

Enterprises understand the importance of securing web applications to pro-

tect critical corporate and customer data. What many don’t understand, how-

ever, is how to implement a robust process for integrating security and risk

management throughout the web application software development lifecycle.

Poorly implemented processes are, at best, ineffective for managing web ap-

plication risk and, at worst, lead to data loss and unacceptable slow-downs in

delivery times.

Securing the web application lifecycle does not have to mean slowing it

down. When web application delivery is implemented in a collaborative, re-

peatable, and process-oriented manner, companies can benefit from more

efficient development models and more secure applications. By integrating

security into the process from the very beginning, companies can short-circuit

expensive and time consuming “gotchas” at the end of the lifecycle. Addi-

tional efficiency can be realized by focusing attention on the most critical ex-

posures and vulnerabilities, such as the SANS Top 25 (http://www.sans.org/

top25errors/) and leveraging automated tools and solutions that seamlessly

integrate with existing development practices.

Executive Overview

Across the

Software Deliver y

Lifecycle
Practical Approaches for

Securing Web Applications
across the

Software Delivery Lifecycle

Contents

Executive Overview 1

Introduction 2

The High Cost of Implementing

Security Testing at the end of the

Cycle

2

Business Benefits of an Integrated

Approach

3

Business Benefits of Integrated,

Composite Testing

4

Building Security In to the Cycle: A

Practical Approach

4

Summary 8

IBM Rational AppScan Portfolio 9

Stay ahead
 of the curve

SecurityCurve

Web applications are the front-ends to most business applications today. Web applications serve a

multitude of disparate functions within a complicated mix of architectures. These range from recently

created service oriented solutions running on the latest cloud technology, to older n-tier web applica-

tions from the mid-90s, to web portals that allow customers access to legacy applications on main-

frames.

Managing the risks associated with these complex web applications is a corporate requirement, and

the underlying security of the code running these web applications directly impacts the risk profile of all

corporate data available to the application. Unfortunately, developing repeatable and efficient web

application security practices is not an easy task. Many organizations have attempted to provide secu-

rity controls by using post-production solutions such as web-application firewalls and intrusion preven-

tion systems.

But waiting until the production phase of the lifecycle can be “too little, too late.” Design or architec-

tural issues that would have been simple to address earlier in the lifecycle become extremely costly to

fix once the application is in production. Web application security vulnerabilities lead to data exposure,

violations, and can contribute to overall cost when patches or comprehensive code fixes are required

after deployment.

To be both effective and efficient, web application security must begin with the requirements definition

phase carried through code development and implementation, and all the way through to the final ac-

ceptance phases. This approach requires that stake holders work together, collaboratively throughout

the process as a team. Use of policy-aware automated tools during phases such as implementation

and testing, enables repeatable testing and can lead to faster development cycles over time as the

testing procedures become standardized.

Building security in from the very beginning of the process doesn’t have to be complicated. When secu-

rity checks and balances are applied throughout the development lifecycle, faster release cycles and a

significant reduction in web application vulnerabilities can be achieved.

Introduction

Building

security in from

the very beginning

of the process

doesn’t have to

be complicated

Page 2 Practical Approaches for Securing Web Applications

Though it may sound counterintuitive, adding milestones and security checkpoints to the process really

can decrease overall delivery time. The reason is that there are significant costs associated with trying

to correct design flaws and coding errors after a web application has been placed into production.

For example, in many development environments, security and audit professionals are brought in at

the very end of the lifecycle. By this point the application has been completed and any delays are seen

The High Cost of Implementing Security Testing at the end of the Cycle

as an unwanted bottleneck. The pres-

sure from the business side to get the

product launched, even if it means

bypassing security controls, may be

significant, resulting in web applications

going live without the proper security

scrutiny. In this extremely time-

sensitive environment, scanning tools

that report 200 exposures without vali-

dation and prioritization can do more

harm than good.

Engaging security and audit late in the

process, rather than collaboratively

throughout the lifecycle, leads to de-

layed release schedules, especially

when showstopper errors are discov-

ered. The cost to fix design and coding

errors late in the cycle is exponentially higher than finding them early in the process. One study, from

the National Science Foundation (NSF)’s Center for Empirically Based Software Engineering (CeBase)

estimates that uncovering and correcting severe software problems during requirements and design is

100 times less expensive than finding it in production.

