVLabs and the ZDI either discovered or acquired, and disclosed to 	
affected vendors, 231 vulnerabilities in a wide range of products. On the next page (Figure 7) you
can see the top 10 applications for which vulnerabilities were disclosed through the ZDI. While only
four of the 10 applications are related to Web browsers, the total number of vulnerabilities from these
applications is staggering.

Figure 6

Most frequently reported vulnerabilities disclosed through ZDI from 2005–2011

0 10 20 30 40 50 60 70

Apple Quicktime
Microsoft Internet Explorer

Oracle/Sun Java
Microsoft Office
Mozilla Firefox
Apple Webkit

RealNetworks Real Player
Adobe Shockwave

HP OpenView
Adobe Reader

9

Figure 7

Most frequently reported vulnerabilities disclosed through ZDI in 2011

0 5 10 15 20 25 30

CA Total Defense

IBM Lotus (general)

Microsoft Office Tools

HP OpenView Network Node Manager

Novell iPrint

Apple WebKit

Adobe Reader

HP Data Protector

Oracle Java (general)

Adobe Shockwave

Seeing the big picture: where the vulnerabilites are
So far, this report has focused primarily on vulnerability disclosure, which may or may not reflect the
complete picture of vulnerability trends unfolding on the Internet. In an effort to see a clearer picture of
the real-world vulnerability landscape, the HP Application Security Center Web Security Research Group
(WSRG) compiled results from over 2,750 security assessments performed against a variety of customer
Web applications during the first six months of 2011. While it is good to see an overall reduction in the
number of new vulnerabilities being reported, that has unfortunately had no impact on the dangers of
exploitation. These results have been divided into three sections:

•	The first correlates results from almost 250 Web applications analyzed statically (at the line-of-code
level) for Web application vulnerabilities.

•	The second group includes results from dynamic analysis (during the actual running of the application)
conducted against over 2,500 unique Web applications.

•	Finally, the third set of analyses includes a closer inspection of a much smaller group of assessments to
explore the different ways in which Web application vulnerabilities can be exploited, how that impacts
the overall risk standing of the application, and what mitigation measures developers are employing
that are not working.

Each set of analyses will shed light on the nature—and seriousness—of Web application vulnerabilities
and how prevalent they are. What security professionals have steadily witnessed in the last decade
is that attacks have moved from defacement and general annoyance to one-time attacks designed to
steal as much data as possible, and from there to pernicious ongoing attacks that attempt to distribute
malware and steal as much data for as long as possible without being detected. It is imperative to
realize that it often takes only one Web application vulnerability for an entire system to be compromised.
The enormity of the danger cannot be overstated.

10

Static analysis
The first set of applications was statically analyzed by the WSRG in conjunction with the HP Fortify on
Demand group and included 236 unique applications. The first statistic is truly staggering: a full 69%
of the applications tested contained at least one SQLi flaw. Fundamentally, SQLi is an attack upon the
Web application, not the Web server or the operating system itself. As the name implies, it is the act of
adding unexpected SQL commands to a query, thereby manipulating the database in ways unintended
by the database administrator or developer. When the attack is successful, data can be extracted,
modified, inserted, or deleted from database servers that are used by vulnerable Web applications. If
attackers can find one SQL Injection vulnerability in an application, there’s a very good chance they can
compromise it completely. A lot of high-profile attacks over the course of the first half of 2011 were the
direct result of SQLi. Even Lady Gaga isn’t immune to SQLi.

The second most prevalent vulnerability discovered in this series of assessments was Cross-Site Scripting
(XSS), (specifically, the reflected variety). Put simply, reflected XSS attacks come from somewhere else,
such as when user-supplied input from a Web client is immediately included via server-side scripts in
a dynamically generated Web page. Using some social engineering, an attacker can trick a victim,
perhaps through a malicious link or a “rigged” form, to submit information which will be altered to
include attack code and then sent to the legitimate server. The injected code is then reflected back to the
user’s browser which executes it because it came from a trusted server. 64% of the assessed applications
contained at least one reflected XSS flaw.

Its sister vulnerability, persistent XSS, was discovered in 42% of the applications tested in this group.
Persistent attacks are just that: in some form they are stored on the target server, such as in a database,
or via a submission to a bulletin board or visitor log. The victim will retrieve and execute the attack code
in his browser when a request is made for the stored information. What’s also interesting about this
particular vulnerability is that even though it was found in 27% fewer of the applications than SQLi, there
were actually more unique instances of persistent XSS discovered than any other vulnerability for which
the WSRG tested. The impacts of each flavor of XSS are the same.

A more generic vulnerability, Header Manipulation, was found in 37% of the applications. Header
Manipulation vulnerabilities occur when data enters a Web application through an untrusted source,
most frequently a Web request. The data is included in an HTTP response header sent to a Web user
without being validated. As with many Web application security vulnerabilities, Header Manipulation is
a means to an end, not an end in itself. At its root, the vulnerability is straightforward: an attacker passes
malicious data to a vulnerable application, and the application includes the data in an HTTP response
header. Including unvalidated data in an HTTP response header can enable cache-poisoning, XSS, cross-
user defacement, page hijacking, cookie manipulation, or open redirect vulnerabilities. And 18% of the
applications also contained a specific cookie Header Manipulation vulnerability.

