
March 1, 2010

State of Software
Security Report
The Intractable Problem of Insecure Software

Software Security Simplified

VOLUME I

VERACODE STATE OF SOFTWARE SECURITY REPORT: VOLUME I

ON ALMOST A DAILY BASIS, news of data breaches and cyber threats remind us that
the security of our critical financial and public services software infrastructure is
inadequate. Software is the very fabric of how the world communicates and conducts
business. The question we face today is whether the resiliency and security quality
of software will ultimately determine the rate at which it continues to be the creative
force behind human progress.

In this first-ever report on the State of Software Security, Veracode offers actionable
information designed to protect organizations from the very real and costly impact of
insecure software. This semi-annual report comprises security intelligence gleaned
from billions of lines of code analyzed by the world’s first and only cloud-based
application risk management services platform. It is our hope that this report assists
executives, policy makers, purchasing groups, security professionals, and software
development professionals involved in the global software supply chain to make and
buy more secure software.

As you examine the information presented here I welcome your questions and ideas
about why software remains so vulnerable and what we can do to collectively improve
its security quality. Please visit my blog to continue this important conversation.

Best Regards,

Matthew Moynahan
Chief Executive Officer, Veracode

veracode.com/ceo-blog

VERACODE STATE OF SOFTWARE SECURITY REPORT: VOLUME I

1

Table of Contents
Introduction . 2

Executive Summary . 3

Software Supply Chain . 7

Security of Applications . 16

Application Threat Space Trends . 25

VERACODE STATE OF SOFTWARE SECURITY REPORT: VOLUME I

2

Introduction
Real information about the state of software security is needed to understand why software remains so insecure.
Until now most of the information available has come from “perimeter defense” companies that provide network,
gateway or endpoint protection technologies such as firewalls and anti-virus. While valuable, these approaches
are insufficient because they focus on known vulnerabilities and not the all-important unknown or Zero Day vulnera-
bilities that are hidden in the final application binary and subject to attack by sophisticated hackers. Other reports,
such as those from website security testing companies, typically represent only one type of testing (“black box”
or “dynamic”) performed against a single type of application (web applications).

According to a SANS Report issued in September 2009 on Top Cyber Security Risks, “the number of vulnerabilities
being discovered in applications is far greater than the number of vulnerabilities discovered in operating systems.
As a result, more exploitation attempts are recorded on application programs.”1 The impact of these attacks has been
widespread. In a recent Forrester Research study2 62% of respondents claimed to have been the victim of a breach
exploiting software vulnerabilities.

Missing until now has been security intelligence derived from multiple testing methodologies (static, dynamic, and
manual) on the full spectrum of application types (components, shared libraries, web and non-web applications) and
programming languages (including Java, C/C++, and .NET) from every part of the software supply chain (Internally
Developed, Open Source, Outsource, Commercial) that organizations rely on. By filling this void the Veracode State
of Software Security Report aims to bring clarity and a broader perspective into the security quality produced by the
complex global software supply chain.

This semi-annual report is the most comprehensive of its kind as it draws on continuously updated information
resident in Veracode’s unique cloud-based application risk management services platform. The data represents intelli-
gence gleaned from the analysis of billions of lines of code and thousands of applications. It is growing every minute
as more organizations come to Veracode for independent verification of the security quality of their software. As the
only cloud-based application risk management services platform in the world to perform and aggregate results from
multiple testing techniques, application types, and participants across the global software supply chain, Veracode is
in the unique position of being able to provide the software community with the broadest and deepest repository of
code level application security intelligence in the world.

For those executives, security and development professionals who want to better understand the vulnerabilities
that threaten the integrity and performance of software in the software supply chain, this series of reports is essen-
tial reading. Veracode welcomes any questions or comments from readers and will continually strive to improve and
enrich the quality and detail of our analysis. Additionally, we invite all members of the software supply chain to
participate in constructive dialogue on the topic of software security at veracode.com/ceo-blog.

1 www.sans.org/top-cyber-security-risks
2 www.computerworld.com/s/article/9132506/Survey_Software_flaws_account_for_breaches_at_62_of_companies

VERACODE STATE OF SOFTWARE SECURITY REPORT: VOLUME I

3

Executive Summary
As the only cloud-based application risk management services platform in the world to perform and aggregate results
from multiple security testing techniques and application types across all participants in the global software supply
chain, Veracode is in the unique position of being able to offer the broadest and deepest repository of code level
application security intelligence in the world. In this first-ever report of its kind Veracode found strong code-level
evidence to support the following observations:

1. Most software is indeed very insecure.

2. Third-party software is a significant percentage of the enterprise software infrastructure, and third-party
components are a significant percentage of most applications.

3. Open source projects have comparable security, faster remediation times, and fewer Potential Backdoors
than Commercial or Outsourced software.

4. A significant amount of Commercial and Open Source software is written in C/C++ making it dispropor-
tionately susceptible to vulnerabilities that allow attackers to gain control of systems.

5. The pervasiveness of easily remedied vulnerabilities indicates a lack of developer education on
secure coding.

6. Software of all types from Finance and Government sectors was relatively more secure on first
submission to Veracode for testing.

7. Outsourced software is assessed the least, suggesting the absence of contractual security
acceptance criteria.

Key Findings

1. Most software is indeed very insecure.

Regardless of software origin, 58% of all applications submitted for verification did not achieve an acceptable
security score for its assurance level upon first submission to Veracode for testing when assessed using Vera-
code’s risk adjusted verification methodology.3 When evaluating against OWASP Top 10 (2007) and CWE/SANS
Top 25 Most Dangerous Programming Errors (2009) standards, neither of which adjust for risk, Internally
Developed applications fared the poorest, with failure rates as high as 88%. Extrapolating from the application
sample set, more than half of the software deployed in enterprises today is potentially susceptible to an
application layer attack similar to that used in the recent Heartland4 or Google5 security breaches.

Recommendation(s): Implement a comprehensive, risk-based application security program. Design your
secure software initiative for breath and depth. Going deep on a handful of applications and ignoring the rest
will not lower your organization’s overall application risk. Each development team should be implementing
a minimum process for application security as part of the development lifecycle. Establishing a security
verification step for about-to-be deployed applications is the best place to start.

3 Refer to Methodology section in Addendum for a description of Veracode’s risk adjusted verification methodology.
4 www.computerworld.com/s/article/9126379/Heartland_data_breach_could_be_bigger_than_TJX_s, www.businessweek.com/technology/content/
jul2009/tc2009076_891369_page_2.htm

5 www.forbes.com/2010/01/14/google-china-mcafee-technology-cio-network-hackers_print.html, www.wired.com/threatlevel/2010/01/operation-aurora

VERACODE STATE OF SOFTWARE SECURITY REPORT: VOLUME I

4

2. Third-party software is a significant percentage of the enterprise software infrastructure, and third-party
components are a significant percentage of most applications.