If that sounds extreme, consider this example - a web application that is being built for an insurance

firm will manage and store social security numbers (SSN). In the traditional model, security and audit

do not see the application until it is being tested prior to deployment. During the security assessment,

the security/audit team discover the SSNs are not encrypted during transmission from the browser

client to the web application server; the web application server in turn sends them to a back-end data-

base without indicating that the data should be stored in encrypted format.

Because the insurance firm must encrypt SSNs during transit and storage for conformance to disclo-

sure laws and emerging encryption laws related to personal information, the lack of encryption violates

corporate policy and governing regulation. The security team asserts that the web application cannot

be deployed in its current state, which leads to significant delays and possible business disruption.

The application architect is brought in and determines that portions of the application must be com-

pletely re-done to ensure proper SSN protection. The development manager estimates the time for re-

write and regression testing will be at least 3 weeks, putting the launch date far behind schedule and

significantly increasing the overall cost of the project.

If the security team had been engaged collaboratively from the very first requirements definition meet-

ing, this last minute delay could have been avoided. If the requirements and architecture teams had

been able to reference established, reusable corporate policy information about the confidentiality of

data in transit, the requirement to protect SSN data would have been known to the architecture and

design teams from the get go; it would have been included from the earliest phases as a requirement,

built into the web application from the very beginning, and accounted for in the design. If the company

had been using policy-aware automated tools within the IDE that checked for SSN encryption, failure to

incorporate the encryption control would have been caught during implementation.

When building security in, it’s important to keep in mind that the goal in most business scenarios is not

to create bullet-proof web applications or even to eliminate every possible exposure. Instead, it is

about matching the required properties to the approved risk profile for the web application. The goal,

throughout the entire lifecycle should be to achieve “software assurance,” that is appropriate to a spe-

cific web application’s function and sensitivity level, with “justifiable confidence that software will con-

sistently exhibit its required properties. . . . even when the software comes under attack.”1

Efficiencies in the

web application

lifecycle result when

stakeholders from

different groups

work together as

a collaborative

team.

Page 3 Across the Software Deliver y Lifecycle

Efficiencies in the web application lifecycle result when stakeholders from different groups work to-

gether as a collaborative team. While security professionals often lament that business executives

don’t fully understand software risk, it’s just as important that security professionals familiarize them-

selves with business risk. Creating web applications with the proper level of software assurance re-

quires risk management trade-offs between business needs, usability, and security. To strike the cor-

rect balance, requirements input from all stakeholders are required.

Starting at the very beginning of the lifecycle, requirements definition and application design take into

account security requirements as well as functional and business requirements. This information is

communicated to the architects and software developers even before a single line of code is written.

This approach will prevent most, if not all, security related design and architecture flaws.

Security-aware software design however will not eliminate all vulnerabilities associated with a web

application. Developers themselves must receive training on secure coding techniques to ensure they

do not introduce vulnerabilities during the authoring of the application. Training should cover basic

security, such as input validation, as well as language specific instruction. Giving developers insight on

security practices for the language and run-time environment they are writing applications for supports

better coding practices and results in fewer errors in the final web application. Another efficiency bene-

fit of building security in is the ability to build mis-use cases during the requirements and design

phases. This saves time during testing and acceptance and helps to eliminate bottlenecks.

Business Benefits of an Integrated Approach

An integrated, composite analysis approach to testing can increase efficiency even more. Integrated

development environment (IDE) specific plug-ins can alert coders as they write if errors are introduced.

Static analysis, often called “white box” testing, can be used by developers and auditors on modules

before they are assembled into the final product build. Static analysis provides an insider’s view of the

application at the code level. Static testing is effective at uncovering semantic errors and code level

flaws, but not as adept at determining if a flaw will result in an exploitable vulnerability.