Cross-Site Scripting (XSS)
A type of Web application vulnerability that takes advantage of a lack of input validation to enable an attacker to inject malicious
client-side code into a Web page which is viewed by a victim’s Web browser. Various forms of XSS are currently being used to
phish website users into revealing sensitive information such as usernames, passwords, and credit card details. XSS can generally
be divided into stored, reflected, and DOM-based attacks. Stored XSS results in the payload being persisted on the target system
in either the database or the file system. The victims will retrieve and execute the attack code in their browser when a request is
made for the stored information. Execution of the reflected XSS attacks, on the other hand, occurs when user input from a Web client
is immediately included via server-side scripts in a dynamically generated Web page. DOM-based XSS attacks rely on malicious
modification of the DOM environment in a victim’s browser. It differs from the stored and reflected XSS in the fact that the malicious
data is never sent to the server. Via some social engineering, an attacker can trick a victim, such as through a malicious link or
“rigged” form, to submit information that will be altered to include attack code and then sent to the legitimate server.

Command Execution
A type of vulnerability that takes advantage of a lack of input validation on a website in order to run operating system commands
on the vulnerable application server. Typically, this vulnerability category allows attackers to exploit Web applications that pass user
data as parameters to I/O operations by appending OS commands to user supplied input using special characters such as a pipe (|).

http://www.mirror.co.uk/celebs/news/2011/07/16/lady-gaga-website-hacked-and-fans-details-stolen-115875-23274356/

11

Another widespread vulnerability discovered during the WSRG analysis was Path Manipulation. This
occurs when user-supplied input can control or otherwise influence file names or paths utilized in file
system operations, which can then give an attacker the means to access or change protected system
resources. 63% of the scans detected a Path Manipulation vulnerability.

While none of the vulnerabilities discussed so far can be considered innocuous, one extremely
dangerous vulnerability was also detected in large numbers. Command Injection occurs when a remote
user can supply a specially crafted value to execute arbitrary operating system commands on the target
system. 35% of the applications contained at least one Command Injection vulnerability.

Another significant vulnerability occurs when developers leave passwords hardcoded in their code.
Hardcoded passwords were discovered in 30% of the applications. An attacker who discovers a
hardcoded password could obviously gain unintended access to the application. The damages would
depend on the functionality of the application itself.

5% of the applications contained XPath Injection vulnerabilities. XPath Injection is very similar to SQLi.
In that scenario, SQL commands are modified by an attacker to gain access to database contents and
information. In XPath Injection, XPath statements are modified to gain access to the data contained within
an XML document, which often serves as the “XML database.” Importantly, XPath does not utilize access
control restrictions as SQL does via privileges, so a successful XPath Injection attack will yield complete
results in that all the data in the document will be revealed. The XPath language is also uniform, unlike
SQL, so that any installed implementation is potentially vulnerable. In these aspects, XPath Injection is
easier to execute than SQLi and has greater results returned on affected systems.

Another interesting set of data describes the number of vulnerabilities found per application, and per
1000 lines of code. During initial scans (before remediation efforts), 410 vulnerabilities were found on
average for each of the 236 applications evaluated, equating to 4.6 vulnerabilities per 1000 lines of
code. Of the three languages counted, PHP was the most vulnerable programming language, with 13.1
vulnerabilities per 1000 lines, followed by .Net at 7.7. Java was the most secure, at 4.1.

Dynamic analysis
The second set of data was collected by the WSRG in conjunction with the HP Enterprise Business
Software BTO Professional Services organization and was split across three enterprise-level
organizations: one from the energy sector, one from banking and finance, and one from product
manufacturing and distribution to see how Web application vulnerabilities are presented in real-world
applications and are encountered across all types of businesses. Each assessment was conducted using
dynamic (real-time) analysis methods. The first two sets of data were analyzed against a small (less than
20) number of applications, while the last set consisted of more than 2,300 scans and was actually
analyzed in far greater depth than the first two. However, all three sets of data yielded interesting results.
Each was tested for a series of common, yet dangerous, Web application vulnerabilities.

Cross-Site Request Forgery (CSRF)
A type of Web application vulnerability that takes advantage of a lack of authorization on a vulnerable Web application to allow
an attacker to execute application commands on behalf of another user of the application. The typical scenario of a Cross-Site
Request Forgery attack involves an attacker tricking a victim into clicking on a specially crafted link that is designed to perform a
malicious operation on behalf of the victim. For example, a victim may click on a malicious link that forces the victim to transfer
money from the victim’s bank account to an attacker’s bank account.

Remote File Include
A type of Web application vulnerability that takes advantage of a lack of input validation on a website in order to execute
unauthorized code (typically PHP or ASP) on a vulnerable server. Remote File Include attacks typically arise from a scripting
language’s inherent ability to include code from external URLs, or arbitrary local files. It is this ability that allows the attacker to
include unauthorized code from an external source.