Of applications in the sample set, 60% were designated as Internally Developed, 30% were designated as
Commercial, and 10% were designated as Open Source or Outsourced. Regardless of the designation, Veracode
observed that between 30% and 70% of all code comprising Internally Developed applications was identifiably
from third-parties. Furthermore, there was a “nesting effect” as third-party components themselves often
contained other third-party components.

Recommendation(s): Implement security acceptance criteria and policies for an approved list of third-party
suppliers, and conduct security testing on third-party components prior to integrating into final application.
Do not develop a false sense of security and control when developing applications with internal teams given
the abundance of third-party code integrated into all software.

3. Open Source projects have comparable security, faster remediation times, and fewer Potential Backdoors
than Commercial or Outsourced software.

As noted above, no software supplier excelled at delivering secure software upon first submission. Only 39% of
submitted Open Source applications and 38% of Commercial applications were acceptable on first submission
when evaluated against the CWE/SANS Top 25 Most Dangerous Programming Errors. Open Source applications
fared somewhat better than Internally Developed applications, which had an acceptable rate of only 31% against
the same industry benchmark.

Open Source project teams remediated security vulnerabilities faster than all other users of Veracode’s application
risk management services platform. Open Source applications took only 36 days from first submission to reach an
acceptable security score, compared to 48 days for Internally Developed applications and 82 days for Commercial
applications. This is not surprising given the numerous political and organizational complexities of enterprise
development efforts and the formal, customer-centric release plans of Commercial software vendors.

Finally, Open Source contained the fewest Potential Backdoors of any software supplier; substantially less than
1% of vulnerabilities detected across all Open Source applications fell into this category. The relative absence of
Potential Backdoors is apparent testimony to the positive effect of transparency in the Open Source community.

Recommendation(s): Do not fall victim to the fear, uncertainty, and doubt surrounding the use of Open
Source software in critical business infrastructure. However, given the risks associated with using code of
unknown security, test Outsourced, Commercial, and Open Source suppliers as rigorously as you would
test Internally Developed code for security quality and backdoors.

VERACODE STATE OF SOFTWARE SECURITY REPORT: VOLUME I

5

4. A significant amount of Commercial and Open Source software is written in C/C++ making it disproportion-
ately susceptible to vulnerabilities that allow attackers to gain control of systems.

More than 30% of applications were identified as Commercial and supplied to the enterprise by Independent Soft-
ware Vendors. Commercial suppliers are more likely to use C/C++ than any other language, which can increase risk.
Of the C/C++ applications Veracode analyzed, 42% contained vulnerabilities that, if exploited, could result in remote
code execution. The vulnerability in Internet Explorer 6 that enabled the Aurora attacks is an example of a remote
code execution vulnerability. These classes of defects, including buffer overflows, integer overflows, use after free,
and others, are well-known coding errors that have been difficult to eradicate from C/C++ based programs. To exac-
erbate the problem for enterprises, much of the software written in C/C++ is purchased from software vendors, not
built internally. As Gartner6 and others are recommending, organizations should have purchased software reviewed
for security to mitigate this risk.

Recommendation(s): Critical business systems often comprise multiple tiers and development languages.
Many contain a hybrid of managed and native code originating from a heterogeneous software supply chain.
C/C++, with its idiosyncratic vulnerabilities, is pervasive in the supply chain and no verification process that
ignores it will be successful.

Despite the higher likelihood of remote execution vulnerabilities in C/C++, do not be complacent about the
risks presented by software written in other languages. Our data reinforces the fundamental notion that
serious coding vulnerabilities exist across all languages.

5. The pervasiveness of easily remedied vulnerabilities indicates a lack of developer education on secure
coding.

Cross-site Scripting (XSS), the most prevalent vulnerability category by overall frequency and the third most
prevalent by number of affected applications, is a stark illustration of the challenges of writing secure code. Despite
nearly a decade of focus on cross-site scripting as a serious security threat, its continued prevalence reflects both
the pervasive nature of the problem and the evolving threat landscape (i.e. increasing use of dynamic web content).
Cross-site Scripting remains as rampant as ever, undeterred by the wide availability of libraries intended to eliminate
the risk via proper output encoding. Better education of web developers on this vulnerability and others such as
SQL Injection is essential.

Recommendation(s): Implement specific developer training initiatives as part of your overall security pro-
gram. Follow the lead of corporations such as Microsoft in addressing as many coding mistakes as possible
during the education phase of the Secure Development Lifecycle.7 Educating developers is a cost effective
way of preventing security vulnerabilities from being introduced into critical applications. Remember that
developer education only helps significantly on new code. Use static analysis on legacy code to eliminate
the XSS vulnerabilities already in your code base.

6 blogs.gartner.com/neil_macdonald/2010/01/14/more-application-security-goodness-from-owasp
7 blogs.msdn.com/sdl/archive/2009/01/27/sdl-and-the-cwe-sans-top-25.aspx

VERACODE STATE OF SOFTWARE SECURITY REPORT: VOLUME I

6

6. Software of all types from Finance and Government sectors was relatively more secure on first submission
to Veracode for testing.

More than half of applications in the Financial Related Industries and Government sectors were deemed accept-
able at first submission, using Veracode’s risk adjusted verification methodology. This placed them at the top of
the more than 15 industries represented in the data set. To a certain extent, this revelation is unsurprising, given
that Financial Related Industries have historically been among the first to invest in comprehensive application
security programs. Additionally, both sectors have suffered some of the most prominent public breaches in the
past, which may have encouraged them to bolster their software security initiatives. The performance of these
sectors should be encouraging for all of us who rely on the services they provide; however, room for improvement
certainly exists.

Recommendation(s): Look to organizations with high risk profiles and learn what they have done to
implement operating controls in complex environments. It is instructional for lower performing sectors
to realize that improvement is possible.

7. Outsourced software is assessed the least, suggesting the absence of contractual security acceptance
criteria.

Software identified as Outsourced by submitters accounted for only 2% of the applications in the data set, which
was surprising when considering that many enterprises are increasingly relying on offshore development shops
as a cost saving measure. With the primary motivation being cost reduction, it is likely that these Outsourcing
contracts neglect to define specific security acceptance requirements. This could be one reason why Outsourced
software was underrepresented in our data. However, as noted earlier, most applications labeled as Internally
Developed actually contained a significant percentage of third-party code, including Outsourced components that
were not identified separately.

Recommendation(s): Do not overlook security requirements when contracting for Outsourced develop-
ment. When drafting procurement contracts, insist upon the authority to perform independent security
testing and set minimum acceptance criteria. This will ensure that you are not charged for rework due
to security defects. See the OWASP Secure Software Contract Annex 8 and SANS Application Security
Procurement Language9 for sample contract language.

