
Identity-Enabled Web Services
Standards-based identity for Web 2.0—today

white paper

Overview
Web Services are emerging as the preeminent method for program-to-
program communication across corporate networks as well as the Internet.
Securing Web Services has been a challenge until recently, as typical Web
authentication and authorization techniques employed browser-to-server
architectures (not program-to-program). This resulted in user identity ending
at the Web Application Server, forcing the Web Services Provider to trust
blindly that the Web Services Requester had established identity and trust with
the end user. Moreover, this mechanism did not provide any way for the Web
Services Provider to verify the authenticity of the request. What was needed
is a way to provide end-to-end federated identity that spans all the way from
the Web browser to the Web Services Provider—Identity-Enabled Web
Services.

The convergence of Internet security standards has enabled Web Services and
Web 2.0 to become a reality. Security Assertion Markup Language (SAML), an
OASIS standard, has emerged as the lingua franca between Web browsers,
Web application servers and Web Services Providers that use Simple Object
Access Protocol (SOAP). SAML provides a common mechanism that allows
identity to be passed through all layers. A WS-Trust Security Token Service
(STS) is a “Rosetta Stone,” translating between domain-specific security
tokens and SAML—the glue that makes it all happen. Deploying an STS is the
quickest, simplest and most scalable route to Identity-Enabled Web Services.

2

white paper

Introduction

Web Services are a gateway technology that provides interoperability across
a wide variety of other software technologies. Typical enterprise deployments
include using Web Services to enable (“webify”) legacy systems, mainframe,
ERP and CRM systems. What all of these “back-end” technologies have in
common is that they are vital to the enterprise’s long-term interest, and they
generally lack the ability to communicate with modern systems like Web and
application servers. Web Services are a set of technologies that communicate
using modern, open standards like HTTP and XML to enable connectivity to
the enterprise’s core transactional and data-rich back-end legacy systems.

The latest incarnation of distributed computing frameworks are Service
Oriented Architecture (SOA), which are most often implemented with SOAP
and REST (Representational State Transfer) Web Services. Some of the major
architectural principles driving the adoption of Web Service-based architectures
are the ability to use open standards (e.g. XML, SOAP, WS-Security, and HTTP)
and a focus on interoperability, reuse and loose coupling. Fundamentally, when
a Web Service Requester and a Web Service Provider communicate with one
another, they should not know or be dependent upon the underlying details of
each other’s implementation—they are loosely coupled using a message-based
integration.

Message-based integration separates Web Services architecture from its
predecessors. For example, in the 1990s, J2EE application servers like
WebLogic® and WebSphere® were integration workhorses. J2EE clients
communicated with J2EE servers using proprietary, binary protocols and
formats such as a WebLogic client talking to a WebLogic server. The advent
of XML enabled replacement of proprietary interfaces with XML-based open
standards.

The Web Services Identity Challenge

Until now, most Web Services deployments relied on application- or system-
level authentication to establish trusted user identity. In effect, a Web Services
Provider validates the identity of the Web Service Requester–the application
issuing the SOAP request–requiring it to trust whatever is contained in the
message body. This trust model is not fully secure, however, because this
scheme lacks any way to verify the authenticity of the request, leaving the door
open for potential attack.

A typical incremental improvement over blindly trusting the request is to use
mutual authentication mechanisms available in transport protocols such as
HTTP and TLS. This approach markedly improves the channel security so
that the Web Service provider has high confidence that a trusted host sent
the message. However, the contents of the message, such as data payload,
are still unverifiable, which still leaves the potential for an inside-the-firewall
attack. The net result is that the business logic and decisions executed by
the Web Services provider are not based on verifiable information. This is a
subprime situation, particularly for mission- and business-critical applications.

In addition, increasing regulatory compliance and audit requirements are
forcing organizations to consider a higher assurance level for user identity in
Web Service transactions. Unfortunately, those needing a greater assurance
level of the user’s identity were forced to implement proprietary mechanisms
with questionable levels of usability, manageability, and scalability—until now.
Increasing compliance requirements and the increasingly interconnected
nature of computing resources dictate a higher level of user identity assurance
in their SOA environment.

Fortunately, three open standards—Web Services Security (WSS), Security
Assertion Markup Language (SAML) and Web Services Trust (WS-Trust)—lay
the foundation for a solution that allows trusted user identity information to be
included in each SOAP request. The result: Identity-Enabled Web Services.