12

The energy sector applications contained a number of vulnerabilities that could be utilized to compromise
the system. For example, 23% were vulnerable to SQLi. 15.3% were vulnerable to Remote File Include
(RFI) vulnerabilities. 53.8% were vulnerable to Reflected XSS, while another 23% were vulnerable to
Persistent XSS. Also, 38.4% were vulnerable to Cross-Site Request Forgery. Cross-Site Request Forgery
relies on a browser to retrieve and execute an attack. It includes a link or script in a page that connects
to a site that the user may have recently used. The script then conducts seemingly authorized, yet
malicious, actions on the user’s behalf. Other vulnerabilities could be exploited to block the access of
legitimate users. 30.76% were susceptible to a Buffer Overflow, with another 15.3% vulnerable to a
Denial-of-Service attack. It is important to note that an application that suffers from any one of these
vulnerabilities would fail a PCI compliance audit.

While not as many specific vulnerabilities were detected, the banking and finance sector applications
also contained a large number of disconcerting vulnerabilities. 58.3% of the applications were
vulnerable to Reflected XSS, but only 8.3% contained a Persistent XSS vulnerability. 16.6% were
vulnerable to Cross-Site Request Forgery. Exploitation of any of those vulnerabilities could result in an
attacker gaining legitimate authentication credentials, in addition to other possibilities. In a bit of a
good anomaly for this particular organization, only 8.3% of the applications were found to contain
either a SQLi or RFI vulnerability. Yet, that positive security posture is somewhat lessened by the fact that
21.4% of the applications weren’t using SSL cookies. And 50% suffered from Directory Path Disclosure
vulnerabilities, which attackers can utilize to formulate more damaging attacks (think of this as a step in
reconnaissance—if you know where something is, it’s much easier to attack it).

Finally, the third set of applications (all 2,345 of them) is utilized by a very large product manufacturing
and distribution organization. Although greater in number, these applications were actually assessed at
a higher level of granularity than the preceding sets of data. Of these applications, 31% were vulnerable
to XSS and 15% were vulnerable to a version of XSS that required user interaction, such as clicking a link
or moving the mouse pointer over text. Another 6.5% were vulnerable to a specific form of XSS resulting
from the way Apache Web servers incorrectly filtered input in the “Expect” header. Another 5.8% were
vulnerable due to specific filtering vulnerabilities in Microsoft® ASP.NET.

While only 1.9% of the applications were confirmed to be vulnerable to SQLi, and 2.3% registered as
vulnerable to SQLi albeit with no data able to be extracted, 18% were still vulnerable to Blind SQLi.
Normal SQLi attacks depend in a large measure on an attacker reverse-engineering portions of the
original SQL query using information gained from error messages. However, applications can still be
susceptible to Blind SQLi even if no error message is displayed. The consequences are the same.

One interesting statistic is that only two of these applications registered as being vulnerable to Cross-
Site Request Forgery. When coding applications, developers tend to make the same security mistakes in
more than once place. In other words, if an application is vulnerable to SQLi, chances are it’s vulnerable
in many locations, not just one. However, the opposite can hold true, too. It is apparent that these
developers utilized anti-CSRF tokens or other effective counter measures in their applications.

Another issue that the WSRG examined was that of information leakage. Information leakage
consists of directory probing, error messages that reveal information unintended by the developer,
common “guessed” directories, and other items that could reveal information beneficial to escalating
attack methodology. Successful exploitation would give an attacker unauthorized access to sensitive
information. The main problem with information leakage is that the information gained from these attacks
can be used to conduct far more damaging attacks.

18.8% of the applications contained login information sent over unencrypted connection. Any area of a
Web application that possibly contains sensitive information or access to privileged functionality such as
remote site administration functionality should utilize SSL or another form of encryption to prevent login
information from being sniffed or otherwise intercepted or stolen. 5.6% of the applications contained
a known file or directory. One of the most important aspects of Web application security is to restrict

13

access to important files or directories to only those individuals who actually need to access them. 2.2%
contained some form of code disclosure vulnerability. An attacker who gains access to the source code of
an application obviously has an upper hand in determining the best method of attacking it.

Manual analysis
The WSRG also conducted extensive manual analysis of vulnerabilities discovered while conducting
automated security tests for a different group of commercial applications. The analysis focused on
discovering trends that help:

1.	 Determine the impact of various factors pertaining to the vulnerability source/context on its criticality
and exploitability

2.	Assess the mitigations put in place by developers to secure their Web applications against the most
common vulnerability categories and understand their shortcomings

While securing Web applications against every possible threat is important, not all vulnerabilities are
created equal, even if they belong to the same category. In the case of production systems, the discovery
of critical vulnerabilities necessitates an immediate response. This, in turn, entails prioritizing the
discovered issues based on the exploitability, severity, and impact on the security posture of the overall
system. The manual analysis helped the WSRG identify the following numerous factors that impact a
vulnerability’s true risk rating.

1.	 Access control requirement for the resource
Any resource requiring the user to authenticate adds an extra layer of complexity for the attacker in
discovering the issue. However, once discovered, a successful exploitation can prove deadly, allowing
the attacker to bypass the access control, escalate privileges, and gain control over protected and
possibly sensitive sections of the system. 46% of the vulnerabilities were discovered in protected
resources.