8 www.owasp.org/index.php/OWASP_Secure_Software_Contract_Annex
9 www.sans.org/appseccontract

Software Supply Chain
While people tend to think that software is written from scratch, modern economics and productivity imperatives
have long since changed the reality. Today software is truly a composition of code originating from multiple sources
across the world.

There are many types of suppliers in the global supply chain including Internal Development teams, Outsourced
development partners, Open Source projects, and Commercial Independent Software Vendors. Even individual
developers are participating in the enterprise software supply chain by creating popular Apple iPhone or BlackBerry
mobile applications or by participating in the fast-growing “crowdsourcing” development model. Cybersecurity
professionals in government sometimes refer to this complex and rarely understood supply chain as SOUP, or
Software of Unknown Pedigree. To illustrate the point, Veracode observed that between 30% and 70% of all code
comprising Internally Developed applications was identifiably from third-parties, most often in the form of Open
Source components and Commercial or Outsourced shared libraries and components. Furthermore, there was a
“nesting effect” as third-party components themselves often contained other third-party components. For execu-
tives, the evidence points to an increasing percentage of software infrastructure and associated liability coming from
unknown and unmanaged third-parties.

In this section we examine the security quality of software produced by the software supply chain most often
found in organizations. Historically, enterprises and government agencies have focused more on functionality or
“fit for purpose” of software acquired from third-parties. This state of affairs is clearly no longer acceptable given
today’s regulatory and compliance environment and sophisticated hacker community. Only by understanding the
various degrees of software security quality produced by supply chain participants can we begin to understand the
requirements to change policies and processes, properly manage application risk in organizations, and protect
critical software infrastructure.

VERACODE STATE OF SOFTWARE SECURITY REPORT: VOLUME I

7

The evidence points to an increasing
percentage of software infrastructure
and associated liability coming from
unknown and unmanaged third-parties.

VERACODE STATE OF SOFTWARE SECURITY REPORT: VOLUME I

8

Distribution of Application Development by Supplier Type

An analysis of software suppliers enables organizations to identify the application security risk contributed by third-
parties versus that created by internal development efforts. This insight is a prerequisite to implementing a proper
application risk management strategy given the different corrective actions required to mitigate such risk. In the chart
below, of all applications submitted, greater than one third of all applications were developed by third-parties, clearly
indicating a heavy reliance on the extended supply chain for business critical applications. It is surprising to note that
out of billions of lines of code analyzed by Veracode to date only 2% was attributed to outsourced development
partners. Customer feedback suggests this statistic is largely a result of the time required for large enterprises to
cycle through existing Master Services Agreements (MSAs) that do not include proper acceptance criteria associated
with security quality of their deliverables. We expect this to be a temporary phenomenon as large enterprises begin
to heed the advice of research analysts at Gartner10 and implement security acceptance criteria, terms and conditions
in all new outsourced development contracts.

Distribution of Application Business Criticality by Supplier Type

An analysis of the Application Business Criticality by Supplier Type allows organizations to assess the relative impor-
tance of application security risk and the degree to which it is controllable. For example, the decision to outsource
only non-web facing applications of low business criticality is likely to be a more controllable and manageable risk
than outsourcing highly business critical web-facing applications given the lack of security acceptance criteria in exist-
ing outsourcing contracts and the variability of secure coding skills across outsourcing partners.

Internally Developed

Commercial

Open Source

Outsourced

30%
8%

2%60%

Applications by Supplier

10 blogs.gartner.com/neil_macdonald/2010/01/14/more-application-security-goodness-from-owasp

Figure 1: Applications by Supplier

The distribution of Application Business Criticality by Supplier Type is depicted below. The distribution clearly illustrates
that high business criticality is not a major determinant in keeping development projects “in-house.” More than 30%
of applications rated as being of Very High or High business criticality were sourced from Commercial software ven-
dors. It can be inferred that features, functionality and time-to-market
are likely the primary drivers in the decision to develop applications
internally versus procure them from third-parties. This in turn should
increase the importance of applying uniform application verification
practices across Internally Developed and third-party applications that
are deemed Very High or High Business Criticality. Business Criticality
was specified by the organization operating the software.

Distribution of Application Type by Supplier Type

An analysis of the Application Type by Supplier Type provides a more detailed understanding of security risk con-
tributed by supplier and their relative capabilities to produce secure code for a particular language and environment.
This information should be an important determinant in the decision-making process on where to source business
critical applications if the decision is to purchase Commercial software or outsource development to a third-party.

Except for very few Open Source .NET projects the distribution of
C/C++, Java and .NET languages was significant. The distribution
of web and non-web applications was also material for each type of
supplier, with Internally Developed code skewing most heavily towards
web applications. Both the distribution of languages and web and
non-web applications across suppliers reinforces the importance of
consistent testing practices across the application portfolio.

VERACODE STATE OF SOFTWARE SECURITY REPORT: VOLUME I

9

Very High

High

Medium

Low

Very Low

10%0% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Commercial Internally Developed Open Source Outsourced*

7% 4%58%30%

9% 1%57%32%

5% 2%65%28%

2%59%39%

96% 4%

Application Business Criticality by Supplier

The distribution of languages
and web and non-web
applications across suppliers
reinforces the importance of
consistent testing practices
across the application portfolio.

More than 30% of applications
rated as being of Very High or
High business criticality were
sourced from Commercial
software vendors.

Figure 2: Application Business Criticality by Supplier

Distribution of Security Quality and Remediation Efforts by Supplier Type

An analysis of the Security Quality and Remediation Efforts by Supplier Type provides important insights into
the secure coding skills of suppliers and their relative effectiveness in remediating security vulnerabilities. This
information can prove to be valuable in many ways including en-
abling more accurate total cost calculations of a particular software
development project, improved ability to hit ship or deployment
dates, more accurate scoping accuracy of security testing phase,
or better cost containment of outsourcing contracts by controlling
“rework charges” associated with code changes related to fixing
security vulnerabilities.

The illustration below depicts Supplier Performance on First Submission as measured by the Veracode risk adjusted
verification methodology. When calculated as a percentage of total applications submitted 58% of all applications
were deemed to have “unacceptable” security quality upon first submission. Commercial suppliers achieved lower
scores than both Internally Developed and Open Source applications. It is not surprising given that most organiza-
tions do not have developers trained in application security and secure coding principles or have not implemented
a secure software development lifecycle.

VERACODE STATE OF SOFTWARE SECURITY REPORT: VOLUME I

10

58% of all applications were
deemed to have “unacceptable”
security quality.