Dynamic analysis and manual penetration testing are effective for validating whether or not applica-

tions are vulnerable to exploit in production. Often referred to as “black box” testing, dynamic and

penetration assessments show the outsider’s view of the application and provide insight into whether

or not an attacker would be able to exploit the application in production. However dynamic testing tech-

niques cannot be employed until later in the life-cycle, after the post-build phase. Another limitation to

dynamic testing is that it can be difficult to pinpoint the code level source of the weakness within the

code that caused the vulnerability.

This is why it is most effective to use a blend of both static and dynamic testing in a “grey box” or com-

posite approach. By combining results from both the code level insider view and the dynamic outsider

view, the strengths of both techniques can be leveraged. Using static and dynamic assessment tools

together enables managers and developers to prioritize which applications, modules, and vulnerabili-

ties are the most impactful and need to be addressed first. Another benefit of the composite analysis

approach is that vulnerabilities validated by dynamic testing can be sourced back to a specific line or

section of code using the static tool. This engenders collaborative communication between the test and

development teams and makes it much easier for security and test professionals to provide specific,

actionable corrective guidance to developers.

Business Benefits of Integrated, Composite Testing

It is most

effective to use a

blend of both static

and dynamic testing

in a “grey box” or

composite approach.

Page 4 Practical Approaches for Securing Web Applications

Building security in requires a people, process and technology approach. Although there are a number

of great tools available to help automate security of web applications, no tool or suite of tools can be

effective without the correct processes in place and educated, informed people creating and testing

the web apps.

The process should include a formal software development lifecycle and published policies. Also impor-

tant are establishing roles for stakeholders and assigning accountability for review and governance.

Security and business should be represented during every phase of the lifecycle so risk management

can be addressed at each step.

One constant that is beneficial throughout the entire lifecycle is education. Education has been dis-

cussed as important for developers, but it will also benefit every stakeholder involved in web applica-

tion development. Because security awareness needs to be both top down and bottom up, don’t under-

estimate the need to educate executives on how web application vulnerabilities can impact the busi-

ness. Telling an executive that a web application is vulnerable to cross-site request forgery may be met

with a blank stare, but showing an executive how software errors can lead to exposure of customer

data will help them appreciate the very real consequences of insecure web applications. Provide spe-

cific examples and metrics that illustrate potential time and cost savings. For example, demonstrate

how investing in developer training and IDE static analysis plug-ins can stop the root cause of data

exposure in production before a developer checks in their code for the evening.

Auditors and assessors can benefit from learning about common coding errors, consequence evalua-

tion and dependencies or exposures associated with the web application’s eco-system including back-

end legacy systems, existing security controls, and any services or applications that are part of the web

application’s production environment. Testers and QA professionals can be educated about mis-use

cases and how they differ from standard-use cases that they might already be familiar with; as well as

how to interpret security test findings and prioritize them as needed within the bug fix list.

Looking at specific steps in the lifecycle there are opportunities in each one to increase efficiency while

weaving security and risk management throughout.

Building Security In to the Cycle: A Practical Approach

One constant

that is beneficial

throughout the entire

lifecycle is

education

Web application designers are familiar with defining functional and business requirements, but they

may not understand how to define security requirements. This is the first opportunity for the teams to

work collaboratively to determine what security controls will be essential to the final web application.

Steps for integrating security into the requirements phase

 Discuss and define security requirements based on corporate policy, compliance and regulatory

mandates (for example, two-factor authentication requirement for FFIEC authentication guidance

compliance)

 Security and audit teams should assess business requirements and functions of the web application

and begin to formulate mis-use cases for use during testing and acceptance

Benefits

 Security or compliance exposures are eliminated or reduced upfront

 Decreased time-to-deployment

 Significant reduction in acceptance bottlenecks

Page 5 Across the Software Deliver y Lifecycle

Requirements

Architecture and Design

As the architecture and design of the web application are defined, security considerations can be as-

sessed. It is in this phase that expensive, hard to correct security problems can be fixed at the time

they are easiest to address. To prevent costly errors, assess the proposed architecture from both a

performance and a security perspective. Detailed design specifications are created, that show develop-

ers exactly which security controls must be included and how the components will interact with the

overall web application ecosystem.