2.	 Function/Purpose of the resource
Obviously, the sensitivity of the Web page content and its purpose greatly impacts the criticality of
any vulnerability. An XSS vulnerability in the login page provides the attacker with more leverage to
achieve a complete takeover of the system than one that exists on a search page. Ultimately, any given
security issue can be turned into a deadly weapon against a Web application. However, the more
effort required to exploit a vulnerability, the less attractive the application becomes to an attacker. 	
In the sample set, 31% of vulnerabilities were detected in login scripts while 46% were detected in
search pages.

3.	 In-house applications vs. third-party components
During manual analysis, the WSRG discovered that vulnerabilities were detected in both custom
code as well as in that of third-party applications. In 62% of the applications, the vulnerabilities
were concentrated in the sections of applications that were developed in-house. In 31% of the
applications, the distribution was exactly reversed. Security issues in third-party software are definitely
more concerning since those allow the attackers to compromise multiple systems by possibly using
the same exploit. Issues detected within custom code could take longer to fix since they will require
understanding of all the vulnerable input usages and then applying a separate fix for each.

4.	Complexity of the exploit that led to the discovery of the vulnerability
Attackers always prefer targeting systems that are easier and faster to compromise. Thus, any
application vulnerable to simple attack vectors will attract more attackers than one that has at least
some mitigating security controls in place. 69% of vulnerabilities were discovered using “plain vanilla”
attack vectors.

14

Despite the high-profile nature of recent Web application compromises, data breaches, and increased
fines for noncompliance with governmental regulations, a large number of applications still remain
vulnerable to the most rudimentary Web attacks. The WSRG has determined that a few recurring issues
contribute to this problem:

1.	 Mitigations applied without accurately understanding the usage context of the user input
23% of the Web applications in the sample set actually employed the HTML encoding technique to
protect against XSS, 15% used a blacklisting approach, and 54% had no protection mechanisms
implemented. The mitigations failed to provide any protection because in 54% of the applications,
the reflections occurred within the client-side JavaScript code blocks, making the security controls
ineffective.

2.	Reliance on specific mitigation techniques instead of a holistic approach
Manual inspection of the client-side application source code indicated that the few security controls
employed by the developers were applied in response to individual vulnerabilities discovered more
than likely during automated scans. There was no indication of development having adhered to any
form of a Secure Development Lifecycle (SDLC) process to develop any of the tested applications. This
was evident in the unbalanced distribution of vulnerabilities in different sections of the applications.

3.	 Lack of uniformity in implementation of security controls
Also, the manual analysis revealed that while certain sections of Web pages were protected against
XSS attacks, others were left open to exploitation. This behavior could be attributed to various
factors such as the mixture of in-house code vs. third-party application code, division of application
development efforts with no uniform process put in place to govern best practices, a reactive
approach to securing applications, and so on. This lack of uniformity obviously makes vulnerability
patching extremely complex and challenging. The best approach is to establish a well-defined secure
development process that is uniformly adhered to by all the parties involved in the creation of the
application.

Attack trends
The previous section provided a view into the vulnerability landscape—specifically where and how
applications can be compromised. While vulnerabilities provide a solid understanding of what exists,
looking at what attacks are exploiting those vulnerabilities and how often will provide a deeper
understanding of enterprise risk. Attack data from this section is broken out into three areas:

•	Frequency and number of attacks. Data in this section is obtained from a network of HP TippingPoint
Intrusion Prevention System (IPS) devices. This data is important for understanding the risk severity of
particular vulnerabilities.

•	A deeper look at Cross-Site Scripting (XSS) attacks. XSS is one of the most frequent attacks measured
on HP TippingPoint IPS devices. This section delves into the different types of XSS attacks and the
specific danger inherent in these variants.

•	A timeline and breakdown of SQL Injection (SQLi) attacks. SQLi is the most frequent Web application
attack that we track. This section looks at how SQLi has evolved and why it poses such a huge risk for
today’s enterprises.

15

Figure 8

Total number of attacks at mid-year, 2009–2011

0

200000000

400000000

600000000

800000000

1000000000

1200000000

1400000000

2009 2010 2011

New vulnerabilities are unnecessary; attacks continue to rise regardless
Despite the fact that the level of new vulnerability discoveries is dropping, there is no shortage of
attacks. While this is true across the board—every system, every category—it is especially significant
when discussing Web applications. Given the levels of vulnerabilities that are present in so many
Web applications, it’s a fair assessment that this rise in attacks is due to attackers leveraging existing
vulnerabilities.

First, the trend of attacks for the first half of the year for the past three years (Figure 8) depicts a distinct
upward spike.

Next, comparing Web application attacks at the mid-year for the past three years (Figure 9), there is a
distinct increase in attacks on Web applications—nearly a double year-on-year growth for attacks aimed
at these applications.

Looking at the data another way—comparing numbers of Web application attacks to all attacks in the
graph (Figure 10) on the next page—it is interesting to note that the ration of Web application attacks is
actually a bit higher.