Internally Developed

Commercial

Open Source

Outsourced* (Low sample size)

22%

44%

45%

0%

53%

35%

54%

67%

25%

21%

1%

33%

73%

44%

30%

60%

27%

56%

70%

40%

C/C++ Java .NET Web Non-Web

Supplier Application Profiles

Outsourced

Open Source

Internally Developed

Commercial

10%0% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Acceptable Not Acceptable

49% 51%

41% 59%

43% 57%

29% 71%

*

Supplier Performance on First Submission
(Adjusted for Business Criticality)

Figure 3: Supplier Performance on First Submission (Adjusted for Business Criticality)

Table 1: Supplier Application Profiles

In the following chart it is interesting to note that Open Source appli-
cations had an equivalent percentage of Very High severity vulnerabili-
ties (Buffer Overflows, Numeric Errors) but a higher percentage of
High severity vulnerabilities (SQL Injection). This effect is not reflected
in the Veracode rating above due to the adjustment for business
criticality. A larger percentage (25% vs. 16%) of Commercial software
was submitted at the highest business criticality, when compared to
Open Source.

The following illustration depicts Remediation Performance by Supplier Type. It is interesting to note that the average
time to remediate was 59 days. Commercial took the longest time to remediate at 82 days. Commercial remediation
cycles must often fit within more formal software and patch release cycles. Open Source project teams were the
fastest at security remediation. The quality of the remediation efforts was also superior with Open Source teams,
taking only 1.1 resubmissions on average to confirm the security fix was properly implemented. Internally Developed
projects had the second shortest time to remediate but took the most
resubmissions to properly implement the security fixes and achieve
compliance with desired security quality. One of the most encouraging
aspect of this information is that developers are generally very capable
of quickly fixing security vulnerabilities when they are accurately
pointed out in their code base. It appears far more difficult to write
secure code and find security vulnerabilities than it does to remediate
security vulnerabilities once discovered.

VERACODE STATE OF SOFTWARE SECURITY REPORT: VOLUME I

11

10%0% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Very High Severity High Severity Medium to Very Low Severity

59%Open Source

Internally Developed

Commercial 20% 19% 61%

13% 17%

21% 45%

70%

35%

Commercial remediation
cycles must often fit within
more formal software
and patch release cycles.
The fastest at security
remediation were Open
Source project teams.

The very encouraging
aspect of this information
overall is that developers are
very capable of quickly fixing
security vulnerabilities when
they are accurately pointed
out in their code base.

Vulnerability Severity by Supplier

FIgure 4: Vulnerability Severity by Supplier

(Outsourced omitted due to small sample size.)

Distribution by Ability to Meet Security Compliance Policy by Supplier

An analysis of a supplier’s ability to meet a specific security compliance policy is useful information when implementing
security acceptance criteria during the software acquisition process. For both commercial and outsourcing agreements
this information may be used to structure appropriate terms and conditions and to ensure security quality of the deliver-
able while simultaneously managing contract costs.

The following chart examines suppliers ability to deliver applications as measured by compliance against industry
standard lists of dangerous vulnerability types, including the OWASP Top 10 (2007) and the CWE/SANS Top 25
(2009). An application was labeled Not Acceptable if it contained any vulnerabilities defined in the standard lists.

Open source and Commercial software fared much better than
Internally Developed code against OWASP and SANS standards.
The cause for this may be that Commercial code is subjected to a
greater level of scrutiny by purchasing enterprises or may be subject
to regulations such as PCI. Open Source code benefits from the
community network effect where issues are identified and fixed faster.
Open Source code has also benefited from Commercial source code
scanning technologies being made available to them for free.

VERACODE STATE OF SOFTWARE SECURITY REPORT: VOLUME I

12

Average Days to Remediate Average Remediation
Submissions to Pass

90

80

70

60

50

40

30

20

10

0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

36

82

Internally Developed Commercial Open Source

48

59

1.11

1.26

1.42
1.36

Overall
D

A
Y

S
T

O
R

E
M

E
D

IA
T

E

R
E

M
E

D
IA

T
IO

N
S

U
B

M
IS

S
IO

N
T

O
PA

S
S

Open Source and Commercial
software fared much better
than Internally Developed
code against OWASP and
CWE/SANS standards.

Remediation Performance by Supplier

Figure 5: Remediation Performance by Supplier

(Outsourced omitted due to small sample size.)

Distribution of Most Common Security Vulnerabilities by Supplier

An analysis of the Most Common Security Vulnerabilities by supplier is extremely helpful in determining the specific
secure coding strengths and weaknesses. It can influence targeted education or other corrective actions or improve
accountability with a particular supplier. The following chart identifies the most commonly occurring vulnerabilities
across suppliers. The following table summarizes the top 15 vulnerabilities in order of prevalence, where the percent-
age indicates the frequency of occurrence for that type of Supplier.

VERACODE STATE OF SOFTWARE SECURITY REPORT: VOLUME I

13

Outsourced

Open Source

Internally Developed

Commercial

10%0% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Acceptable Not Acceptable

30% 70%

39% 61%

6% 94%

38% 62%

*

Figure 7: CWE/SANS Top 25 Compliance by Supplier on First Submission

Outsourced

Open Source

Internally Developed

Commercial

10%0% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Acceptable Not Acceptable

12% 88%

53% 47%

4% 96%

37% 63%

*

Figure 6: OWASP Top 10 Compliance by Supplier on First Submission

OWASP Top 10 Compliance by Supplier on First Submission

CWE/SANS Top 25 Compliance by Supplier on First Submission

Internally Developed software showed comparable vulnerability prevalence rankings to the sample overall, probably
because Internally Developed software accounted for the majority of the applications assessed (60%).

The relatively high prevalence of numeric errors, buffer overflows,
and buffer management errors in the Commercial Software
applications can be attributed to the higher concentration of C
and C++ based applications in this group, as noted above. That
these vulnerability categories were so prevalent among Commer-
cial software, and that C and C++ are so widely used, suggest
that any third-party risk management program should include
coverage of Commercial C and C++ software as well as bytecode
(Java and .NET).

VERACODE STATE OF SOFTWARE SECURITY REPORT: VOLUME I

14

Vulnerability Distribution by Supplier

Cross-site Scripting 40%
(XSS)

Information Leakage 24%

CRLF Injection 8%

Cryptographic Issues 6%

Buffer Overflow 4%

Directory Traversal 4%

SQL Injection 4%

Time and State 2%

Error Handling 2%

Numeric Errors 1%

Potential Backdoor 1%

Encapsulation 1%

Credentials Mgmt 1%

API Abuse 1%

Buffer Mgmt Errors 1%

Cross-site Scripting 22%
(XSS)

Information Leakage 19%

Numeric Errors 12%

Buffer Overflow 9%

Cryptographic Issues 7%

Error Handling 7%

Directory Traversal 6%

CRLF Injection 5%

SQL Injection 3%

Buffer Mgmt Errors 3%

Time and State 2%

Potential Backdoor 1%

Credentials Mgmt 1%

Dangerous <1%
Functions

API Abuse <1%

Cross-site Scripting 41%
(XSS)

CRLF Injection 21%

Information Leakage 13%

Error Handling 5%

SQL Injection 5%

Directory Traversal 3%

Cryptographic Issues 2%

Encapsulation 2%

Numeric Errors 1%

Session Fixation 1%

Time and State 1%

Buffer Overflow 1%

API Abuse 1%

Dangerous <1%
Functions

Credentials Mgmt <1%

CRLF Injection 36%

Cross-site Scripting 16%
(XSS)

Information Leakage 14%

Directory Traversal 11%

Cryptographic Issues 9%

Time and State 6%

Credentials Mgmt 3%

API Abuse 3%

Encapsulation 1%

SQL Injection <1%

Insufficient Input <1%
Validation

Error Handling <1%

Numeric Errors <1%

OS Command <1%
Injection

Session Fixation <1%

Internally Developed Commercial Open Source Outsourced*

The relatively high prevalence
of numeric errors, buffer over-
flows, and buffer management
errors in Commercial Software
can be attributed to the higher
concentration of C and C++
based applications.