3

white paper

Web Service Security Standards

Securing Web Services involves delivering the same security services that are
involved in securing any resource. Namely, based on business requirements,
the architect/developer has to consider the following security functions when
an organization chooses to use Web Services:

•	Confidentiality

•	 Integrity

•	Authentication

•	Authorization

However, since Web Services architectures decouple the Service Requester
and Service Provider, the ability to seamlessly mediate authentication and
authorization is no longer possible due to the cross-domain nature of these
applications. Over the last three to five years, groups like OASIS and W3C
developed open standards to ensure that organizations do not have to invent
proprietary mechanisms to address these security requirements for Web
Services. The standards that provide these mechanisms are WS-Security,
WS-Trust, and SAML.

WS-Security
WS-Security is an OASIS Web Services security standard widely implemented
in all major SOAP engines such as IBM® WebSphere, Microsoft® .Net and
Apache Axis. It defines mechanisms that specifically address SOAP message
security. WS-Security does not define any new SOAP security mechanisms;
rather it describes how to apply existing security standards to address

confidentiality, message integrity, authentication and authorization within a
SOAP message.

Confidentiality and message integrity are addressed via XML Encryption and
XML Signature. XML Signature and XML Encryption are relatively mature
standards developed within the W3C. WS-Security defines specific bindings for
applying XML Signature and XML Encryption to SOAP.

Authentication and authorization are addressed via different profiles
for conveying security tokens in WS-Security headers. Security tokens
can contain identity information that allows the Web Service Provider to
authenticate the identity of the user related to the SOAP request. A valid
security token allows a Web Service to make appropriate authorization
decisions based on the subject of the token. This is accomplished without
requiring the user to re-authenticate directly to the Web service, in essence
enabling single sign-on (SSO).

WS-Security defines profiles for securely conveying different types of
security tokens. This includes profiles for Kerberos tickets, X.509 certificates,
Username/Password tokens, SAML Assertions and XRML Licenses. Recall
that Web Services are fundamentally integration gateway technologies, so
by definition there is likely to be a number of different security tokens in the
deployment mix.

WS-Trust
WS-Trust is an OASIS standard that defines a message protocol for the
retrieval or validation of security tokens from a Security Token Service

Web Service
Requester

Web Service
Provider

WS-Security (Security Token)

SOAP Message

WS-Security Passes Identity Information via Security Token Embedded in SOAP Message

4

white paper

(STS). Security tokens can then be conveyed in the WS-Security headers
of a SOAP request via the applicable WS-Security token profile. WS-Security
provides the ability to attach a security token to a message so that services
make better security decisions. WS-Trust provides the architectural capability
to communicate secured messages to Services across a heterogeneous
environment.

SAML
The Security Assertion Markup Language (SAML) standard is also an OASIS
product. SAML defines protocols and profiles for enabling identity federation
within the constraints of different use cases. The most well known example of
these use cases is browser-based secure Internet SSO.

The SAML specification also defines a security token called a SAML Assertion. A
SAML Assertion is a secure and trusted identity statement that can be used with
WS-Security (via the WS-Security SAML Token Profile) to facilitate authentication,
SSO and authorization between a Web Services Requester and a Web Services
Provider.

SAML is well adopted in facilitating browser-based SSO, but what happens to
the security posture of the application once the user clicks “Submit” in the
browser? The Web server likely communicates with a wide variety of back-end
integration technologies that use Web Services. WS-Security and WS-Trust
provide a trust backbone to move these tokens around the system in a policy-
based way.

In summary, a Web Service Requester uses WS-Trust to communicate with
a Security Token Service (STS), which issues a trusted SAML Assertion that
represents the user’s identity. The Web Service Requester includes the SAML
Assertion in the WSS headers of each SOAP request. The STS becomes a trust
aggregator and arbiter.

To validate the SAML Assertion, the Web Service Provider needs to trust the
STS that issued the SAML Assertion. Alternatively, the Web Service Provider
can use an STS to validate the SAML Assertion itself. The SAML Assertion
contains the relevant information that allows the Web Service Provider to
make appropriate authentication and authorization decisions.

Identity-Enabled Web Services

Most Web Service Providers are a new interface into legacy systems. These
systems will continue to retain authorization models that require some
form of trusted user identifier or trusted user role that are used to make
authorization decisions before processing the request. As such, a Web Service
Provider needs to address the following question before it can process a SOAP
message: “Who is this SOAP message about and how can I trust that this is
the case before I allow this request to be processed?”