16

Figure 9

Total number of Web application attacks at mid-year, 2009–2011

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

2009 2010 2011
(through 6/30/2011)

When Web application attacks are broken down by category, we can see some definite trends taking
shape. Let’s refer back to the three types of Web application vulnerabilities discussed in an earlier
section: PHP/Remote File Include (PHP/RFI), SQL Injection (SQLi), and Cross-Site Scripting (XSS). While
XSS vulnerabilities are disclosed more often, it is SQLi vulnerabilities that are being attacked the most
(Figure 11)—by a significant margin.

Data in Figure 12 (on page 18) shows that Web application attacks are increasing so rapidly that the
number of attacks for the first half of 2011 are nearly at the same levels as for the full years in 2009 and
2010. And in one case—SQLi—the numbers are higher than in the previous year.

Figure 10

Web application attacks versus non-Web application attacks, January–June 2011

63%

37%
All attacks

Web attacks

17

Figure 11

Web application attacks in the first half 2011, broken down by category

0

1000000

2000000

3000000

4000000

5000000

6000000

Jan Feb Mar Apr May Jun

PHP/RFI

SQLi

XSS

Cross-Site Scripting
Cross-Site Scripting (XSS) vulnerability has been around for a while and has been well-documented over
the years. To refresh, XSS is a hacking technique that allows attackers to exploit vulnerabilities in Web
applications and inject client-side script into the vulnerable Web pages that are viewed by unsuspecting
users. A successful attack will allow an attacker to hijack user sessions, steal sensitive information, or
deface websites. There are two primary types of XSS vulnerability: non-persistent (or reflected), and
persistent (or stored).

The reflected (non-persistent) XSS is by far the most common type of XSS attack. The root cause is the
improper handling (lack of sanitization) of HTTP request data by the server code, allowing malicious
sites to “reflect” malicious code and attack the user. The main attack vector is usually an email message
containing a malicious URL. When the user clicks on the URL, they are taken to the vulnerable site where
the malicious code is executed and reflected back on the user in order to execute the attack. It is the XSS
vulnerability of the website that allows this type of attack to happen. The Web browser executes the code
because it believes the code originates, and is unaltered, from a trusted website.

A persistent, or stored, XSS attack is a far more devastating XSS variant. This attack does not require
users to click URLs in order to pass malicious code back to the vulnerable website and attack the user.
In this case, the malicious code is able to live on the vulnerable server and is served up alongside
regular HTML content. Again, this type of attack is a direct result of poor input validation on the server
side, which allows for non-sanitized input to end up being displayed on the site. This type of attack is
particularly risky not only because it does not require direct user interaction but also because it has a
much wider scope. With non-persistent attacks, the only users who get attacked are the ones who reflect
the malicious code to the site by clicking the URL. With persistent XSS attacks, every visitor to the site may
get compromised as the malicious code lives on the server itself. Also, this malicious code can be self-
propagating, creating a type of client-side worm.

18

Figure 12

Web application attacks, 2009–2011

0

5000000

10000000

15000000

20000000

25000000

30000000

2009 2010 2011

PHP

SQLi

XSS

(through 6/30/2011)

Over the last decade, XSS has been a popular part of the security threat landscape. According to
vulnerabilities documented by Symantec in 2007, XSS accounted for roughly 80% of all the security
vulnerabilities. That percentage has leveled off over the recent years, but XSS is still the second most
popular type of Web application vulnerability. According to the Open Web Application Security Project
(OWASP) 2010 Top Ten, XSS was second only to SQLi. What makes XSS even more dangerous is that it
could be leveraged by an attacker to exploit other Web application vulnerabilities such as Information
Disclosures, Content Spoofing, and more.

While organizations have a better understanding of the risks posed by XSS attacks, these types of
vulnerabilities still make up a high percentage of bugs being disclosed every year. So while many XSS
vulnerabilities have a low common vulnerability scoring system (CVSS) score, their prevalence increases
the overall attack surface of a Web application, which put enterprises at a high risk for exposure and
can be costly to fix.

SQL Injection plays a starring role
SQLi attacks gained media attention this year from the hacktivist groups LulzSec and Anonymous, who
used this type of attack to compromise systems of several high-profile organizations. Data from the earlier
graph (Figure 12) shows that this type of attack is on the rise and has been extensive for some time.

The chart and timeline on the next page (Figure 13) demonstrate how SQLi attacks have evolved over the
years.

•	1998—Rain Forest Puppy (RFP) discloses/discusses the initial idea of SQL Injection in Phrack Magazine
(Volume 9, Issue 54)

•	2000—SQL Injection FAQ—Chip Andrews—uses the first public usage of term “SQL Injection” in a
paper

•	2003—The idea of blind SQL Injection is disclosed/discussed
•	2006—Web application vulnerability disclosure skyrockets in part due to SQL Injection
•	2008—SQL Injection vulnerability disclosure peaks

SQL Injection (SQLi)
A type of Web application vulnerability that takes advantage of a lack of input validation on a website in order to execute
unauthorized database commands on a Web applications database server. When successfully exploited, data can be extracted,
modified, inserted, or deleted from database servers that are used by the vulnerable Web application. In certain circumstances,
SQL Injection can be utilized to take complete control of a system.