Table 2: Vulnerability Distribution by Supplier

Another interesting point was the relatively higher prevalence of CRLF (Carriage Return/Line Feed) Injection
vulnerabilities among Open Source applications, compared to Information Leakage. A leading type of CRLF Injection
vulnerabilities was Log Injection, and the leading type of Information Leakage was an Error Message Information
Leak; this suggests that Open Source applications may be more likely to direct error messages to a system log than
to the user. This practice mitigates information leakages but increases log-related security risks.

Finally in this section, the relative prevalence of Potential Backdoors was low, but their existence at all is noteworthy.
For the purposes of this report, Potential Backdoors include hardcoded passwords, logic and time bombs, the
presence of anti-debugging code, rootkit-like behaviors, and call hiding (the practice of masking a call to a potentially
malicious routine via indirection). While there may be legitimate uses for some of these techniques, malicious use
mandates close inspection if they are found in the course of an assessment. Some Potential Backdoors were
debugging and support features that the developer intended but put the customer at risk.

For security professionals and development teams it is helpful to understand
what types of vulnerabilities are most common by software supplier. There
are a few differences that stand out in the table above, however the main
point is that vulnerabilities are more related to the type of application and
language than the supplier.

VERACODE STATE OF SOFTWARE SECURITY REPORT: VOLUME I

15

The presence of Potential
Backdoors was low
but their existence at
all is noteworthy.

VERACODE STATE OF SOFTWARE SECURITY REPORT: VOLUME I

16

Security of Applications
The previous section presented information from the Software Supplier perspective in an attempt to help enterprises
change policies and processes, properly manage application risk in organizations, and protect critical software infra-
structure. It also proposed mechanisms to identify and enforce that acceptable levels of security quality are met by
internal and external development teams.

It is important to note that no software will ever be perfectly secure. Understanding the nature of software vulnerabil-
ities themselves and how they contribute to enterprise security risk once they reside in an application regardless
of how they got there helps us on the path of maturing application security as a discipline. Building in high levels
of “manufacturing level” security quality is eminently doable, and buyer and supplier expectations on acceptable
security quality should be no different than that for other complex products such as automobiles that have material
consequences to security failures. This section of the report is designed to provide vulnerability level information to
assist with implementing mitigating controls and proper application risk management strategies.

As background, software vulnerabilities are the attack points in applications used by hackers to compromise a
system. Different types of applications have different attack points that can be used by a hacker in different ways.
For example, web applications have different attack surfaces than non-web applications such as desktop software
or databases. Additionally, vulnerabilities can vary significantly by programming language and platforms such as the
Windows versus BlackBerry operating systems. It is also possible for applications in different industries to have
different vulnerabilities based on the secure coding skills of the engineering population serving those industries
(e.g. Financial Services versus Retail) and the sophistication of their software development practices or central secu-
rity teams. In this section we will explore which types of applications are being analyzed by Veracode’s cloud-based
services platform, what vulnerabilities are being discovered, and the subsequent implications for application risk
management programs.

Distribution of Application by Type

All applications analyzed by Veracode are inventoried and classified according to a profile which includes key character-
istics such as whether the application is web-facing, its language and platform, and the industry of the organization
submitting it. All applications were deemed important enough to warrant a security review given the security risk for
their business and the customer, partner, employee data, and/or financial transactions they supported. Not surprisingly,
the majority of applications analyzed were web (60%) versus non-web (40%). This reflects the justified concerns of
submitters that web application risks are high and attack vectors well known and constantly being exploited (e.g. SQL
Injection, Cross-site Scripting).

VERACODE STATE OF SOFTWARE SECURITY REPORT: VOLUME I

17

Distribution of Applications by Language

An analysis of the Distribution of Applications by Language is a useful indicator of the enterprise market’s preference
for developing applications of a certain type and platform. For instance, it is useful for peer benchmarking purposes
to understand similarities or differences in enterprise development for highly critical web-facing applications. Do they
prefer Java or .NET? If so, what is driving the preference and what are the implications for developers from a training
perspective? Understanding the distribution of applications by language is also important in that it is a leading
indicator and reasonable proxy for the ever-changing attack surface of the world’s software infrastructure. As we
have seen, attackers tend to focus on more broadly deployed platforms and increase their activity as platform gains
market share. For example, Apple’s recent success in topping 10% market share in 2009 and growing iPhone market
share from 11.2% in the fourth quarter of 2008 to 16% in the fourth quarter of 2009, has seen rapid rise in attacks
on both the Mac and iPhone platforms.11 The following graph shows the distribution of applications submitted for
analysis. These languages represent the most popular programming languages used for web, network, server, PC,
device, and mobile software applications.

Web Applications

Non-Web Applications

40%

60%

Java

C/C++

.NET

47%

22%31%

Web vs Non-Web Applications

Applications by Language Family

11 www.infosecurity-us.com/view/6841/security-and-malware-threats-to-mac-and-apple-products-are-on-the-rise-/

Figure 8: Web vs Non-Web Applications

Figure 9: Applications by Language Family

VERACODE STATE OF SOFTWARE SECURITY REPORT: VOLUME I

18

Distribution of Applications by Vulnerability Type

Once an understanding has been gained regarding the programming languages used to deploy business critical
infrastructure, it is important to understand the types and prevalence of the vulnerabilities across Application Type
and Languages. This is an important next step in determining the overall threat exposure, the ease of exploit of
vulnerabilities and the ultimate implementation of corrective actions to mitigate risk. The charts below depict top
vulnerability categories by Vulnerability Prevalence across web and non-web applications and rank of the Top 15
vulnerabilities. The rows highlighted in red are vulnerability categories that also appear in the CWE/SANS Top 25 or
OWASP Top 10 standards. There is considerable overlap between Veracode findings and these industry standards
further confirming the relevance of these vulnerability categories as top areas of security weakness to focus on
for enterprises.

Two types of vulnerability prevalence are presented below. The first is Vulnerability Frequency, which illustrates the
share of the total vulnerabilities discovered. The second is Affected Application, which shows the percentage of
applications containing one or more of the vulnerabilities in each category.

Cross-site Scripting (XSS)

Information Leakage

CRLF Injection

Cryptographic Issues

Buffer Overflow

Numeric Errors

Directory Traversal

Error Handling

SQL Injection

Time and State

Buffer Management Errors

Potential Backdoor

Credentials Management

Encapsulation

API Abuse

5%0% 10% 15% 20% 25% 30% 35%

33%

22%

8%

6%

6%

6%

5%

4%

3%

2%

2%

1%

1%

1%

1%

Indicate categories that are in the OWASP Top 10
or CWE/SANS Top 25

Cross-site Scripting
prevalence remains
high despite the wide
availability of libraries
intended to eliminate
the risk via output
encoding.

Top Vulnerability Categories (Overall Prevalence)

Figure 10: Top Vulnerability Categories (Overall Prevalence)

Cross-site Scripting, which was the most prevalent vulnerability category by Frequency and the third most prevalent
by Affected Applications, is an illustration of the challenges of writing secure code. After years of focus on Cross-site
Scripting it remains a serious security threat. The continued high prevalence of the vulnerability is a factor both of the
pervasive nature of the problem and the increasing threat landscape (e.g. higher use of dynamic content generation).
The prevalence remains high despite the wide availability of libraries intended to eliminate the risk via output
encoding. It may suggest that developers are focusing more on writing strong functional code and hitting ship or
deployment dates. It may also mean that development practices are relatively immature as they relate to security
testing and that proper threat modeling and security testing processes have either not been implemented or are
failing to detect common vulnerabilities for other reasons.

The most prevalent vulnerability category by Affected Application was
cryptographic issues. These included insufficient entropy, plain text
storage of sensitive data, use of hardcoded cryptographic keys, and use
of algorithms with inadequate encryption strength. Cryptographic issues
are often not well understood by developers, so developer education is
an important component of mitigating this risk category. Clearly this is
an important and negative trend given the focus of hackers in accessing
confidential data.

VERACODE STATE OF SOFTWARE SECURITY REPORT: VOLUME I

19

Cryptographic Issues

Information Leakage

Cross-site Scripting (XSS)

Directory Traversal

CRLF Injection

Time and State

SQL Injection

Credentials Management

Numeric Errors

Error Handling

API Abuse

Buffer Overflow

Encapsulation

Buffer Management Errors

Insufficient Input Validation

5%0% 10% 15% 20% 25% 30% 35% 40% 45%

37%

33%

29%

25%

23%

20%

18%

15%

15%

13%

13%

8%

8%

7%

44%

Indicate categories that are in the OWASP Top 10
or CWE/SANS Top 25

Cryptographic issues are
often not well understood.
Developer education is an
important component of
mitigating this risk category.

Top Vulnerability Categories (Percent of Application Affected)

Figure 11: Top Vulnerability Categories (Percent of Application Affected)

Both prevalence rankings should be considered when evaluating the seriousness of a risk category. For instance,
SQL Injection has a relatively small share of the overall vulnerability population (3%), but is found in 20% of all
applications assessed. Some less severe vulnerability categories may occur hundreds of times within an application,
while other more severe vulnerabilities only appear a few times.

Vulnerabilities by Language Distribution

The table below presents the most prevalent categories (by share of total vulnerabilities discovered) based on
language family. One interesting aspect was the unusually high frequency of Cross-site Scripting vulnerabilities in
.NET applications. This can be attributed to developer use of .NET controls that do not automatically encode output.

VERACODE STATE OF SOFTWARE SECURITY REPORT: VOLUME I

20

Java C/C++ .NET

Vulnerability Distribution by Language

Cross-site Scripting (XSS) 34%

Information Leakage 31%

CRLF Injection 12%

Cryptographic Issues 6%

Directory Traversal 5%

SQL Injection 4%

Time and State 3%

Credentials Mgmt 1%

Encapsulation 1%

API Abuse 1%

Buffer Overflow 32%

Numeric Errors 28%

Error Handling 18%

Buffer Mgmt Errors 8%

Potential Backdoor 6%

Cryptographic Issues 3%

Directory Traversal 1%

Dangerous Functions 1%

Time and State <1%

Untrusted Search Path <1%

Cross-site Scripting (XSS) 64%

Cryptographic Issues 13%

Directory Traversal 8%

CRLF Injection 5%

Information Leakage 5%

SQL Injection 1%

Insufficient Input Validation 1%

Credentials Mgmt 1%

Numeric Errors 1%

Error Handling 1%

Table 3: Vulnerability Distribution by Language

Distribution of Vulnerability Type by Application Input Vector

An analysis of Vulnerabilities by Input Vector is important
as one way to determine the ease of exploit by a potential
attacker. For example, web-based vectors are the highest
risk because they are directed over the network and
potentially from anonymous actors. File and database vec-
tors, in comparison, require an attacker to first get attack
data onto the local file system or into the database. These
types of attacks typically require exploiting a second
vulnerability to be successful and require higher degrees
of attacker sophistication.

Veracode’s static binary analysis identifies code paths that are vulnerable to data that may be tainted by an attacker;
some of these types of attacks include cross-site scripting, path manipulation, and SQL injection. The analysis draws
a distinction between code vulnerabilities that can be triggered via data from a web request and those triggered with
data coming from other vectors such as data stored in a file or persisted in the database.

An understanding of application vulnerabilities by Industry Group is useful given that skill sets and often language
and platform usage vary by industry and can contribute to overall security risk exposure. The following table shows
vulnerability distributions by Industry Group. As you can see, software developed by the Software industry reflects
the prevalence of an unmanaged programming language such as C/C++. Unmanaged code is vulnerable to additional
categories of vulnerabilities such as buffer overflow and numeric errors. These categories have higher prevalence in
the software-related industry group.

VERACODE STATE OF SOFTWARE SECURITY REPORT: VOLUME I

21

Flaw Type by Input

Flaw Type Web-Based Input Vector Non-Web-Based Input Vector

Cross-site Scripting (XSS)

Path Manipulation

SQL Injection

60.4%

33.0%

54.2%

39.5%

67.0%

45.8%

Web-based Input Vectors are the
highest risk. File and database vec-
tors, in comparison, typically require
exploiting a second vulnerability to be
successful and require a higher degree
of attacker sophistication.

Table 4: Flaw Type by Input

Industry group definitions

The Finance-related industries group combines applications from the
Financial Service, Insurance, and Banking industries (self identified);
the Computer-related industries category combines applications from
the Computer Software, Computer Services, and Security Products
and Services industries (self identified); Government is unclassified
US federal, state, and local government agencies (self-identified).

Finance-related Software-related Government

Vulnerability Distribution by Industry

Cross-site Scripting (XSS) 35%

Information Leakage 21%

CRLF Injection 5%

Cryptographic Issues 5%

Directory Traversal 3%

SQL Injection 2%

Buffer Overflow 2%

Time and State 2%

Encapsulation 1%

Potential Backdoor 1%

Credentials Mgmt 1%

Error Handling 1%

Numeric Errors <1%

Insufficient Input Validation <1%

API Abuse <1%

Cross-site Scripting (XSS) 19%

Information Leakage 17%

Numeric Errors 11%

Buffer Overflow 8%

Cryptographic Issues 6%

Error Handling 6%

Directory Traversal 5%

CRLF Injection 4%

SQL Injection 3%

Buffer Mgmt Errors 3%

Time and State 2%

Potential Backdoor 1%

Credentials Mgmt 1%

API Abuse <1%

Dangerous Functions <1%

Cross-site Scripting (XSS) 53%

Information Leakage 12%

CRLF Injection 6%

Buffer Mgmt Errors 4%

SQL Injection 3%

Cryptographic Issues 2%

Numeric Errors 2%

Encapsulation 1%

Directory Traversal 1%

Credentials Mgmt 1%

OS Command Injection 1%

Time and State 1%

Buffer Overflow 1%

API Abuse <1%

Insufficient Input Validation <1%

VERACODE STATE OF SOFTWARE SECURITY REPORT: VOLUME I

22

Cross-site Scripting and
Information Leakage ranked
as the top two vulnerability
categories across software
from all industries.

Table 5: Vulnerability Distribution by Industry

Distribution of Application Security Performance by Business Criticality

Many submitters use Veracode’s risk adjusted benchmark to compare Inter-
nally Developed versus externally sourced applications. Grounded in industry
standards (CWE, CVSS and NIST) it has a sliding scale, requiring applications
of higher business criticality (assurance levels) to have a higher degree of
security quality. This pragmatic approach allows organizations to optimize
their remediation effort and expense intelligently across their portfolio rather
than spend excessively to bring less business critical applications up to the
same standard as highly critical applications.

Given the higher security required for the most business critical applications, it is not surprising that only 24% of
applications designated “Very High” were found to have acceptable security on first submission. Similarly, we would
expect to see a significantly higher percentage of Medium criticality to have adequate security. This proved to be true
with 70% of all such applications passing upon first submission.

VERACODE STATE OF SOFTWARE SECURITY REPORT: VOLUME I

23

Only 24% of applications
designated “Very High”
critically were found to
have acceptable security
on first submission.

10%0% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Acceptable Not Acceptable

47% 53%

24% 76%

70% 30%

Very High

High

Medium

Application Performance by Business Criticality on First Submission

Figure 12: Application Performance by Business Criticality on First Submission

We explored the impact of industry on the application ratings above, given the potential that some industry verticals
could have more security-aware development teams and more formal development practices. Our analysis proved to
be surprising as Software-related Industries fared the worst
with only 34% being deemed acceptable, while Financial and
Government applications were at the top with more than half
acceptable upon first submission. The information below
further highlights the need for enterprises to address third-party
security risk should they choose to purchase or outsource
significant portions of their application development efforts.

VERACODE STATE OF SOFTWARE SECURITY REPORT: VOLUME I

24

Software-related Industries fared
the worst and Financial-related and
Government Industries were at the
top in terms of acceptable security
on first submission.

All Industries

Finance-related

Government

Software-related

Other

10%0% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Acceptable Not Acceptable

34% 66%

52% 48%

50% 50%

42% 58%

40% 60%

Application Performance by Industry on First Submission
(Adjusted for Business Criticality)

Figure 13: Application Performance by Industry on First Submission

(Adjusted for Business Criticality)

Application Threat Space Trends
Without context, data and statistics have limited meaning. Context is especially important for application risk man-
agement. Throughout this report we have added the context of application origin, platform, language, and industry to
our vulnerability data. Now let’s add the most important context for software security: the Application Threat Space,
translated as “connecting the code base to the threat space.”

Not easily picked out in the data above is evidence of new attack trends that leverage vulnerabilities in software to
breach corporate data. Software vulnerabilities like those found by Veracode are being used in new and creative
ways by attackers for targeted attacks. This trend will continue. However, in addition to being used to compromise
systems and access data, software vulnerabilities are being used to breach perimeters.

For example, it is telling that one third of all web applications analyzed had
SQL Injection vulnerabilities. This easy-to-find and easy-to-prevent vulnera-
bility is still a significant problem. SQL Injection has always been a favorite
of attackers because of the ease of exploit, the proliferation of web applica-
tions, and the vulnerability’s locality to valuable data. Indeed, many reports
say it is vulnerability #1 for data breaches.12 A new trend that was revealed
in the Heartland Payment Systems credit card data breach is the wide-
spread use of SQL Injection in a high profile attack as a way to bypass

perimeter controls. This is a new risk to organizations that requires all internet facing web applications be free from
SQL Injection vulnerabilities, not just the web applications that access sensitive data.

The Google attack of December 2009 is another example. Attackers leveraged a zero day vulnerability in Internet
Explorer to breach the firewall at Google. Commercial software on an employee workstation with outbound access
to the Internet was used as a bridge to the internal network. Attackers needn’t exploit a web browser vulnerability.
They could have taken advantage of any vulnerable software installed on the workstation that received data from the
Internet. Document editors and viewers, browser plugins, media players, chat programs, games, even Microsoft
Paint,13 could all have been the culprit.

The overarching trend here is organizations cannot only worry about their critical server applications—the applications
processing the valuable transactions and holding valuable data. Attackers are reaching their goal by using vulnerabili-
ties in any software that they can send data to: web apps, desktop apps and soon mobile apps.

VERACODE STATE OF SOFTWARE SECURITY REPORT: VOLUME I

25

In addition to being used
to compromise systems
and access data, software
vulnerabilities are being
used to breach perimeters.

Organizations cannot only worry about their
critical server applications; the ones processing
the valuable transactions and holding valuable
data. Attackers are using vulnerabilities in any
software which they can send data to in order
to reach their goal: web apps, desktop apps and
soon mobile apps.

12 UK Security Breach Investigations Report, Trustwave’s Global Security Report for 2010, and Verizon’s 2009 Anatomy of a Data Breach Report
13 Vulnerability in Microsoft Paint Could Allow Remote Code Execution

At Veracode we are now starting to collect data on mobile application vulnerabilities, both coding errors and inten-
tional malicious code. Given the trends we have seen in the last few years of attackers utilizing end user desktop
software as a bridge to enable data theft it is likely that mobile apps will increasingly serve this purpose also. The
supply chain for mobile apps is seemingly more controlled. Many mobile applications are delivered from platform
supplier app stores. But unfortunately these app stores are not performing security testing so this is likely a false
sense of low risk. In addition most mobile apps are installed by end users with little management by central IT
teams. This is a recipe for the type of malware and spyware that infested the desktop over the past 10 years.

Another Threat Watch area is social networking applications. This is a rich frontier for phishing and spearphishing
attacks leveraging the inherent trust users give to information, web links and other data they receive through these
platforms. Most social network platforms are extensible and allow developers to build small applications known as
plug-ins that tightly integrate into the social networking user interface and user data. Vulnerabilities in these
applications and intentional malicious code could prove harmful to individuals and organizations.

The threat environment coupled with the state of application security detailed in our report should be a call to action
for any organization that builds its own applications or purchases software. It is your entire application inventory that is
putting your organization at risk. Veracode recommends instituting internal controls that require software security be
measured before an application is deployed or purchased. A quality bar can then be put in place and failing software
can be sent back to the developers for remediation.

Without a change in the way organizations are protecting them-
selves from the exploitation of software vulnerabilities, progress
won’t be made. Patching quicker and updating antivirus and
IDS/IPS signatures faster is not stemming the tide. The Application
Threat Space moves extremely quickly. Veracode recommends
keeping the layered defenses but shifting some resources to fixing
the root cause of data compromise which are without doubt the
software vulnerabilities themselves.

VERACODE STATE OF SOFTWARE SECURITY REPORT: VOLUME I

26

Without a change in the way
organizations are protecting
themselves from the exploitation
of software vulnerabilities we
don’t see progress being made.
Patching quicker and updating
antivirus and IDS/IPS signatures
faster is not stemming the
tide. The threat space moves
too quickly.

Addendum
Methodology

About Veracode’s Assessment and Rating Methodologies

The Veracode SecurityReview uses static and dynamic analysis (for web applications) to inspect executables and
identify security vulnerabilities in applications. Using both static and dynamic analysis helps reduce false negatives
and detect a broader range of security vulnerabilities. The static binary analysis engine creates a model of the data
and control flow of the binary executable; the model is then verified for security vulnerabilities using a set of auto-
mated security scans. Dynamic analysis uses an automated web scanning technique to detect security vulnerabilities
in a web application at runtime. Once the automated process is complete, a security analyst verifies the output to
ensure the lowest false positive rates in the industry. The end result is an accurate list of security vulnerabilities for
the classes of automated scans applied to the application.

About Software Assurance Levels

The foundation of the Veracode rating system is the concept that higher assurance applications require higher
security quality scores to be acceptable risks. Lower assurance applications can tolerate lower security quality. The
assurance level is dictated by the typical deployed environment and the value of data used by the application. Factors
that determine assurance level include reputation damage, financial loss, operational risk, sensitive information
disclosure, personal safety, and legal violations.

About the Data Set

The data represents 1,591 applications submitted for analysis by large and small companies, commercial software
providers, open source projects, and software outsourcers. An application was counted only once even if it was
submitted multiple times as vulnerabilities were remediated and new versions uploaded. The report contains findings
about applications that were subjected to static, dynamic, or manual analysis through the Veracode SecurityReview®

Platform. The report considers data that was provided by Veracode’s customers (application portfolio information
such as assurance level, industry, application origin) and information that was calculated or derived in the course of
Veracode’s analysis (application size, application compiler and platform, types of vulnerabilities, Veracode rating).

In any study of this size there is a risk that sampling issues will arise because of the nature of the way the data was
collected. For instance, it should be kept in mind that all the applications in this study came from organizations that
were motivated enough about application security to engage Veracode for an independent assessment of software
risk. Care has been taken to only present comparisons where a statistically significant sample size was present

About the Findings

Unless otherwise stated, all comparisons are made on the basis of the count of unique application builds submitted
and rated.

VERACODE STATE OF SOFTWARE SECURITY REPORT: VOLUME I

27

VERACODE STATE OF SOFTWARE SECURITY REPORT: VOLUME I

28

Assurance Level Definitions
Veracode’s Business Criticality designations are based on the Assurance Level standard developed by NIST, as
detailed below:

Very High (AL5)

This is typically an application where the safety of life or limb is dependent on the system; it is mission critical the ap-
plication maintain 100% availability for the long term viability of the project or business. Examples are control software
for industrial, transportation or medical equipment or critical business systems such as financial trading systems.

High (AL4)

This is typically an important multi-user business application reachable from the Internet and is critical that the
application maintain high availability to accomplish its mission. Exploitation of high assurance applications cause
serious brand damage and business/financial loss and could lead to long term business impact. Exploitation is a
result of a breach in any two impact categories of confidentiality, integrity and availability of the application.

Medium (AL3)

This is typically a multi-user application connected to the Internet or any system that processes financial or private cus-
tomer information. Exploitation of medium assurance applications typically result in material business impact resulting
in some financial loss, brand damage or business liability. Exploitation is a result of a breach in confidentiality, integrity
or availability of the application. An example is a financial services company’s internal 401K management system.

Low (AL2)

This is typically an internal only application that requires low levels of application security such as authentication to
protect access to non-critical business information and prevent IT disruptions. Exploitation of low assurance applica-
tions may lead to minor levels of inconvenience, distress or IT disruption. An example internal system is a conference
room reservation or business card order system.

Very Low (AL1)

Applications that have no material business impact should its confidentiality, data integrity and availability be affected.
Code security analysis is not required for this assurance level and security spending should be directed to other
higher level assurance applications.

Table 6: Business Criticality Descriptions

Source: U.S. Government. OMB Memorandum M-04-04; NIST FIPS Pub. 199

Business Criticality

Very High

High

Medium

Low

Very Low

Description

Mission critical for business/safety of life and limb on the line

Exploitation causes serious brand damage and financial loss with long term business impact

Applications connected to the Internet that process financial or private customer information

Typically internal applications with non-critical business impact

Applications with no material business impact

VERACODE STATE OF SOFTWARE SECURITY REPORT: VOLUME I

ABOUT VERACODE

Veracode is the world’s leader in cloud-based application risk management. Veracode
SecurityReview is the industry’s first solution to use patented binary code analysis, dynamic
web assessments, and partner or Veracode delivered manual penetration testing, combined
with developer e-learning and access to open source security ratings to independently
assess and manage application risk across internally developed applications and third-party
software without exposing a company’s source code. Delivered as a cloud-based service,
Veracode provides the simplest, most complete, and most accurate way to implement
security best practices, reduce operational cost and comply with internal security policies
or external standards such as OWASP Top 10, CWE/SANS Top 25 and PCI.

Veracode, Inc.
4 Van de Graaff Drive
Burlington, MA 01803

Tel +1.781.425.6040
Fax +1.781.425.6039

www.veracode.com

SSSR/0310

Software Security Simplified