Web Service
Requester

Web Service
Provider

WS-Security (Security Token)

SOAP Message

Security
Token

Service

W
S-

Tr
us

t (
Va

lid
at

e)W
S-Trust (Issue)

WS-Security Passes Identity Information via Security Token Created by STS

5

white paper

This trust establishment can be accomplished in a number of ways. The Web
Service Provider can choose to authenticate and trust the application that sent
the SOAP message. In this case, the Web Services provider trusts that the
Web Service Requester application can make requests on behalf of the user,
and that the Requester has validated the identity of the user. In essence, the

Provider trusts all messages from the Web Service Requester implicitly. This
means that any strong user identity that is established through SAML browser-
based Internet SSO is lost between the Requester and the Provider.

An alternative approach is for the Web Service Provider to authenticate and
trust the entity that invoked the original request, enabling end-to-end security.
In this case, the Web Service Provider seeks confirmation that the actual user
originated the request, implying that user identity must be passed through to
the Web Service Provider.

A SAML Assertion can represent the identity of the Web Service Requester
application sending the SOAP message, or it can represent the identity of the
user that originated the request. In either case, Web Service Requesters must
acquire a security token to access Web Services in different security domains.
This is accomplished in a number of ways:

•	Web Service Providers can trust and validate different security tokens
from different Web Service Requesters in different security domains. This
becomes expensive as the number of Web Service Requesters in disparate
security domains increases. For example, a Web Service Provider trusts a
user’s Kerberos ticket from Web Service Requesters running on Windows
desktops and a session cookie from users accessing a Web portal that
initiates SOAP requests.

•	Web Service Requesters can acquire different security tokens for accessing
Web Service Providers in different security domains. This becomes
expensive as the number of Web Service Providers in disparate security
domains increases. For example, a Web Service Requester needs an
X.509 certificate to access a Web Service in security domain A and a
proprietary token to access a second Web Service in security domain B

•	Web Service Requesters and Web Service Providers can use a common,
shared security token format and perform a local translation from their
local security token into the common (shared) format. This standards-
based approach is more flexible, scales better, and costs less.

Web
Browser

Web
Portal

Cookie (P)

Application A

Web
Service
Provider

SAML (A)

Trust

User P

Web Service Provider Must Implicitly Trust the Application

Web
Browser

Web
Portal

Cookie (P)

Application A

Web
Service
Provider

SAML (P)

Trust

User P

Ideal Situation: Web Service Provider Trusts the User, Enabling End-to-End Security

6

white paper

While all of these methods for handling security tokens are valid, the
industry is converging on the SAML Assertion as the shared, common
security token format for Web Services. The SAML Assertion allows Web
Service Clients and Web Service Providers in different security domains
to securely communicate identity information that can then be used for
authentication and authorization. In addition, the flexibility of the SAML
Assertion allows Web Service Providers to support different authorization
models while only handling a single security token format.

The Role of the SAML Assertion

SAML is an OASIS standard that defines XML protocols and profiles for
enabling identity federation. The most well known example is secure Internet
SSO between browsers and Web applications.

The SAML specification defines a security token called a SAML Assertion. The
SAML Assertion is a secure and trusted identity statement that can be used
with WS-Security to facilitate authentication, SSO and authorization between
a Web Service Requester and a Web Service Provider. WS-Security defined a
specific profile that describes how to use SAML Assertions with WS-Security.
This is known as the WS-Security SAML Token Profile.

As a security token, the SAML Assertion has many unique properties that
make it extremely useful for Identity-Enabled Web Services. The SAML
Assertion:

•	 Is an open standard

•	Leverages XML syntax in an XML
document

•	Supports heterogeneous
environments

•	 Is flexible and extensible

•	Conveys authentication, attribute and
authorization information

•	 Is optionally self-validating

Alternative security tokens all present
significant challenges when you attempt
to use them to identity-enable Web
Services:

Session Cookies—all of the session
and SSO tokens used by Web Access Management products are proprietary
in nature. They all convey similar information but have different proprietary
syntaxes and are secured in different ways. In fact, one of the fundamental
drivers for the original creation of the SAML Assertion specification was that
the Web Access Management vendors needed to agree on a common security
token format to enable interoperability between their products.

Kerberos Tickets—while Kerberos is an open standard, it was never
designed to cross domains and namespaces. It has proven difficult to establish
an environment where Kerberos tickets issued in one security domain can be
trusted for accessing resources in a different security domain. This has proven
to be true for many reasons, including network security and firewall issues,
lack of information on how to securely enable Kerberos cross-realm trust, an
expectation that all security domains must understand Kerberos, and the lack
of ability to simply convey additional identity information within the Kerberos
ticket.

X.509 Certificates—the Public Key Infrastructure (PKI) trust model and
associated X.509 certificates have proven to be problematic when used at
scale to identify people. Issuing a large number of X.509 digital certificates

Headers & Control Information
• SAML Issuer
• Timers
• Digital Signature

Subject Statement
• Who is the Subject of the Assertion

Authentication Statement
• User Authentication Timestamp
• User Method of Authentication

Attribute Statement
• Additional User Identity Information

Authorization Decision Statement
• Authorization Decisions Made for this User

SAML Assertion

Elements of a SAML Assertion

7

white paper

to identify every individual in a security domain is expensive and difficult to
manage and maintain. Practically speaking, PKI and X.509 lack the ability to
convey directory-centric information such as dynamic attributes and group/role
membership.

The SAML Assertion relies on X.509 certificates and the PKI trust model to
establish trust between different security domains at an organizational rather
than an individual level. As such, only a limited number of digital certificates
and associated keys are required to facilitate inter-domain SSO. An X.509
certificate issued by Certificate Authority Y and states “I am Security Domain
A,” is used to sign SAML Assertions that convey user identity information that
states: “I am User X from Security Domain A.”

The SAML Assertion will become the lingua franca for Identity-Enabled Web
Services. It should be considered the common security token format that
bridges identity and trust between Web Service Requesters and Web Service
Providers in different security
domains, enabling end-to-end
security.

Security Token Service
– Federation for Web
Services

A Security Token Service (STS)
is a system role defined by
the WS-Trust specification.
Web Service Requesters
interact with an STS to request
a security token for use in
SOAP messages. Web Service
Providers interact with an STS
to validate security tokens that
arrived in a SOAP message.
An STS arbitrates between
different security token formats
such that SOAP messages can be executed with knowledge of the complete
“security context” of the request.

An STS is also an implementation of federated identity for Web Services.
Identity federation processing enables trust and allows the integration of
identity information between different security domains. At the core of an STS
is the ability to execute identity federation processing.

Identity federation processing is a multi-step and repeatable process that is
performed regardless of the federation protocols and profiles that are used
to move the resulting security tokens around the network. Identity federation
processing consists of the following three fundamental tasks:

•	Authentication and Trust Establishment
Authentication is required to verify the identity (conveyed as a security
token) of the user in one security domain before creating a different
security token that is trusted by the partner security domain. In
effect, trust is established through the exchange of security tokens.
The validation and creation of security tokens will generally require
cryptography to ensure the security tokens can be trusted and remain
secure, creating further need for appropriate certificate and key
management.

•	User Identity Mapping
A user can be known by different identifiers and different roles in different
security domains. Identity mapping facilitates the ability for a security
token to contain the correct user identity information for use in different
security domains. This identity information can be retrieved from the

Security Token Services Arbitrate Between Multiple
Security Domains using SAML

Web Service
Requester

Web Service
Provider

Security Token (SAML)

SOAP Message

Security
Token

Service

R
equ

est Secu
rity Token

 V
alidation

Security
Token

Service

Domain “A” Domain “B”

R
equ

est Secu
rity Token

 R
espon

se

Secu
rity Token

 V
alidation

 R
espon

se

R
equ

est Secu
rity Token

8

white paper

token itself or from external data sources such as an LDAP directory.
Identity information can include attribute values, such as email address,
role, name, address, favorite color, etc. The information can be used to
personalize the user experience or to make authorization decisions within
the application.

•	Authorization, Auditing and Provisioning
When enabling federation, authorization, auditing, and provisioning—
each with unique security functionality—are all mechanisms that must

be considered. Auditing ensures that the appropriate user and partner
information is logged and persisted for SLA and compliance requirements.
Federated authorization and provisioning are additional processes that can
optionally occur during federation processing. Federated authorization can be
basic, ensuring that the correct role identifier exists in a security token, or
more complex, facilitating the reuse of business policy information between
different security domains. Federated provisioning provides for the dynamic
addition, updating and deletion of user identity information in identity stores
in different security domains. Lightweight, federated provisioning capabilities
facilitate business functions, such as account linking and automated user
account creation.

As an example, a Web Service Requester could ask the STS to issue a SAML
Assertion that represents the secure identity of the user or application
that refers to the body of the SOAP message. The Web Service Requester
is required to establish some form of proof that it is actually authorized
to request the SAML Assertion on behalf of the user. In the case of a rich
desktop application, this could be a Kerberos ticket issued by Microsoft Active

Validate Security
Token

Browser Federation
& SSO

Cell Phones, PDAs,
& Rich Clients

Identity Selectors

SAML

WS-Federation

Information
Cards

REST/SAML

WS-Security/
WS-Trust Security Token

SAML Assertion

Cancel Security
Token

Create SAML
Assertion

Attribute
Retrieval

Attribute
Mapping

Policy
Enforcement

Audit

Account Linking/
Provisioning

Web Services Federation
& SSO

Security Token Service (STS)

Security Token Services Translate Security Tokens into SAML Assertions

Authentication &

Identity Stores

Rich Desktop Application
(WS Requester)

Security Token
Service (STS)

Web Service
Provider

Exchange Kerberos ticket

for SAML Token

WS Request includes
WS-Security header containing

SAML Token

WS Request includes
WS-Security header containing

SAML Token

Session
Cookie

1

2

3

3

Optionally validate
SAML Token

41

Kerberos

Ticket

Web Portal
(WS Requester)

Security Token
Service (STS)

Web Application

Exchange session cookie

for SAM
L Token

2

Session
Cookie1

Security Token Services Translate Security Tokens into SAML Assertions

9

white paper

Directory. In the case of a Web portal, this may be a Session Cookie issued
by a Web Access Management product. The Web Service Provider can process
SOAP requests from arbitrary Web Service Requesters with the identity
information of the user conveyed in a standard and secure manner.

Independent Security Token Service

To scale effectively while reducing administrative overhead, identity federation
should be implemented as a standalone federated identity server/STS to
provide an independent layer. This architecture enables:

•	Agility as enterprises become more integrated and start to scale the
number of users, applications and partners that need to be federated

•	Centralized trust to reduce risk, centralize control and simplify compliance

•	 Integration of security domains that are internal and external to the
organization

•	Flexibility to offer a variety of hosting options for Web Services

A standalone federated identity server/STS consolidates federation processing
and administration in one place, creating one doorway by which all identities
in a security domain exit and all identities outside of a security domain enter.
Further, the Federation Server/STS:

•	Centralizes partner management and trust management

•	Arbitrates between SAML Assertions and security token formats for
different security domains both within and external to an organization

•	Allows for linear scaling of processing capability via the addition of
federation servers

•	Centralizes audit information to meet compliance and SLA requirements

•	Allows for additional federation protocols and profiles to be added as
necessary

Conclusion

The notion of identity-enabled or federated Web Services implies that trusted
user identity information is included in each SOAP request in a secure and
standard way, enabling end-to-end Web Services security. As with secure
Internet SSO, federated Web Services can now be completely standards-based
via the combination of WS-Security, SAML and WS-Trust.

Federated Web Services will alleviate the need for point-to-point trust models
and user re-authentication. The SAML Assertion should be the security
token format that is used to identity-enable Web Services, enabling SSO
via a standard security token trusted by all security domains. Organizations
should consolidate the creation and the validation of these SAML Assertions
within an independent, standalone Security Token Service. The STS should
be implemented as an independent layer to scale effectively, reduce
administrative overhead and aggregate trust management.

The concept of user session no longer has to end at the application. Instead,
trusted user identity information can now follow transactions wherever they go
throughout the Web Services environment.

About Ping Identity Corporation
Ping Identity is the market leader in Internet Identity Security, delivering on-premise
software and on-demand services to more than 300 customers worldwide. For more
information, dial U.S. toll-free 877.898.2905 or +1.303.468.2882, email
sales@pingidentity.com or visit www.pingidentity.com.

© 2009 Ping Identity Corporation. All rights reserved. Ping Identity, PingFederate,
PingConnect, PingEnable, the Ping Identity logo, SignOn.com, Auto-Connect and Single
Sign-On Summit are registered trademarks, trademarks or servicemarks of Ping Identity
Corporation. All other product and service names mentioned are the trademarks of their
respective companies.