19

Rain Forest Puppy (RFP)
discloses/discusses
the initial idea of
SQL Injection in
Phrack Magazine
(volume 9, issue 54)
Dec 25, 1998

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 SQL Injection timeline

SQL Injection FAQ –
Chip Andrews – uses the
first public usage of term
“SQL Injection” in a paper
Oct 23, 2000

The idea of blind SQL Injection is
disclosed/discussed
2003

Hackers have gained
access to a database
containing personal
information on 800,000
current and former UCLA
students
2006

Web application
vulnerability disclosure
skyrockets in part
due to SQL Injection
2006

An estimated
500,000 websites
compromised as
a result of
SQL Injections
2008

SQL Injection
vulnerability
disclosure peaks
2008

The Asprox botnet
leverages
SQL Injection for
mass drive by
SQL Injection attacks
to grow botnet
2008

Another half a million sites hit with automated SQL Injection
2010

HBGary, a technology security firm, was broken
into by Anonymous using SQL Injection in their
CMS-driven website
Feb 5, 2011

Expedia’s TripAdvisor member data stolen
as a result of SQL Injection
Mar 24, 2011

Barracuda Networks was compromised using an
SQL Injection flaw
April 11, 2011

The Asprox botnet leverages SQL Injection for
mass drive by SQI Injection attacks to grow
botnet Aug 5, 2011

LulzSec hacktivists are accused of using
SQL Injection to steal coupons, download keys,
and passwords that were stored in plaintext on
Sony’s website, accessing the personal information
of a million users
June 1, 2011

Group Anonymous claims to have hacked the
NATO site, using a “simple SQL Injection”
June 5, 2011

Three men, responsible for the largest data security breach in U.S. history,
stole 130 million credit card and debit card numbers from five leading
companies. They took advantage of a coding error, and allegedly used a
SQL Injection attack to compromise a Web application, which was used as
the starting point to help them bypass company network firewalls and gain
access over companies’ networks.
Aug 17, 2009

Figure 13

Timeline and evolution of SQL Injection attacks

•	2008—The Asprox botnet leverages SQL Injection for mass drive by SQLi attacks to grow botnet 	
(http://en.wikipedia.org/wiki/Asprox). From at least April through August, a sweep of attacks began
exploiting the SQL Injection vulnerabilities of Microsoft’s IIS Web server and SQL Server database
server. The attack does not require guessing the name of a table or column, and it corrupts all text
columns in all tables in a single request. An HTML string that references a malware JavaScript file is
appended to each value. When that database value is later displayed to a website visitor, the script
attempts several approaches at gaining control over a visitor’s system. The number of exploited Web
pages is estimated at 500,000.

•	On August 17, 2009, the U.S. Justice Department charged an American citizen Albert Gonzalez and
two unnamed Russians with the theft of 130 million credit card numbers using a SQL Injection attack.
In reportedly “the biggest case of identity theft in American history,” the man stole cards from a
number of corporate victims after researching their payment processing systems. Among the companies
hit were credit card processor Heartland Payment Systems, convenience store chain 7-Eleven, and
supermarket chain Hannaford Brothers.

•	On February 5, 2011, HBGary, a technology security firm, was broken into by Anonymous using a
SQL Injection in their CMS-driven website.

•	On April 11, 2011, Barracuda Networks was compromised using a SQL Injection flaw. Email addresses
and usernames of employees were among the information obtained.

•	On June 1, 2011, “hacktivists” of the group LulzSec were accused of using SQLi to steal coupons
and to download keys and passwords that were stored in plaintext on Sony’s website, accessing the
personal information of a million users.

•	In June 2011, Group Anonymous claims to have hacked the NATO site, using a “simple SQL Injection.”

http://en.wikipedia.org/wiki/Asprox
http://en.wikipedia.org/wiki/Internet_Information_Services
http://en.wikipedia.org/wiki/Microsoft_SQL_Server
http://en.wikipedia.org/wiki/Microsoft_SQL_Server
http://en.wikipedia.org/wiki/Albert_Gonzalez
http://en.wikipedia.org/wiki/Heartland_Payment_Systems
http://en.wikipedia.org/wiki/7-Eleven
http://en.wikipedia.org/wiki/Hannaford_Brothers
http://en.wikipedia.org/wiki/HBGary
http://en.wikipedia.org/wiki/Anonymous_(group)
http://en.wikipedia.org/wiki/Lulzsec
http://en.wikipedia.org/wiki/Anonymous_(group)
http://en.wikipedia.org/wiki/NATO

20

Figure 14

Web application vulnerabilities disclosed, January–June 2011

5%

25%

60%

10%

PHP/RFI

SQLi

XSS

CSRF

Figure 15

Total Web application attacks, January–June 2011

11%

68%

21%

PHP/RFI

SQLi

XSS

With SQLi attacks, it is readily apparent that attackers are content leveraging existing vulnerabilities for
their exploits. The graphs above (Figures 14 and 15) show a side-by-side comparison of the most
reported types of Web application vulnerabilities verses the most attacked Web application
vulnerabilities. SQLi vulnerabilities make up a quarter of the new vulnerabilities reported for the first half
of 2011. Yet SQLi attacks make up more than 60 percent of the Web application attacks seen in the
HP TippingPoint IPS.