Steps for integrating security into the architecture and design phases

 Perform risk assessment in context of the application’s proposed architecture and deployment envi-

ronment, determine if the design will introduce risk

 Assess security implications of interaction with legacy systems and security implications of data

“flow” between components, tiers, or systems

 Document any context-specific exposures (i.e., vulnerabilities that are dependent on how and where

the application is deployed) that need to be addressed during implementation/rollout

 Consider dependencies and exposures created by interactions with mash-ups, SOA, and partner

services

 Communicate the final design to security and audit for finalization of the security test plans and mis-

use cases

Benefits

 Fine tuning of risk assessment analysis process and re-usable risk assessment models

 Risks introduced by the architectural environment or deployment context are identified early

 Re-usable mis-use cases save time during testing phase

 Reduction in design specific exposures

 If necessary, architectural constraints that introduce risk can be changed and risk mitigation strate-

gies can be defined with compensating controls if the risk cannot be entirely eliminated

When developers begin writing code, they should have a risk assessed design and clear guidance on

security controls that must be written into the application or used via an approved service. Automated

static code tools that are integrated into the IDE provide developers with checks and guidance as code

is written and before check-in. Automated tools can also be used during build to check the code

against policy templates for compliance and for a deeper look at code level security issues.

Steps for integrating security into the code implementation and build phases

 Install automated static source code checking tools that are integrated with developer IDEs

 Optionally, developers perform automated code reviews with stand alone coding tools before

check-in

 Security and audit teams spot check code modules for compliance conformance and security

risk using automated or manual code reviews prior to build

 Implement automated static code scanning during the build process to check for security

exposures and policy compliance

 Use tools to track developer coding errors and provide explanatory feedback on security risks

introduced and why

Benefits

 Cleaner/less vulnerable code is delivered to QA

 Developers improve secure coding ability over time

 Re-usable policies increase accuracy of risk analysis

 Fewer coding errors/vulnerabilities discovered during testing resulting in faster deployment cycles

Page 6 Practical Approaches for Securing Web Applications

Code Implementation and Build

QA/Testing

Security specific tools for testing applications range from one-off standalone solutions and services

that assess the completed application to fully integrated suites that can provide testing and support

from education to implementation and throughout the testing phasing. Integrated solutions provide

multi-phase support for companies that are maturing towards a repeatable web application security

lifecycle. Integrated suites can be implemented at multiple points in the process and provide metrics

and feedback for on-going continuous improvement.

Key indicators to look for in a solution suite

 Vendors that understand the entire SDLC and not just one or two phases

 Solutions that can be applied at multiple points throughout the process (education,

implementation, testing, deployment)

 Easy to understand, interpret, and use results

 Integration with existing SDLC tools such as build and QA solutions

 Comprehensive reporting for compliance

 Continuous improvement support – identification of developers or application types

that require additional training or security controls

 Educational components – online support or training modules

Web application security doesn’t end when an application is deployed. Once the web application is live

in production, additional testing and monitoring can be implemented to ensure data and services are

protected. Automated security monitoring of production web applications provides assurance that the

web application is performing as expected and not exposing information or introducing risk. Monitoring

can be done by in-house staff or outsourced to an external provider that can monitor the application(s)

on a 24/7 basis.

Steps for integrating and improving security in the deployment/production phase

 Monitor mis-use to affirm vulnerabilities deemed “not exploitable” in testing are not exploitable in

production

 Monitor data leakage to look for places where is used, sent or stored inappropriately

 Compare pre-deployment residual risk assessments with in-production exposure areas and provide

feedback to testing team

 Implement web application firewall, IPS, or other compensating control to mitigate exposures before

code fix or in response to new regulations or compliance mandates

Benefits

 Improve knowledge-base of successful exploits to improve scan efficacy during static and dynamic

tests

 Find and stop unexpected mis-uses of the application, even during incremental refreshes

 Better integration between dynamic testing and production application controls such as web-

application firewalls or IPS

 Meet emerging compliance requirements before code re-write

 Continuous improvement – using the feedback loop

Page 7 Across the Software Deliver y Lifecycle

Deployment/Production

Steps for integrating and improving security in the QA/testing phase

 Concentrate on finding the problems that matter most – some resources:

 SANS Top 25 (http://www.sans.org/top25errors/)

 CWE (http://www.mitre.org/news/digest/defense_intelligence/02_09/errors.html)

 OWASP Top Ten Project (http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project)

 Validate test findings in a production architecture that includes existing compensating controls such

as firewalls and IPS

 Prioritize discovered vulnerabilities based on both security and business needs

 Deliver fix recommendations to development with specificity to line of code or dependent API, service,

or library

 Benefits

 Better communication between application stakeholders

 Fewer false positives

 Faster fix (and release) cycles

Page 8 Practical Approaches for Securing Web Applications

Web application security is achievable in a time-sensitive manner when stakeholders work together

collaboratively. Securing web applications doesn’t have to mean extending lifecycles or major disruption

to the development process. With education of all stakeholders and a clear, repeatable process, organi-

zations can incorporate security and risk throughout the lifecycle in an efficient, cooperative way.

Weaving security into the web application delivery lifecycle does require a synergistic approach that

incorporates people, process, and technology. Though web application security tools and suites can

contribute to process improvement, they are not a panacea. For maximum benefit, look for web applica-

tion security tool vendors that understand the whole development lifecycle and have tools that provide

support at multiple stages of the process.

Summary

Web application

security is

achievable in a

time-sensitive

manner when

stakeholders

work together

collaboratively.

The stove-piped,

traditional approach

evolves into a fully

integrated

framework that

is advanced,

effective,

and efficient

Putting it All Together

In a mature model, security-aware people, process, and technology are collaboratively integrated

throughout the SDLC. The stove-piped, traditional approach evolves into a fully integrated framework

that is advanced, effective, and efficient.

IBM Rational AppScan is a portfolio of products with solutions for each state of the web application

development and delivery lifecycle. The suite builds on the Rational development portfolio and can help

organizations to develop iterative, repeatable solutions that support security and risk management

during multiple phases of the web application development process. Rather than using a stand-alone

tool as a bolt-on only at the end of the cycle, the IBM Rational AppScan Portfolio can be implemented

organically throughout the development phases.

IBM Rational AppScan complements companies that are working to mature their lifecycle by providing

integrated training for developers. Reporting from each component is designed to support a number of

stakeholders by delivering the information each stakeholder is most interested in seeing. CSOs can get

a snapshot of the web application’s compliance profile, while developers can receive reports with de-

tailed, to the line of code, recommendations on how to correct coding errors.

IBM Rational AppScan solutions are fully integrated solutions within the IBM Rational development

ecosystem. As this graphic illustrates, all components of the IBM Rational AppScan portfolio report into

both the IBM Rational AppScan Enterprise reporting console and are fully integrated with the IBM Ra-

tional ClearQuest Defect Management system.

IBM Rational AppScan Portfolio

Page 9 Across the Software Deliver y Lifecycle

Image Source: ©IBM, 2009

All contents (except where otherwise noted)

© 2009 Diana Kelley and SecurityCurve

diana@securitycurve.com

www.securitycurve.com

Funding for the research and writing of this

document was provided by IBM.

www.ibm.com

Security Curve gives companies the market and technology insight they need

to make agile business moves so they can stay ahead of the security

curve. Our clients benefit from targeted intelligence, comprehensive research,

and focused solutions to stay ahead of the competition in a rapidly changing

market.

Diana Kelley, Partner

Diana Kelley has extensive experience delivering strategic, competitive

knowledge to large corporations and security software vendors. She was Vice

President and Service Director for the Security and Risk Management

Strategies (SRMS) service at Burton Group, the Executive Security Advi-

sor for CA’s eTrust Business Unit, and a Manager in KPMG’s Financial

Services Consulting organization.

1. Information Assurance Technology Analysis Center (IATAC) SOAR on Software Security Assur-

ance, http://iac.dtic.mil/iatac/download/security.pdf

SANS Top 25, http://www.sans.org/top25errors/

CWE, http://www.mitre.org/news/digest/defense_intelligence/02_09/errors.html

OWASP Top Ten Project, http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

References and Resources

Stay ahead
 of the curve

SecurityCurve

http://iac.dtic.mil/iatac/download/security.pdf