Web applications are affected by multiple types of attacks, and SQLi and XSS are just two that have
received a significant amount of media attention over the last few months. The next section of this 	
paper presents general mitigation strategies for protecting Web applications and decreasing the risk 	
of outages, data loss, or network compromise that can result.

Mitigation
Visibility is increasingly becoming one of the most important aspects of information security, along
with reducing the overall attack surface made available to attackers. To mitigate risk responsibly,
organizations should test code in development, scan for vulnerabilities in QA before staging, and test
applications in production on an ongoing basis. The following information is intended to help developers
correct certain specific categories of critical Web application vulnerabilities.

21

Cross-Site Request Forgery
Resolving Cross-Site Request Forgery is not a simple task, and it actually may require recoding every
form and feature of a Web application. While no method of preventing Cross-Site Request Forgery is
perfect, using Cross-Site Request Forgery nonce tokens eliminates most of the risk. Although an attacker
may guess a valid token, nonce tokens are nevertheless the most effective solution for preventing Cross-
Site Request Forgery attacks. A user can be verified as legitimate by generating a “secret,” such as a
secret hash or token, after the user logs in. “The secret” should be stored in a server-side session and
then included in every link and sensitive form. Each subsequent HTTP request should include this token;
otherwise, the request is denied and the session invalidated. The token should not be the same as the
session ID in case a Cross-Site Scripting vulnerability exists. Initialize the token as other session variables.
It can be validated with a simple conditional statement, and it can be limited to a small timeframe to
enhance its effectiveness. Attackers need to include a valid token with a Cross-Site Request Forgery
attack in order to match the form submission. Because the user’s token is stored in the session, any
attacker would need to use the same token as the victim.

CAPTCHA can also prevent Cross-Site Request Forgery attacks. With CAPTCHA, a user needs to enter
a word shown in distorted text, contained inside an image, before continuing. The assumption is that
a computer cannot determine the word inside the graphic, although a human can. CAPTCHA requires
that a user authorize specific actions before the Web application initiates them. It is difficult to create a
script that automatically enters text to continue, but research is underway on how to break CAPTCHAs,
so strong CAPTCHAs are a necessity. Building a secure CAPTCHA takes more effort. In addition to
making sure that computers cannot read the images, you need to make sure that the CAPTCHA cannot
be bypassed at the script level. Consider whether you use the same CAPTCHA multiple times, making an
application vulnerable to a replay attack. Also make sure the answer to the CAPTCHA is not passed in
plaintext as part of a Web form.

SQL Injection
SQL Injection arises from an attacker’s manipulation of query data to modify query logic. The best
method of preventing SQL Injection attacks is, therefore, to separate the logic of a query from its data;
this will prevent commands inserted from user input from being executed. The downside of this approach
is that it can have an impact on performance, albeit slight, and that each query on the site must be
structured in this method for it to be completely effective. If one query is inadvertently bypassed, that
could be enough to leave the application vulnerable to SQL Injection. The following code shows a
sample SQL statement that is SQL injectable.

sSql = “SELECT LocationName FROM Locations“;

sSql = sSql + “WHERE LocationID =“ + Request[“LocationID”];

oCmd.CommandText = sSql;

The following example utilizes parameterized queries and is safe from SQL Injection attacks.

sSql = “SELECT * FROM Locations“;

sSql = sSql + “WHERE LocationID = @LocationID”;

oCmd.CommandText = sSql;

oCmd.Parameters.Add(“@LocationID”, Request[“LocationID”]);

22

The application will send the SQL statement to the server without including the user’s input. Instead, a
parameter-@LocationID- is used as a placeholder for that input. In this way, user input never becomes
part of the command that SQL executes. Any input that an attacker inserts will be effectively negated. An
error would still be generated, but it would be a simple data-type conversion error, and not something
that a hacker could exploit.

The following code samples show a product ID being obtained from an HTTP query string and then used
in a SQL query. Note how the string containing the “SELECT” statement passed to SqlCommand is simply
a static string and is not concatenated from input. Also note how the input parameter is passed using a
SqlParameter object, whose name (“@pid”) matches the name used within the SQL query.

C# sample:

string connString = WebConfigurationManager.ConnectionStrings[“myConn”].ConnectionString;

using (SqlConnection conn = new SqlConnection(connString))

{

conn.Open();

SqlCommand cmd = new SqlCommand(“SELECT Count(*) FROM Products WHERE ProdID=@pid”,
conn);

SqlParameter prm = new SqlParameter(“@pid”, SqlDbType.VarChar, 50);

prm.Value = Request.QueryString[“pid”];

cmd.Parameters.Add(prm);

int recCount = (int)cmd.ExecuteScalar();

}

VB.NET sample:

Dim connString As String = WebConfigurationManager.ConnectionStrings(“myConn”).
ConnectionString

Using conn As New SqlConnection(connString)

conn.Open()

Dim cmd As SqlCommand = New SqlCommand(“SELECT Count(*) FROM Products WHERE
ProdID=@pid”, conn)

Dim prm As SqlParameter = New SqlParameter(“@pid”, SqlDbType.VarChar, 50)

prm.Value = Request.QueryString(“pid”)

cmd.Parameters.Add(prm)

Dim recCount As Integer = cmd.ExecuteScalar()

End Using

23

Cross-Site Scripting
Cross-Site Scripting attacks can be avoided by carefully validating all input and properly encoding all
output. When validating user input, verify that it matches the strictest definition possible of valid input. For
example, if a certain parameter is supposed to be a number, attempt to convert it to a numeric data type
in your programming language.

PHP: intval(“0”.$_GET[‘q’]);

ASP.NET: int.TryParse(Request.QueryString[“q”], out val);

The same applies to date and time values, or anything that can be converted to a stricter type before
being used. When accepting other types of text input, make sure the value matches either a list of
acceptable values (white-listing), or a strict regular expression. White-listing involves creating a list of
acceptable characters, as opposed to black-listing, which is a list of unacceptable characters. If at any
point the value appears invalid, do not accept it. Also, do not attempt to return the value to the user in an
error message.

Most server-side scripting languages provide built-in methods to convert the value of the input variable
into correct, non-interpretable HTML. These should be used to sanitize all input before it is displayed to
the client.

PHP: string htmlspecialchars (string string [, int quote_style])

ASP.NET: Server.HTMLEncode (strHTML String)

When reflecting values into JavaScript or another format, make sure to use a type of encoding that is
appropriate. Encoding data for HTML is not sufficient when it is reflected inside of a script or style sheet.
For example, when reflecting data in a JavaScript string, make sure to encode all non-alphanumeric
characters using hex (\xHH) encoding.

If you have JavaScript on your page that accesses unsafe information (like location.href) and writes it to
the page (either with document.write, or by modifying a DOM element), make sure the data is encoded
for HTML before writing it to the page. JavaScript does not have a built-in function to do this, but many
frameworks do. If you are lacking an available function, something like the following will handle most
cases:

s = s.replace(/&/g,’&’).replace(/”/i,’"’).replace(/</i,’<’).replace(/>/i,’>’).replace

(/’/i,’'’)

Ensure that you are always using the right approach at the right time. Validating user input should 	
be done as soon as it is received. Encoding data for display should be done immediately before
displaying it.

This is an HP Indigo digital print.

Get connected
www.hp.com/go/getconnected

Get the insider view on tech trends, alerts, and
HP solutions for better business outcomes

Share with colleagues

© Copyright 2011 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. The only
warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein
should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

Java is a registered trademark of Oracle and/or its affiliates. Microsoft is a U.S. registered trademark of Microsoft Corporation.

4AA3-7045ENW, Created September 2011 	

Remote File Includes
As the saying goes, security is baked in, not brushed on. Any application under development should be
designed with security in mind from the onset. The following recommendations will help you build Web
applications that are not susceptible to parameter include vulnerabilities.

•	Define what is allowed. Ensure that the Web application validates all input parameters (cookies,
headers, query strings, forms, hidden fields, etc.) against a stringent definition of expected results.
The best method of doing this is via “white-listing”; this is defined as only accepting specific account
numbers or specific account types for those relevant fields, or only accepting integers or letters of the
English alphabet for others. Many developers will try to validate input by “black-listing” characters, or
“escaping” them. Basically, this entails rejecting known bad data by placing an “escape” character in
front of it so that the item that follows will be treated as a literal value. This approach is not as effective
as white-listing because it is impossible to know all forms of bad data ahead of time.

•	Check the responses from POST and GET requests to ensure what is being returned is what is
expected, and is valid.

•	Verify the origin of scripts before you modify or utilize them.
•	Do not implicitly trust any script given to you by others (whether downloaded from the Web or given 	

to you by an acquaintance) for use in your own code.

References
http://techtimely.wordpress.com/2011/04/22/web-hacking-threats/

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

http://en.wikipedia.org/wiki/Cross-site_scripting

http://www.phrack.org/issues.html?id=8&issue=54

http://sqlsecurity.com/FAQs/SQLInjectionFAQ/tabid/56/Default.aspx

http://www.isti.tu-berlin.de/fileadmin/fg214/Papers/ravi-asprox.pdf

http://arstechnica.com/tech-policy/news/2011/02/anonymous-speaks-the-inside-story-of-the-hbgary-
hack.ars/3

http://nakedsecurity.sophos.com/2011/06/02/sony-pictures-attacked-again-4-5-million-records-
exposed/

http://techtimely.wordpress.com/2011/04/22/web-hacking-threats/
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://en.wikipedia.org/wiki/Cross-site_scripting
http://nakedsecurity.sophos.com/2011/06/02/sony-pictures-attacked-again-4-5-million-records-exposed/
http://nakedsecurity.sophos.com/2011/06/02/sony-pictures-attacked-again-4-5-million-records-exposed/

	Contributors

	Digg 32:
	Twitter 32:
	Facebook 32:
	Linked in 32:

