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Abstract

We present statistical analyses of the large-scale structure of 3 types of semantic networks: word
associations, WordNet, and Roget’s Thesaurus. We show that they have a small-world structure, char-
acterized by sparse connectivity, short average path lengths between words, and strong local cluster-
ing. In addition, the distributions of the number of connections follow power laws that indicate a
scale-free pattern of connectivity, with most nodes having relatively few connections joined together
through a small number of hubs with many connections. These regularities have also been found in
certain other complex natural networks, such as the World Wide Web, but they are not consistent with
many conventional models of semantic organization, based on inheritance hierarchies, arbitrarily
structured networks, or high-dimensional vector spaces. We propose that these structures reflect the
mechanisms by which semantic networks grow. We describe a simple model for semantic growth, in
which each new word or concept is connected to an existing network by differentiating the connectiv-
ity pattern of an existing node. This model generates appropriate small-world statistics and power-law
connectivity distributions, and it also suggests one possible mechanistic basis for the effects of learn-
ing history variables (age of acquisition, usage frequency) on behavioral performance in semantic
processing tasks.

Keywords: Semantic networks; Small worlds; Semantic representation; Growing network models

1. Introduction

Network structures provide intuitive and useful representations for modeling semantic
knowledge and inference. Within the paradigm of semantic network models, we can ask at
least three distinct kinds of questions. The first type of question concerns structure and knowl-
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edge: To what extent can the organization of human semantic knowledge be explained in terms
of general structural principles that characterize the connectivity of semantic networks? The
second type of question concerns process and performance: To what extent can human perfor-
mance in semantic processing tasks be explained in terms of general processes operating on se-
mantic networks? A third type of question concerns the interactions of structure and process:
To what extent do the processes of semantic retrieval and search exploit the general structural
features of semantic networks, and to what extent do those structural features reflect general
processes of semantic acquisition or development?

The earliest work on semantic networks attempted to confront these questions in an inte-
grated fashion. Collins and Quillian (1969) suggested that concepts are represented as nodes in
a tree-structured hierarchy, with connections determined by class-inclusion relations (Fig. 1).
Additional nodes for characteristic attributes or predicates are linked to the most general level
of the hierarchy to which they apply. A tree-structured hierarchy provides a particularly eco-
nomical system for representing default knowledge about categories, but it places strong con-
straints on the possible extensions of predicates—essentially, on the kinds of knowledge that
are possible (Keil, 1979; Sommers, 1971). Collins and Quillian proposed algorithms for effi-
ciently searching these inheritance hierarchies to retrieve or verify facts such as “Robins have
wings,” and they showed that reaction times of human subjects often seemed to match the qual-
itative predictions of this model. However, notwithstanding the elegance of this picture, it has
severe limitations as a general model of semantic structure. Inheritance hierarchies are clearly
appropriate only for certain taxonomically organized concepts, such as classes of animals or
other natural kinds. Even in those ideal cases, a strict inheritance structure seems not to apply
except for the most typical members of the hierarchy (Carey, 1985; Collins & Quillian, 1969;
Rips, Shoben, & Smith, 1973; Sloman, 1998).

Subsequent work on semantic networks put aside the search for general structural principles
of knowledge organization and instead focused on elucidating the mechanisms of semantic
processing in arbitrarily structured networks. The network models of Collins and Loftus
(1975), for instance, are not characterized by any kind of large-scale structure such as a treelike
hierarchy. In terms of their large-scale patterns of connectivity, these models are essentially un-
structured, with each word or concept corresponding to a node and links between any two
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Fig. 1. Proposed large-scale structures for semantic networks: (a), a tree-structured hierarchy (e.g., Collins & Quillian,
1969); (b), an arbitrary, unstructured graph (e.g., Collins & Loftus, 1975); (c), a scale-free, small-world graph.



nodes that are directly associated in some way (Fig. 1B). Quantitative models of generic asso-
ciative networks, often equipped with some kind of spreading-activation process, have been
used to predict performance in a range of experimental memory retrieval tasks and to explain
various priming and interference phenomena (Anderson, 2000; Collins & Loftus, 1975; Deese,
1965; Nelson, McKinney, Gee, & Janczura, 1998).

As a result of research in this tradition, there is now a fair consensus about the general char-
acter of at least some of the processes involved in the formation and search of semantic mem-
ory (Anderson, 2000). By contrast, there is relatively less agreement about general principles
governing the large-scale structure of semantic memory, or how that structure interacts with
processes of memory search or knowledge acquisition. Typical textbook pictures of semantic
memory still depict essentially arbitrary networks, such as Fig. 1B, with no distinctive
large-scale structures. The implications for semantic network theories of meaning are not
good. Under the semantic net view, meaning is inseparable from structure: The meaning of a
concept is, at least in part, constituted by its connections to other concepts. Thus, without any
general structural principles, the semantic net paradigm offers little or no general insights into
the nature of semantics.

In this article, we argue that there are in fact compelling general principles governing the
structure of network representations for natural language semantics and that these structural
principles have potentially significant implications for the processes of semantic growth and
memory search. We stress from the outset that these principles are not meant to provide a genu-
ine theory of semantics, nor do we believe that networks of word–word relations necessarily
reflect all of the most important or deepest aspects of semantic structure. We do expect that se-
mantic networks will play some role in any mature account of word meaning. Our goal here is
to study some of the general structural properties of semantic networks that may ultimately
form part of the groundwork for any semantic theory.

The principles we propose are not based on any fixed structural motif such as the tree-struc-
tured hierarchy of Collins and Quillian (1969). Rather, they are based on statistical regularities
that we have uncovered via graph-theoretic analyses of previously described semantic net-
works. We look at the distributions of several statistics calculated over nodes, pairs of nodes, or
triples of nodes in a semantic network: The number of connections per word, the length of the
shortest path between two words, and the percentage of a node’s neighbors that are themselves
neighbors. We show that semantic networks, like many other natural networks (Watts &
Strogatz, 1998), possess a small-world structure characterized by the combination of highly
clustered neighborhoods and a short average path length. Moreover, this small-world structure
seems to arise from a scale-free organization, also found in many other systems (Barabási &
Albert, 1999; Strogatz, 2001), in which a relatively small number of well-connected nodes
serve as hubs, and the distribution of node connectivities follows a power function.

These statistical principles of semantic network structure are quite general in scope. They
appear to hold for semantic network representations constructed in very different ways,
whether from the word associations of naive subjects (Nelson, McEvoy, & Schreiber, 1999) or
the considered analyses of linguists (Miller, 1995; Roget, 1911). At the same time, these regu-
larities do not hold for many popular models of semantic structure, including both hierarchical
or arbitrarily (unstructured) connected networks (Figures 1A and 1B), as well as high-dimen-
sional vector space models such as Latent Semantic Analysis (LSA; Landauer & Dumais,
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1997). These principles may thus suggest directions for new modeling approaches, or for ex-
tending or revising existing models. Ultimately, they may help to determine which classes of
models most faithfully capture the structure of natural language semantics.

As in studies of scale-free or small-world structures in other physical, biological, or social
networks (Albert, Jeong, & Barabási, 2000; Barabási & Albert, 1999; Watts & Strogatz, 1998),
we will emphasize the implications of these distinctive structures for some of the crucial pro-
cesses that operate on semantic networks. We suggest that these structures may be conse-
quences of the developmental mechanisms by which connections between words or concepts
are formed—either in language evolution, language acquisition, or both. In particular, we show
how simple models of network growth can produce close quantitative fits to the statistics of se-
mantic networks derived from word association or linguistic databases, based only on plausi-
ble abstract principles with no free numerical parameters.

In our model, a network acquires new concepts over time and connects each new concept to
a subset of the concepts within an existing neighborhood, with the probability of choosing a
particular neighborhood proportional to its size. This growth process can be viewed as a kind
of semantic differentiation, in which new concepts correspond to more specific variations on
existing concepts, and highly complex concepts (those with many connections) are more likely
to be differentiated than simpler ones. It naturally yields scale-free small-world networks, such
as the one shown in Fig. 1C (see also Fig. 6).

Our models also make predictions about the time course of semantic acquisition, because
the order in which meanings are acquired is crucial in determining their connectivity. Concepts
that enter the network early are expected to show higher connectivity. We verify this relation
experimentally with age-of-acquisition norms (Gilhooly & Logie, 1980; Morrison, Chappell,
& Ellis, 1997) and explain how it could account for some puzzling behavioral effects of age of
acquisition in lexical-decision and naming tasks, under plausible assumptions about search
mechanisms in semantic memory.

Our growing network models are not intended as anything like a complete model of semantic
development, or even a precise mechanistic model of some aspects of semantic development.
Rather, theycapture justoneaspectof semanticdevelopmentat ahigh levelofabstraction: theor-
igin of new meaning representations as differentiations of existing meaning representations.
There are clearly many aspects of semantic development that these models do not address, such
as the different routes to word learning, the relative roles of verbal and nonverbal experience, and
the possibility that semantic relations may disappear as well as appear. Our model shows that one
aspect of semantic development—growth of semantic networks by differentiations of existing
nodes—is sufficient to explain the characteristic large-scale statistical structures we observed
across different semantic networks. There are also many aspects of semantic structure not cap-
tured in our simplified semantic network models: the context sensitivity of meanings, the exis-
tence of different kinds of semantic relations, or the precise nature of the relations between word
meanings and concepts. We leave these topics as questions for future research.

2. Basic concepts from graph theory

Webeginbydefiningsometerminologyfromgraph theoryandbriefly introducing thestatisti-
cal properties that we will use to describe the structure of semantic networks.1 Underlying every
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semanticnetwork isagraph,consistingofasetofnodes (alsocalledvertices) andasetofedgesor
arcs that join pairs of nodes. The number of nodes in the network is denoted by n. An edge is an
undirected link between two nodes, and a graph containing only edges is said to be undirected.
An arc is a directed link between two nodes, and a graph containing only arcs is said to be di-
rected. Every directed graph corresponds naturally to an undirected graph over the same nodes,
obtained by replacing each arc with an edge between the same pair of nodes (see Table 1).

Two nodes that are connected by either an arc or edge are said to be neighbors; a neighbor-
hood is a subset of nodes consisting of some node and all of its neighbors. When the network is
directed, the in-degree and out-degree of a node refer to the numbers of arcs incoming to or
outgoing from that node, respectively. The variables k i

in and k i
out denote the in- and out-degree

of node i, respectively. When the network is undirected, the in-degree and out-degree are al-
ways equal, and we refer to either quantity as the degree of a node. We write the degree of node
i as ki. We will also use ki with directed networks to denote the degree of node i in the corre-
sponding undirected network (i.e., the total numbers of neighbors of node i).

In an undirected graph, a path is a sequence of edges that connects one node to another. In a
directed graph, a (directed) path is a set of arcs that can be followed along the direction of the
arcs from one node to another. We can also talk about undirected paths in a directed graph, re-
ferring to the paths along edges in the corresponding undirected graph, but by default any ref-
erence to paths in a directed network will assume the paths are directed. For a particular path
from node x to node y, the path length is the number of edges (in an undirected graph) or arcs
(in a directed graph) along that path. We refer to the distance between x and y as the length of
the shortest path connecting them.2 In a connected graph, there exists an undirected path be-
tween any pair of nodes. A directed graph is said to be strongly connected if between any pair
of nodes there exists a path along the arcs. A (strongly) connected component is a subset of
nodes that is (strongly) connected.

We characterize the structure of semantic networks primarily in terms of four statistical features
defined using the previous terminology. These quantities are the average distance L, the diameter
D, theclusteringcoefficientC,and thedegreedistributionP(k).LandDareclosely related:L refers
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Table 1
Definitions for terms and variables used throughout the paper

Term/variable Definitions

n number of nodes
L the average length of shortest path between pairs of nodes
D the diameter of the network
C the clustering coefficient (see Equation 1 and accompanying text)
k, kin, kout the degree, the in-degree, and out-degree

(degree = number of connections)
P( k ) degree distribution
<k> average degree
γ power-law exponent for the degree distribution (see Equation 2)
random graph network where each pair of nodes is joined by an edge with probability p
small-world structure network with short average path lengths L and relatively

high clustering coefficient C (by comparison with equally dense random graphs)
scale-free network network with a degree distribution that is power-law distributed



to the average of the shortest path lengths between all pairs of nodes in a network, whereas D refers
to themaximumofthesedistancesoverallpairsofnodes. Inotherwords,atmostDstepsareneeded
to move from any node to any other, but on average only L steps are required.3

The clustering coefficient C, and the degree distribution P(k), are two different probabilistic
measures of the graph connectivity structure. C represents the probability that two neighbors
of a randomly chosen node will themselves be neighbors, or alternatively, the extent to which
the neighborhoods of neighboring nodes overlap. Following Watts and Strogatz (1998), we
calculate C by taking the average over all nodes i of the quantity

where Ti denotes the number of connections between the neighbors of node i, and ki (ki – 1) / 2 is
the number of connections that would be expected between i’s neighbors if they formed a fully
connected subgraph. Because Ti can never exceed ki(ki – 1) / 2, the clustering coefficient C is nor-
malized to lie between 0 to 1, as required of a probability. When C = 0, no nodes have neighbors
that are also each others’neighbors. In a fully connected network (i.e., every node is connected to
all other nodes), C = 1. Although the clustering coefficient is sensitive to the number of connec-
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Fig. 2. An illustration of the graph-theoretic properties that we will apply to semantic networks. (a) Two networks with
equalnumbersofnodesandedges.Forbothnetworks, thevariablesn (numberofnodes)and<k>(averagedegree, i.e.,av-
eragenumberofedges)are shownaswell as thestatisticalpropertiesL (averageshortestpath length),D (diameter) andC
(clustering coefficient). Note that the two networks in have different clustering coefficients even though they have the
same n and <k>. (b) The degree distributions corresponding to the two networks above. Both networks show the typical
patternforrandomgraphs:approximatelybell-shapeddistributionswithtails thatdecayexponentiallyask increases.



tions in a network, it is possible for two networks to have the same number of connections but dif-
ferentclusteringcoefficients (seeFig.2).Finally,note thatbecause thedefinitions forTi andki are
independentofwhether theconnectionsarebasedonedgesorarcs, theclusteringcoefficients for
a directed network and the corresponding undirected network are equal.

The degree distribution P(k) represents the probability that a randomly chosen node will
have degree k (i.e., will have k neighbors). For directed networks, we will concentrate on the
distribution of in-degrees, although one can also look at the out-degree distribution. We esti-
mate these distributions based on the relative frequencies of node degrees found throughout the
network. The most straightforward feature of P(k) is the expected value <k> under P(k). This
quantity, estimated by simply averaging the degree of all nodes over the network, ranges be-
tween 0 and n (for a fully connected network of n nodes) and represents the mean density of
connections in the network. More information can be gleaned by plotting the full distribution
P(k) as a function of k, using either a bar histogram (for small networks, as in Fig. 2), a binned
scatter plot (for large networks, as in Fig. 5), or a smooth curve (for theoretical models, as later
illustrated in Fig. 3). As we explain in the next section, the shapes of these plots provide char-
acteristic signatures for different kinds of network structure and different processes of network
growth.

Fig. 2 shows these statistical measures for two different networks with 10 nodes and 15
edges. These examples illustrate how networks equal in size and density of connections may
differ significantly in their other structural features. Fig. 2 also illustrates two general proper-
ties of random graphs—graphs that are generated by placing an edge between any two nodes
with some constant probability p independent of the existence of any other edge (a model intro-
duced by Erdös and Réyni, 1960). First, for fixed n and <k>, high values of C tend to imply
high values of L and D. Second, the degree distribution P(k) is approximately bell shaped, with
an exponential tail for high values of k.4 Although these two properties hold reliably for ran-
dom graphs, they do not hold for many important natural networks, including semantic net-
works in natural language. We next turn to a detailed discussion of the small-world and
scale-free structures that do characterize natural semantic networks. Both of these structures
can be thought of in terms of how they contrast with random graphs: Small-world structures
are essentially defined by the combination of high values of C together with low values of L
and D, whereas scale-free structures are characterized by non-bell-shaped degree distributions,
with power-law (rather than exponential) tails.

3. Small-world and scale-free network structures

Interest in the small-world phenomenon originated with the classic experiments of Milgram
(1967) on social networks. Milgram’s results suggested that any two people in the United
States were, on average, separated by only a small number of acquaintances or friends (popu-
larly known as “six degrees of separation”). Although the finding of very short distances be-
tween random pairs of nodes in a large, sparsely connected network may seem surprising, it
does not necessarily indicate any interesting structure. This phenomenon occurs even in the
random graphs described previously, where each pair of nodes is joined by an edge with proba-
bility p. When p is sufficiently high, the whole network becomes connected, and the average
distance L grows logarithmically with n, the size of the network (Erdös & Réyni, 1960).
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Watts and Strogatz (1998) sparked renewed interest in the mathematical basis of the
small-world phenomenon with their study of several naturally occurring networks: the power
grid of the western United States, the collaboration network of international film actors, and
the neural network of the worm Caenorhabditis elegans. They showed that although random
graphs with comparable size n and mean connectivity <k> describe very well the short path
lengths found in these networks, they also exhibit clustering coefficients C, that are orders of
magnitude smaller than those observed in the real networks. In other words, natural small-
world networks somehow produce much shorter internode distances than would be expected in
equally dense random graphs, given how likely it is that the neighbors of a node are also one
another’s neighbors (see Note 4). For the remainder of this article, we use the term small-world
structure to refer to this combination of short average path lengths L, and relatively high clus-
tering coefficients C (by comparison with equally dense random graphs).

Small-world structures have since been found in many other networks (reviewed in Strogatz,
2001), including theWorldWideWeb(WWW;Adamic,1999;Albert, Jeong,&Barabási,1999),
networks of scientific collaborators (Newman, 2001), and metabolic networks in biology
(Jeong, Tombor, Albert, Oltval, & Barabási, 2000). Watts and Strogatz (1998) proposed a simple
abstract model for the formation of small-world structures, in which a small number of the con-
nections in a low-dimensional regular lattice are replaced with connections between random
pairs of nodes. The local neighborhood structure of the lattice leads to high clustering, whereas
the long-range random connections lead to very short average path lengths.

Amaral, Scala, Barthélémy, and Stanley (2000) distinguished between different classes of
small-world networks by measuring the degree distribution P(k). In one class of networks,
such as C. elegans and the U. S. power grid, the degree distribution decays exponentially. This
behavior is well described by random graph models or variants of the Watts and Strogatz
(1998) model. In other systems, such as the WWW or metabolic networks, the degree distribu-
tion follows a power law (Barabási & Albert, 1999),

for values of γ typically between 2 and 4. Fig. 3 illustrates the difference between power-law
and exponential degree distributions. Intuitively, a power-law distribution implies that a small
but significant number of nodes are connected to a very large number of other nodes, whereas
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Fig. 3. Two different kinds of degree distributions that may be observed in complex networks. (a) A power-law distribu-
tion(dashed)andanexponentialdistribution(solid), shownwith thesamelinearscalesas thehistogramsinFigure2b. (b)
When plotted with log-log scaling, the same distributions are more clearly differentiated, particularly in their tails.



in an exponential distribution, such “hubs” are essentially nonexistent. Because networks with
power-law degree distributions have no characteristic scale of node degree, but instead exhibit
all scales of connectivity simultaneously, they are often referred to as scale-free structures
(Barabási & Albert, 1999). Power-law and exponential distributions can be differentiated most
easily by plotting them in log–log coordinates (as shown in Fig. 3B). Only a power-law distri-
bution follows a straight line in log–log coordinates, with slope given by the parameter γ.

Barabási and Albert (1999) argued that the finding of power-law degree distributions places
strong constraints on the process that generates a network’s connectivity. They proposed an ab-
stract model for scale-free network formation based on two principles that we explain in greater
detail as follows: incremental growth and preferential attachment. This model yields power-law
degree distributions, but it does not produce the strong neighborhood clustering characteristic of
many small-world networks and the model of Watts and Strogatz (1998). In short, although the
model of Watts and Strogatz naturally produces small-world structures, and the model of
Barabási and Albert naturally produces scale-free structures, neither of these approaches ex-
plains the emergence of both scale-free and small-world structures as has been observed in some
important complex networks such as the WWW. There is currently a great deal of interest within
the theoretical physics community (see Albert & Barabási, 2002, for an overview) in developing
models of network formation that can capture both of these kinds of structures.

In the next section, we show that semantic networks, such as the WWW, exhibit both
small-world and scale-free structures. In the following section we introduce a model for net-
work growth that is related to the Barabási and Albert (1999) model but which grows through a
process of differentiation analogous to mechanisms of semantic development. This growth
process allows our model to produce both small-world and scale-free structures naturally, with
essentially no free parameters. The final section explores some of the psychological implica-
tions of this model and compares it to other frameworks for modeling semantic structure.

4. Graph-theoretic analyses of semantic networks

We constructed networks based on three sources of semantic knowledge: free association
norms (Nelson et al., 1999), WordNet (Fellbaum, 1998; Miller, 1995), and Roget’s thesaurus
(Roget, 1911). Although the processes that generated these data surely differ in important
ways, we see that the resulting semantic networks are similar in the statistics of their
large-scale organization. To allow the application of conventional graph-theoretic analyses, we
construct these networks with all arcs and edges unlabeled and weighted equally. More subtle
analyses that recognize qualitative or quantitative differences between connections would be
an important subject of future work.

4.1. Methods

4.1.1. Associative network
A large free-association database involving more than 6,000 participants was collected by

Nelson et al. (1999). Over 5,000 words served as cues (e.g., “cat”) for which participants had to
write down the first word that came to mind (e.g., “dog”). We created two networks based on
these norms. In the directed network, two word nodes x and y were joined by an arc (from x to
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y) if the cue x evoked y as an associative response for at least two of the participants in the data-
base. In the undirected network, word nodes were joined by an edge if the words were associa-
tively related regardless of associative direction. Although the directed network is clearly a
more natural representation of word associations, our other networks were both undirected,
and most of the literature on small-world and scale-free networks has focused on undirected
networks. Hence the undirected network of word associations provides an important bench-
mark for comparison. Fig. 4 shows all shortest associative paths from VOLCANO to ACHE in
the directed associative network.

4.1.2. Roget’s thesaurus (Roget, 1911)
Based on the lifelong work of Dr. Peter Mark Roget (1779–1869), the 1911 edition includes

over 29,000 words classified into 1,000 semantic categories (ignoring several levels of subcate-
gories). Roget’s thesaurus can be viewed as a bipartite graph, a graph in which there are two dif-
ferent kinds of nodes, word nodes and semantic category nodes, with connections allowed only
between twonodesofdifferentkinds. In thisgraph,aconnection ismadebetweenawordandcat-
egory node when the word falls into the semantic category. For Roget’s thesaurus, the analysis of
neighborhood clustering is more complex. Because the thesaurus is a bipartite graph, with con-
nections between word and class nodes, but not between nodes of the same type, the neighbors of
a word node can never themselves be neighbors. To define a meaningful measure of semantic
neighborhood clustering in the thesaurus network, we converted the bipartite graph to a simple
graph on the word nodes by connecting words if they shared at least one class in common.
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Fig. 4. Part of the semantic network formed by free association. Each directed edge illustrates an association be-
tween a cue and a response. A sample of associative directed paths from VOLCANO to ACHE is shown (the short-
est path length is four).



4.1.3. WordNet
Somewhat analogous to Roget’s thesaurus (Roget, 1911), but inspired by modern psycho-

linguistic theory, WordNet was developed by George Miller and colleagues (Fellbaum, 1998;
Miller, 1995). The network contains 120,000+ word forms (single words and collocations) and
99,000+ word meanings. The basic links in the network are between word forms and word mean-
ings. Multiple word forms are connected to a single word-meaning node if the word forms are
synonymous. A word form is connected to multiple word-meaning nodes if it is polysemous.
Word forms can be connected to each other through a variety of relations such as antonymy (e.g.,
BLACK and WHITE). Word-meaning nodes are connected by relations such as hypernymy
(MAPLE is a TREE) and meronymy (BIRD has a BEAK). Although these relations, such as
hypernymy and meronymy, are directed, they can be directed both ways depending on what rela-
tion is stressed. For example, the connection between BIRD and BEAK can be from bird to beak
because birds have beaks but also from beak to bird because a beak is part of a bird. Because there
arenoinherentlypreferreddirectionsfor theserelations,wetreatWordNetasanundirectedgraph.

4.2. Results and analyses

Our analysis of these semantic networks focuses on five properties: sparsity, connectedness,
short path lengths, high neighborhood clustering, and power-law degree distributions. The sta-
tistics related to these properties are shown in Table 2 (under the Data columns), and the esti-
mated degree distributions for each network are plotted in Fig. 5. To provide a benchmark for
small-world analyses, we also computed the average shortest-path lengths (Lrandom) and cluster-
ing coefficients (Crandom) for ensembles of random networks with sizes and connection densi-
ties equal to those observed in the three semantic networks. These random graphs were created
by randomly rearranging connections in the corresponding semantic networks.5

M. Steyvers, J. B. Tenenbaum/Cognitive Science 29 (2005) 51

Table 2
Summary statistics for semantic networks

Associative Network

Variable Type Undirected Directed Roget WordNet

n words 5,018 5,018 29,381 122,005
classes — — 1,000 99,642

<k> words 22.0 12.7 1.7 1.6
classes — — 49.6 4.0

L 3.04 4.27 5.60 10.56
D 5 10 10 27
C .186 .186 .875 .0265
γ 3.01 1.79 3.19 3.11
Lrandom 3.03 4.26 5.43 10.61
Crandom 4.35E-03 4.35E-03 .613 1.29E-04

Note. n = the number of nodes; <k> = the average number of connections; L = the average shortest path length;
D = the diameter of the network; C = clustering coefficient; γ = power law exponent for the distribution of the
nunmber of edges in undirected netowrks and incoming connections in directed networks; Lrandom = the average
shortest path length with random graph of same size and density; Crandom = the clustering coefficient for a random
graph of same size and density.



4.2.1. Sparsity
For WordNet (Fellbaum, 1998; Miller, 1995) and Roget (1911), the number of nodes can be

separated into the number of word nodes and the number of class nodes (categories in Roget
and word meanings in WordNet). For WordNet and Roget’s thesaurus, Table 2 lists <k> (the
average degree or average number of connections) separately for word and class nodes. Given
the size of the networks and the number of connections, it can be observed that all three seman-
tic networks are sparse: On average, a node is connected to only a very small percentage of
other nodes. In the undirected associative network, a word is connected on average to only 22
(.44%) of the 5,018 total number of words. The semantic networks of WordNet and Roget’s
thesaurus exhibit even sparser connectivity patterns.

4.2.2. Connectedness
Despite their sparsity, each of these semantic networks contains a single large connected

component that includes the vast majority of nodes. In the directed associative network, the
largest strongly connected component consists of 96% of all words (i.e., for this set of words,
there is an associative path from any word to any other word when the direction of association
is taken into account). In the undirected associative network, the whole network is connected.
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Fig. 5. The degree distributions in the undirected associative network (a), the directed associative network (b), Roget’s
thesaurus (c), and WordNet (d). All distributions are shown in log-log coordinates with the line showing the best fitting
powerlawdistribution.ForRoget’s thesaurusandWordNet, thedegreedistributionsshownarefor thewordnodesonly.



For both WordNet (Fellbaum, 1998; Miller, 1995) and Roget’s (Roget, 1911) thesaurus, the
largest connected component consists of more than 99% of all words. We restricted all further
analyses to these components.

4.2.3. Short Path Lengths
All three networks display very short average path lengths and diameters relative to the sizes

of the networks6. For instance, in the undirected associative network, the average path length
(L) is only 3, whereas the maximum path length (D) is only 5. That is, at most, 5 associative
steps (independent of direction) separate any two words in the 5,000+ word lexicon. These
short path lengths and small diameters are well described by random graphs of equivalent size
and density, consistent with Watts and Strogatz’s (1998) findings for other small-world net-
works.

4.2.4. Neighborhood clustering
The clustering coefficient C for the associative network is well above zero, implying that the

associates of a word tend also to be directly associated with a significant fraction (approxi-
mately 1/6) of time. The absolute value of C appears much lower for WordNet (Fellbaum,
1998; Miller, 1995), but that is primarily because the graph is much sparser (there are fewer
possibilities to form overlapping neighborhoods of nodes). For both the associative network
and WordNet, C is several orders of magnitude larger than would be expected in a random
graph of equivalent size and density (Crandom). For Roget’s (Roget, 1911) thesaurus, the analy-
sis of neighborhood clustering is more complex. Because the thesaurus is a bipartite graph,
with connections between word and class nodes, but not between nodes of the same type, the
neighbors of a word node can never themselves be neighbors. To define a meaningful measure
of semantic neighborhood clustering in the thesaurus network, we converted the bipartite
graph to a simple graph on the word nodes by connecting words if they shared at least one class
in common. The clustering coefficient C was then computed on this word graph and compared
with the mean clustering coefficient Crandom computed in an analogous manner for an ensemble
of random bipartite graphs with the same size and density as the original thesaurus network. As
in the other two semantic networks, C was substantially higher for the thesaurus than for the
comparable random graphs.

4.2.5. Power-law degree distribution
Fig. 5 plots the degree distributions for the word nodes of each network in log–log coordi-

nates, together with the best fitting power functions (which appear as straight lines under the
log–log scaling). For the directed associative network, the in-degree distribution is shown. As
in conventional histograms, these distributions were estimated by grouping all values of k into
bins of consecutive values and computing the mean value of k for each bin. The mean value of
each bin corresponds to one point in Fig. 5. The boundaries between bins were spaced
logarithmically to ensure approximately equal numbers of observations per bin.

For the three undirected networks, power functions fit the degree distributions almost per-
fectly. The exponents γ of the best fitting power laws (corresponding to the slopes of the lines
in Fig. 5) were quite similar in all three cases, varying between 3.01 and 3.19 (see Table 2). The
high-connectivity words at the tail of the power-law distribution can be thought of as the
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“hubs” of the semantic network. For example, in word association, the five words with the
highest degrees are FOOD, MONEY, WATER, CAR, and GOOD. In WordNet (Fellbaum,
1998; Miller, 1995), they are BREAK, CUT, RUN, MAKE, CLEAR, and in Roget’s (Roget,
1911) thesaurus they are LIGHT, CUT, HOLD, SET, and TURN. This analysis also reveals
that the sets of high-degree words have no words in common among the three semantic net-
works. Similarly, when the analysis is expanded to 50 words with the highest degree, there are
just a few overlapping words (e.g., Roget’s thesaurus and WordNet overlap in BREAK,
CHARGE, CLEAR, CLOSE, and CUT, but word association and WordNet overlap in CLEAN
and GOOD). This shows that, whereas the hubs in these networks correspond to important se-
mantic categories or highly polysemous verbs and nouns or both, they do differ in the exact set
of words that make up these hubs.

For the directed associative network, the in-degree distribution shows a slight deviation
from the power-law form, and the best fitting power law has an exponent γ somewhat lower
than 2. The out-degree of words in the directed associative network (not shown in Fig. 5) is not
power-law distributed but, instead, has a single peak near its mean and exponential tails, simi-
lar to a normal or ξ2 distribution. We focus on the in-degree distribution as opposed to the
out-degree distribution, because the out-degree of a node in the word associative network is
strongly dependent on specific details of how the word association experiment was conducted:
the number of subjects that gave associative responses to that cue and the number of different
associates that each participant was asked to generate for that cue. We will discuss the differ-
ences between the in- and out-degree distributions in word association in more detail when we
describe the growing network model that can explain these differences.

4.3. Discussion

All of the semantic networks studied shared the distinctive statistical features of both
small-world and scale-free structures: a high degree of sparsity, a single connected component
containing the vast majority of nodes, very short average distances among nodes, high local
clustering, and a power-law degree distribution (with exponent near 3 for the undirected net-
works). The fact that these properties held for all networks despite their origins in very differ-
ent kinds of data demands some explanation. It is unlikely that the commonalities are simply
artifacts of our analysis, because they are not found in random graphs or even in many complex
networks from other scientific domains that have been subjected to the same kinds of analyses
(Amaral et al., 2000; Watts & Strogatz, 1998). It is more reasonable to suppose that they re-
flect, at least in part, some abstract features of semantic organization. This structure must be
sufficiently deep and pervasive to be accessed by processes as diverse as rapid free association
by naive subjects (Nelson et al., 1999) and considered analysis by linguistic experts (Miller,
1995; Roget, 1911).

The similarities in network structure may also depend in part on the coarse grain of our anal-
ysis, which treats all words and all connections among words equally. Surely these simplifica-
tions make our analysis insensitive to a great deal of interesting linguistic structure, but they
may also enable us to see the forest for the trees—to pick up on general properties of meaning
in language that might be missed in more fine-grained but small-scale studies of particular se-
mantic domains. A promising direction for future work would be to refine our analyses based
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on some minimal linguistic constraints. For instance, words or connections could first be seg-
regated into broad syntactic or semantic classes, and then the same statistical analyses could be
applied to each class separately. Many authors have suggested that there are systematic differ-
ences in the semantics of nouns and verbs (Gentner, 1981) or nouns and adjectives (Gasser &
Smith, 1998) or different kinds verbs (Levin, 1993), and it would be interesting to see if those
differences correspond to different large-scale statistical patterns. It would also be interesting
to apply the same analyses to the semantic networks of different languages. We expect that the
general principles of small-world and scale-free structures would be universal, but perhaps we
would find quantitative variations in the clustering coefficients or power-law exponents result-
ing from different language histories.

Power laws in human language were made famous by Zipf (1965), but were in fact discussed
earlier by Skinner (1937). After conducting the previous analyses, we discovered some intrigu-
ing parallels with those classic studies. Zipf’s best known finding concerns the distribution of
word frequencies, but he also found a power-law distribution for the number of word meanings
(as given by the Thorndike-Century dictionary). That is, most words have relatively few distinct
meanings, but a small number of words have many meanings. If we assume that a word’s degree
of connectivity is proportional to the number of its distinct meanings, then Zipf’s “law of mean-
ing” is highly consistent with our results here, including a power-law exponent of approximately
3 that best characterizes his distribution.7 In our analysis of the in-degree distribution for the di-
rectedassociativenetwork, thebest fittingpower-lawexponentwassomewhat lower than2.This
result was anticipated by Skinner (1937), who measured the distribution of the number of differ-
ent associative responses to a much smaller set of cues than did Nelson et al. (1999). His plots
show power-law distributions with a slope somewhat lower than 2, which is quite consistent with
our findings for the in-degree distribution of the word association network.

Given the limited significance attributed to the work of Zipf (1965) and Skinner (1937) in
most contemporary accounts of linguistic structure and processing, it is quite reasonable to ask
whether the statistical regularities we have uncovered will prove to be any more important.
Skinner’s work on the associative basis of language has been discounted primarily on the
grounds that it looked only at the surface forms of language, ignoring the unobservable repre-
sentational structures that cause those observable forms to behave as they do (Chomsky, 1957,
1959). Our analysis, in contrast, examines both simple associations between surface forms
(Nelson et al., 1999) and more complex relations between words mediated by unobservable
classes (WordNet; Fellbaum, 1998; Miller, 1995) and finds similar patterns in them. The uni-
fied theory that Zipf proposed to account for his power-law findings, based on principles of
least effort, has fared somewhat better than Skinner’s theories of language. Yet it does not play
a large role in contemporary computational studies of language, perhaps because its formula-
tion is vague in many places and because many simple mathematical models have been subse-
quently proposed that can reproduce Zipf’s most famous result—the power-law distribution of
word frequencies—without offering any deep insights into how language works (Manning &
Schutze, 1999). In contrast, the statistical properties we have identified are not predicted by the
currently most popular accounts of semantic structure, or by many other mathematical models
of network formation. We have also attempted to develop mathematically precise and psycho-
logically motivated models for the formation of semantic networks that are consistent with all
of these constraints. These models are the subject of the following section.
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5. Growing network model

It has been argued by a number of researchers (Barabási & Albert, 1999; Kleinberg, Kumar,
Raghavan, Rajagopalan, & Tomkins, 1999; Simon, 1955) that power-law distributions are a con-
sequence of the characteristic ways that systems grow or develop over time. In particular, power
laws in network degree distributions have been taken as the signature of a particular kind of net-
work growth process known as preferential attachment (Barabási & Albert, 1999; see also, Si-
mon, 1955): Nodes are added to the network successively, by connecting them to a small sample
of existing nodes selected with probabilities proportional to their degrees. In other words, the
more highly connected a node is, the more likely it is to acquire new connections.

Barabási and Albert (1999) proposed a simple model that directly instantiates the principle
of preferential attachment: Each target for a new node’s connections is sampled independently
from the set of all existing nodes, with probability proportional to its current degree. This
model produces power-law degree distributions with an exponent of 3, much like those we ob-
served for semantic networks. However, it does not yield clustering coefficients that are nearly
as high as those we observed. For instance, when the network size and density are comparable
to the word association network, the model of Barabási and Albert yields values of C around
.02, much lower than the observed value of .186. Asymptotically, as network size grows to in-
finity, C approaches 0 for this model, making it inappropriate for modeling small-world struc-
tures. Conversely, the classic model of small-world network formation, due to Watts and
Strogatz (1998), does not capture the scale-free structures we have observed. In this section,
we present an alternative model of preferential attachment that draws its inspiration from
mechanisms of semantic development and that naturally produces both scale-free struc-
tures—with appropriate power-law exponents—and small-world structures—with appropriate
clustering coefficients.

We should stress that in modeling the growth of semantic networks, our aim is to capture at
an abstract level the relations between the statistics reported in the previous section and the dy-
namics of how semantic structures might grow. Our model’s most natural domain of applica-
bility is to semantic growth within an individual—the process of lexical development—but it
may also be applicable to the growth of semantic structures shared across different speakers of
a language or even different generations of speakers—the process of language evolution.

We frame our model abstractly in terms of nodes—which may be thought of as words or
concepts—and connections between nodes—which may be thought of as semantic associa-
tions or relations. We do not attempt to model the development of particular words or concepts,
based on particular experiences. Rather, our goal is to explain the statistics of semantic net-
works as the products of a general family of psychologically plausible developmental pro-
cesses.8 Over time, new nodes are added to the network and probabilistically attached to exist-
ing nodes on the basis of three principles. First, following the suggestions of many researchers
in language and conceptual development (Brown, 1958a,b; Carey, 1978, 1985; Clark, 1993,
2001; Macnamara, 1982; Slobin, 1973), we assume that semantic structures grow primarily
through a process of differentiation: The meaning of a new word or concept typically consists
of some kind of variation on the meaning of an existing word or concept. Specifically, we as-
sume that when a new node is added to the network, it differentiates an existing node by acquir-
ing a pattern of connections that corresponds to a subset of the existing node’s connections.
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Second, we assume that the probability of differentiating a particular node at each time step is
proportional to its current complexity—how many connections it has. Finally, we allow nodes
to vary in a “utility” variable, which modulates the probability that they will be the targets of
new connections. Utility variation is not necessary to produce any of the statistical features de-
scribed in the previous section; it merely allows us to explore interactions between those fea-
tures and aspects of word utility, such as usage frequency.

By focusing on the process of semantic differentiation, we do not mean to preclude a role for
other growth processes. We have chosen to base our model on this single process strictly in the
interests of parsimony. Incorporating additional processes would surely make the model more
realistic but would also entail adding more free parameters, corresponding to the relative
weights of those mechanisms. Given that the data we wish to account for consist of only the
few summary statistics in Table 2 and the degree distributions in Fig. 5, it is essential to keep
the number of free parameters to an absolute minimum. Our model for undirected networks
(Model A) has no free numerical parameters, whereas our model for directed networks (Model
B) has just one free parameter.

5.1. Model A: The undirected growing network model

Let n be the size of the network that we wish to grow, and n(t) denote the number of nodes at
time t. Following Barabási and Albert (1999), we start with a small fully connected network of
M nodes (M < n). At each time step, a new node with M links is added to the network by ran-
domly choosing some existing node i for differentiation and then connecting the new node to
M randomly chosen nodes in the semantic neighborhood of node i. (Recall that the neighbor-
hood Hi of node i consists of i and all the nodes connected to it.) Under this growth process, ev-
ery neighborhood always contains at least M nodes; thus a new node always attaches to the net-
work by connecting to a subset of the neighborhood of one existing node. In this sense, the new
node can be thought of as differentiating the existing node, by acquiring a similar but slightly
more specific pattern of connectivity.

To complete the model, we must specify two probability distributions. First, we take the
probability Pi(t) of choosing node i to be differentiated at time t to be proportional to the com-
plexity of the corresponding word or concept, as measured by its number of connections:

where ki(t) is the degree (number of connections) of node i at time t. The indexes in the denomina-
tor range over all existing n(t) nodes in the network. Second, given that node i has been selected
for differentiation, we take the probability Pij(t) of connecting to a particular node j in the neigh-
borhood of node i to be proportional to the utility of the corresponding word or concept:
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where the indexes in the denominator range over all nodes in the neighborhood Hi. To explore
the interaction between word frequencies and network structure, we may equate a word’s util-
ity with its usage frequency (e.g., Kucera & Francis, 1967). For simplicity, we may also take all
utilities to be equal, in which case the connection probabilities are simply distributed uni-
formly over the neighborhood of node i:

For each new node added to the network, we sample repeatedly from the distribution in (4)
or (5) until M unique nodes within the neighborhood of i have been chosen. The new node is
then connected to those M chosen nodes. We continue adding nodes to the network until the de-
sired network size n is reached. The growth process of the model and a small resulting network
with n = 150 and M = 2 is illustrated in Fig. 6.

In our applications, M and n are not free to vary but are determined uniquely by the goal of
producing a synthetic network comparable in size and mean density of connections to some
real target network that we seek to model. The size n is simply set equal to the size of the target
network. The parameter M is set equal to one half of the target network’s mean connectivity
<k>, based on the following rationale. Each new node in the synthetic network is linked to M
other nodes, and the network starts with a small, fully connected subgraph of M nodes. Hence
the average number of connections per node in the synthetic network is <k> = 2M + M (M –
1)/n, which approaches 2M as n becomes large.

5.2. Model B: The directed growing network model

Our model for growing directed networks is practically identical to the model for undirected
networks, with the addition of a mechanism for orienting the connections. The initial fully con-
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Fig. 6. Illustration of the undirected growing network model with n=150 and M=2. The shade of the nodes indicates
the time step at which the nodes were first inserted.



nected network with M nodes now contains an arc from each node to every other node. The
probability of choosing node i to be differentiated at a particular time t is still given by Equa-
tion (3), with the degree of a node in the directed graph defined as the sum of its in- and out-de-
grees, k k ki i

in
i
out
 � . Each new node still makes connections to M existing nodes within the

neighborhood of the node it differentiates, and those nodes are still sampled randomly accord-
ing to Equations (4) or (5). The main novelty of Model B is that now each new connection may
point in one of two possible directions, toward the existing node or toward the new node. We
make the simplifying assumption that the direction of each arc is chosen randomly and inde-
pendently of the other arcs, pointing toward the older node with probability α and toward the
new node with probability (1 – α). The value of α is a free parameter of the model. Whether
connections represent superficial associations or deep semantic dependencies, it seems plausi-
ble that they should typically point from the new node toward the previously existing node,
rather than the other way around. Hence we expect the best fitting value of α to be significantly
greater than .5, and perhaps just slightly less than 1.0.

5.3. Results and analyses

In principle, we could compare the products of these models with any of the real semantic
networks analyzed previously. However, the computational complexity of the simulation in-
creases dramatically as the network grows, and it has not been practical for us to conduct sys-
tematic comparisons of the models with networks as large as WordNet (Fellbaum, 1998;
Miller, 1995) or Roget’s (Roget, 1911) thesaurus. We have carried out a thorough comparison
of Models A and B with the undirected and directed word association networks, respectively,
and we report those results as follows. In all of these simulations, we set n = 5,018 to match the
number of words in the free-association database. We set M = 11 in Model A and M = 13 in
Model B to ensure that the resulting synthetic networks would end up with approximately the
same density as the corresponding word association networks. We explored two different set-
tings for the node utilities, one with all utilities equal and the other with utilities determined by
word frequency, according to ui = log(fi+1). The word frequencies fi were estimated from the
Kucera and Francis (1967) counts of words in a large sample of written text. Because M and n
were set to match the size and density of the associative networks, and the utilities were set uni-
formly or by observed word frequencies, there were no free numerical parameters in these
mechanisms. The only free parameter occurred in the directed model: We varied α and ob-
tained best results near α = 0.95, corresponding to the reasonable assumption that on average,
19 out of 20 new directed connections point from a new node toward an existing node.

We evaluated the models by calculating the same statistical properties (see Table 2) and de-
gree distributions (see Fig. 5) discussed previously for the real semantic networks. Because the
growing models are stochastic, results vary from simulation to simulation. All the results we
describe are averages over 50 simulations. These results are shown in Table 3 and Fig. 7.

For all of the statistics summarized in Table 3, both models achieved close fits to the corre-
sponding real semantic networks. The mean statistics from 50 model runs were always within
10% of the corresponding observed values, and usually substantially closer. Fig. 5 shows that
the degree distributions of the models matched those of the real semantic networks, both qual-
itatively and quantitatively. Model A, corresponding to the undirected associative network,
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produced a degree distribution with a perfect power-law tail and exponent near 3. Model B,
corresponding to the directed associative network, produced an approximate power-law dis-
tribution, with a slight downward inflection and an exponent somewhat less than 2. All of these
results were very similar regardless of whether utilities were taken to be equal (as shown in Ta-
ble 1 and Fig. 5) or variable according to the Kucera–Francis (Kucera & Francis, 1967) fre-
quency distribution.

We also checked that the directed network model would reproduce the results of the undi-
rected model when all directed links were converted to undirected links, which corresponds
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Fig. 7. The degree distributions of the word associative networks and model simulations with best fitting power law
functions. (a) the undirected associative network is shown with the fit of model A: the undirected growing network
model. (b), the in-degree distribution of the directed associative network is shown along with the fit of model B: the
directed growing network model.

Table 3
Results of model simulations

Undirected Associative Network Directed Associative Network

Variable Data Model A Model B Data Model B

n 5,018 5,018 5,018 5,018 5,018
<k> 22.0 22.0 22.0 12.7 13.0
L 3.04 3.00 (.012) 3.00 (.009) 4.27 4.28 (.030)
D 5 5.00 (.000) 5.00 (.000) 10 10.56 (.917)
C .186 .174

(.004)
.173

(.005)
.186 .157

(.003)
g 3.01 2.95 (.054) 2.97 (.046) 1.79 1.90 (.021)
Lrandom 3.03 — — 4.26 —
Crandom 4.35E–03 — — 4.35E–03 —

Note. Standard deviations of 50 simulations given between parentheses. n = the number of nodes; <k> = the av-
erage number of connections; L = the average shortest path length; D = the diameter of the network; C = clustering
coefficient; γ = power law exponent for the distribution of the nunmber of edges in undirected netowrks and incom-
ing connections in directed networks; Lrandom = the average shortest path length with random graph of same size and
density; Crandom = the clustering coefficient for a random graph of same size and density.



more accurately to the process by which the real undirected semantic network was constructed.
We simulated Model B with M = 11 and α = 0.95 and converted all arcs to edges at the end of
each simulation. The results (shown in Table 3) were almost identical to those produced by
Model A. This is to be expected, because of the particularly simple mechanism for choosing
the directionality of new connections in Model B. The choice of directionality is made inde-
pendently for each link and does not influence the other processes in the model. Removing the
edge directionalities from Model B at the output stage thus renders it mechanistically equiva-
lent to Model A.

5.4. Discussion

The qualitative features of the simulated networks make sense in light of the differentiation
mechanism we have hypothesized for semantic network growth. Short average path lengths
occur because of the presence of hubs in the network; many shortest paths between arbitrary
nodes x and y involve one step from x to a hub and from the hub to node y. These hubs, and
more generally, the power-law degree distributions, result from a version of the preferential at-
tachment principle. At any given time step, nodes with more connections are more likely to re-
ceive new connections through the process of semantic differentiation, because they belong to
more semantic neighborhoods, and those neighborhoods on average will be more complex
(making them more likely to be chosen for differentiation, by Equation (3). The models pro-
duce high clustering coefficients because new connections are made only into existing seman-
tic neighborhoods. This ensures high overlap in the neighborhoods of neighboring nodes.

It is not so easy to explain a priori the close quantitative match between the statistics and de-
gree distributions of the word association networks and those of our simulated networks with
comparable size and connection density. The fact that these results were obtained with no free
parameters, in Model A, or one free parameter set to a reasonable value, in Model B, gives us
reason to believe that something like the growth mechanisms instantiated in the models may
also be responsible for producing the small-world and scale-free structures observed in natu-
ral-language semantic networks.

Our models are, at best, highly simplified abstractions of the real processes of semantic
growth. This simplicity is necessary, given how little we know about the large-scale structures
of real semantic networks—essentially, no more than is summarized in Table 2 and Figure 5.
By pairing down the details of semantic growth to a simple mechanism based on differentiating
existing words or concepts, we have been able to provide a unifying explanation for several
nontrivial statistical structures.

There are clearly many ways in which our models could be made more realistic. Currently,
new nodes always form their connections within a single semantic neighborhood, and new
connections are added only when new nodes are added—never between two existing nodes. It
would not be hard to remove these constraints, but it would necessitate additional free parame-
ters governing the probability of making connections outside of a neighborhood (or in two or
more neighborhoods) and the probability of adding a new connection between existing nodes.
Removing these constraints would also make the models more flexible in terms of the kind of
data they can fit; currently, the clustering coefficient and the shape and slope of the degree dis-
tribution are uniquely determined by the size and density of the network. It would also be pos-
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sible to build models with different kinds of nodes and different kinds of connections, perhaps
governed by different principles of growth. This complexity could be particularly important
for modeling the network structure of WordNet (Fellbaum, 1998; Miller, 1995) or Roget’s (Ro-
get, 1911) thesaurus, which are based on a distinction between word nodes and class nodes. A
thorough and rigorous exploration of the many possible models for semantic network growth
should probably be deferred until we acquire more and better data about different kinds of se-
mantic structures, and the computational resources to model the larger networks that we have
already analyzed.

Finally, we acknowledge that we have been deliberately ambiguous about whether our
model of semantic growth is meant to correspond to the process of language development
within an individual’s life span, or the process of language evolution across generations of
speakers, or both. Although the mechanism of our model was primarily inspired by the lan-
guage development literature (Brown, 1958a, 1958b; Carey, 1978, 1985; Clark, 1993, 2001;
Macnamara, 1982; Slobin, 1973), we think that some kind of semantic differentiation process
is also a plausible candidate for how new word meanings are formed between individuals.
Clearly these two processes are coupled, as the critical period of language acquisition is a prin-
cipal locus of cross-generational linguistic change (Pinker, 1994). In future work, we hope to
relate our modeling efforts more closely to the knowledge base of historical linguistics, as well
as recent mathematical models of language evolution (Niyogi & Berwick, 1997; Nowak &
Krakauer 1999).

6. Psychological implications of semantic growth

Our proposal that the large-scale structure of semantic networks arises from the mecha-
nisms of semantic growth carries more general implications for psycholinguistic theories be-
yond merely accounting for the graph-theoretic properties described previously. In this sec-
tion, we focus on two issues: the viability of nongrowing semantic representations and the
causal relations between a network’s growth history, semantic complexity, and memory search
behavior.

6.1. Power-law distributions and semantic growth

Conventional static views of semantic network organization—as either a hierarchical tree or
an arbitrary graph—are consistent with the existence of short paths between any two nodes, but
they do not predict either the small-world neighborhood clustering or the scale-free degree dis-
tributions that are found in real semantic networks. We have interpreted this constellation of
features as the signature of a particular kind of network growth process, but we have not ruled
out the possibility that some other kind of static semantic representation—perhaps not based
on a network model at all—may give rise to these structures. A comprehensive survey of all
previous semantic models is beyond the scope of this article, but we explore one currently pop-
ular alternative representation based on the analysis of co-occurrences of words in a large cor-
pus of text.
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LSA (e.g., Landauer & Dumais, 1997; Landauer, Foltz, & Laham, 1998) has been proposed
as a general theory for the representation and processing of semantic information. LSA is a ma-
chine learning model that induces a high-dimensional semantic space by a mathematical anal-
ysis of the way words are used in passages. The meaning of words is represented by vectors in
the high-dimensional space, and the semantic similarity between words can then be deter-
mined by some measure of affinity in that space, such as the cosine of the angle between two
vectors or the inner product. Landauer and Dumais showed that the local neighborhoods in se-
mantic space successfully capture some subtle semantic relations. LSA differs from our net-
work models in at least two important ways. First, it is a distributed representation; semanti-
cally similar words are represented by similar sets of features placing them in similar regions
of a high-dimensional space. Second, it is a static model whose structure arises from a sin-
gle-pass analysis of a large corpus, not a growth or learning process.

The question here is whether LSA captures some of the structural features that we observe
in semantic networks, such as the presence of hubs or a power-law distribution of neighbor-
hood sizes. If we can show that LSA does not naturally produce these same statistics, then it
raises the possibility that there are nontrivial differences between growing network and spatial
representations of semantic knowledge. To compare LSA representations with our semantic
networks, we need some way of discretizing the continuous LSA space so that we can talk
about the set of neighbors of a word rather than just the distances between words. We have ex-
plored two methods for creating local neighborhoods in LSA that we will refer to as the
ε-method and the k-nn method.

The ε-method is similar in spirit to previous LSA analyses (Landauer & Dumais, 1997;
Landauer et al., 1998); local neighborhoods are created by thresholding a continuous measure
of similarity, such as the cosine of the angle between two word vectors, or the inner product of
two word vectors. We could have restricted our analyses to the cosine measure only, as this is
the measure in most information retrieval applications (see Landauer et al., 1998), but our ini-
tial analyses revealed important differences between the cosine and inner product measure.
Two words are treated as neighbors if the similarity measure between their vectors exceeds
some threshold ε. By varying the threshold ε, the size n and mean connectivity <k> of the LSA
network can be made to correspond with those of the other networks we have studied. In partic-
ular, we examined the LSA vector representation based on the Texas Association of Schools of
Art corpus (Landauer et al., 1998) for all words (n =4,956), which also occurred in the word as-
sociation database. This allowed us to compare the LSA network directly with the word associ-
ation network and the outputs of our growing network model. We used thresholds ε that led to
approximately the same <k> as in the undirected word association network and our Model A.

The k-nn method differs from the ε-method in two important ways. First, it creates a di-
rected network by selecting outlinks to the k nearest neighbors for each word in LSA. Second,
the number of outlinks (k) is yoked to the number of outlinks for corresponding words in the
word association network. Therefore, the out-degree distribution of the LSA network was
made identical to the out-degree distribution of the word association network.

For both the ε and k-nn method, we applied two common measures for vector similarity
based on the cosine of the angle and inner product. We also varied the dimensionality of the
LSA space, d = 50, 200, and 400 (typical psychological applications of LSA set d at approxi-
mately 300).9 In many cases, the LSA networks did not result in a single connected component.
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In that case, we noted the number of connected components (denoted by m) and the size of the
largest connected component (denoted by n*). Table 4 presents the results for the LSA net-
works obtained with the ε and k-nn method for two similarity measures and three different
dimensionalities. The network statistics <k>, L, D, C, and γ were all based on the largest con-
nected component.

For both the ε and k-nn method and the two similarity measures, the LSA networks showed
path lengths and clustering coefficients that could be reasonably characterized as a small-
world structure, with much higher clustering and shorter path lengths than would be expected
in a random network of equal size and density.

The networks based on LSA networks do not reproduce the observed degree distributions.
In Fig. 8, the degree distributions based on cosine similarity show a bend that is typical of ex-
ponential distributions, not power-law distributions. Because the distributions are curved in
log–log coordinates, it becomes difficult to interpret the slope of the best fitting line (γ) in these
plots. In Table 4, we nevertheless show the best fitting values of γ to highlight this key differ-
ence between the LSA models and the real semantic networks.

The distributions based on inner products do look vaguely powerlike, especially for the LSA
networks created with the ε-method. However, γ is lower than observed in word association.
Also, for the ε-method with inner products, there is a large number of connected components,
whereas in word association, there is just a single connected component.

We have shown that power laws of semantic connectivity do not arise in LSA when the
data are processed in the standard way, with semantic similarity computed according to the
cosine metric. We have also explored other ways of representing semantic association based
on LSA, to see if power laws could emerge from processing the data in some nonstandard
way. The only positive results we have obtained occur in networks based on an inner prod-
uct metric, where two words are connected if their inner product in LSA space exceeds
some threshold. Although such networks do yield power laws of connectivity in some cases,
we doubt that they capture the same phenomenon we are seeing in human word association
data and in our model. The power laws we obtain from LSA vectors under an inner product
metric always have a slope that is significantly lower than the power laws we report here
(e.g., approximately 1 or slightly higher). This suggests they may arise from a different
source, such as the effects of word frequency, which is well known to follow a power-law
distribution with a different exponent (Zipf, 1965) from the semantic power laws we focus
on here. The inner product metric in LSA is just the cosine metric times the norm of each
vector, and the norms of vectors in LSA are highly correlated with word frequency (approxi-
mately r = .96; Griffiths, personal communication, July 10, 2003). This correlation in LSA
is a straightforward effect of the way that SVD operates on the (transformed) word-docu-
ment co-occurrence matrix. Thus we have yet to find any strong evidence of power-law dis-
tributions in the semantic structures induced by LSA.

There are several reasons to think that scale-free connectivity is difficult to reproduce for
many vector-space models of semantics, regardless of whether they are constructed through
the machinery of LSA or some other procedure. Just as arbitrary graphs do not produce a
power-law distribution of neighborhood sizes, neither do generic configurations of points in
Euclidean space. For instance, if a large number of points are randomly distributed in a hyper-
cube, and pairs of points are connected as neighbors whenever they are within some small Eu-
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Table 4
Statistical properties of networks constructed from LSA semantic spaces

Cosine similarity Inner product similarity

ε-method k-nn method ε-method k-nn method

d d d d

Variable 50 200 400 50 200 400 50 200 400 50 200 400

m 297 90 21 1 1 1 2,334 1,916 1,779 1 1 1
n* 4,653 4,866 4,935 4,956 4,956 4,956 2,623 3,041 3,178 4,956 4,956 4,956
<k> 22.3 22.3 22.3 12.7 12.7 12.7 22.3 22.3 22.3 12.7 12.7 12.7
L 4.83 4.02 3.70 5.60 5.03 4.65 2.63 2.73 2.83 3.74 3.67 3.64
D 12 9 8 14 12 10 4 5 5 8 8 8
C .456 .391 .298 .200 .219 .182 .601 .430 .340 .293 .358 .360
g 1.07 1.08 1.03 1.05 1.36 1.28 1.25 1.21 1.18 1.20 1.42 1.34

Note. LSA = Latent Semantic Analyses; d = dimensionality of the vector space; m = number of connected components, n* = size of largest connected compo-
nent; <k> = the average number of connections; L = the average shortest path length; D = the diameter of the network; C = clustering coefficient; γ = power law ex-
ponent for the distribution of the nunmber of edges in undirected networks and incoming connections in directed networks.



clidean distance ε of each other, the number of neighbors per point will follow a Poisson distri-
bution (Stoyan, Kendall, & Mecke, 1995). This distribution is just a limiting case of the bino-
mial distribution that describes neighborhood sizes in a random graph; both distributions have
exponential tails that show up as nonlinear in log–log coordinates. In a similar vein, Tversky
and Hutchinson (1986) identified certain geometric properties of Euclidean-space semantic
representations that are not consistent with human similarity judgments. In particular, they ar-
gued that Euclidean geometry—particularly in low dimensions—places strong constraints on
the maximum number of nearest neighbors that any point may have, and that these constraints
are not satisfied in conceptual domains with even very elementary forms of non-Euclidean
structure, such as a taxonomic hierarchy.

6.2. Age of acquisition, word frequency, and centrality

The core assumption of our model, that semantic structures derive from a growth process in
which connections are introduced primarily between new nodes and existing nodes, predicts a
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Fig. 8. The degree distributions for networks based on thresholded LSA spaces. For the ε-method, degree distribu-
tions of undirected networks are shown. For the k-nn method, the in-degree distributions are shown.



causal relation between the history of a network’s growth and its ultimate pattern of connectiv-
ity. This relation in turn motivates a unifying explanation for some previously observed behav-
ioral phenomena of memory search, under the hypothesis that search processes exploit the
structure of semantic networks in something like the way that search algorithms for informa-
tion on the Web can exploit link structure of the Web (Brin & Page, 1998; Kleinberg, 2001).

Most generally, our growth model predicts a correlation between the time at which a node first
joins the network and the number of connections that it ultimately acquires. More precisely, at
any given time, older nodes should possess more connections than younger nodes, and this effect
should interact with any variation in utility (e.g., word frequency) that influences the probability
of connecting new nodes to particular existing nodes. Fig. 9 illustrates both the basic age effect
and thenonlinear interactionwithutility,usingourundirectedmodelof thewordassociationdata
(Model A) and utility distributed according to the log transformed Kucera– Francis (Kucera &
Francis,1967) frequencies. (Thedirectednetworkmodel showssimilar results.)Theageeffect is
strongest fornodeswithhighestutilitybecause theyacquirenewconnectionsat thehighest rate.

To test these predictions of the model, we consulted age-of-acquisition norms that are avail-
able for small sets of words. Gilhooly and Logie (1980) asked adults to estimate, using an arbi-
trary rating scale, the age at which they first learned particular words. These ratings were con-
verted to scores between 100 and 700, with a score of 700 corresponding to a word acquired
very late in life. We took the average score for each word as a crude measure of the time at
which that word typically enters an individual’s semantic network. We also consulted the
age-of-acquisition norms of Morrison et al. (1997), who in a cross-sectional study estimated
the age at which 75% of children could successfully name the object depicted by a picture. Al-
though these norms provide a more objective measurement for the age of acquisition, they
were only available for a very small set of words.

Fig. 10 shows the relations between the number of connections that a word possesses, as
measured in each of the three real semantic networks analyzed earlier, and its age of acquisi-
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Fig. 9. In the growing network model, the degree of a node decreases nonlinearly as a function of the time since it
was first connected to the network. This age effect holds regardless of variations in node utility (e.g., based on word
frequency) and is greatest for the highest utility nodes. Here the nodes are binned into three sets corresponding to
low, medium and high frequency in the  norms of Kucera and Francis (1967) .



tion, as measured by both the adult rating and child picture-naming norms. We separated the
words into three different frequency bins to show interactions between age of acquisition and
word frequency. The data for all three networks are similar, but the word association network is
most directly comparable to the model predictions shown in Fig. 9 (because the model was
simulated to have the same size and density as this network). For both norms, early acquired
words have more connections than late-acquired words. Also as predicted by the model,
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Fig. 10. The relation between degree and age of acquisition as measured by adult ratings (left panels) and the aver-
age age at which children can name pictures (right panels). Right panels include standard error bars around the
means.



high-frequency words show higher connectivities, and the effect of age of acquisition on con-
nectivity is most dramatic for high-frequency words.

Beyond the implication that semantic structure arises through some kind of temporally ex-
tended growth process, these relations between connectivity, frequency, and age of acquisition
do not in themselves place strong constraints on the mechanisms of semantic network forma-
tion. In contrast with the small-world and scale-free structures discussed earlier, many differ-
ent growth models would make similar predictions here. More significant is the possibility that
some model of semantic structure based on growth processes may offer a unifying explanation
for the behavioral effects of all of these variables.

Both high-frequency and early age of acquisition have been shown to correlate with short
reaction-time latencies in naming (e.g., Carroll & White, 1973) and lexical-decision tasks
(e.g., Turner, Valentine, & Ellis, 1998). Age of acquisition affects lexical tasks, such as nam-
ing, and lexical decision and age of acquisition has also been shown to affect semantic tasks,
such as word association and semantic categorization (e.g., Brysbaert, Van Wijnendaele, & De
Deyne, 2000; Ellis & Lambon Ralph, 2000). There has also been some debate on whether age
of acquisition influences behavior independently of word frequency (e.g., Turner et al., 1998),
or instead merely embodies cumulative frequency (Lewis, Gerhand, & Ellis, 2001), because
high-frequency words are likely to be acquired earlier than low-frequency words.

In debating the causal status of variables such as frequency and age of acquisition, there are
both functional (“why”) questions and mechanistic (“how”) questions. Functionally, it is clear
that a bias toward high-frequency words or concepts would be useful in many cases, but it is
not so clear what direct purpose an age-of-acquisition bias would serve. Mechanistically, there
is good reason to doubt that either frequency or age of acquisition really is a direct cause of
people’s behavior; it seems impossible for the history of learning to influence present behavior
unless it has somehow left a structural trace in memory.

Our model of network growth suggests one possible structural substrate that could medi-
ate the influences of both high frequency and early age of acquisition: the size of a node’s
neighborhood, or the number of connections it makes to other nodes, which we have shown
correlates with both of these history factors. In general, we can imagine various kinds of
search processes that might activate nodes with higher connectivity more quickly, much as
some connectionist modelers have suggested that retrieving traces with lower error could be
faster for a number of reasons (e.g., Plaut, McClelland, Seidenberg, & Patterson, 1996).
Mechanistically, a bias for retrieving high-connectivity nodes first could arise naturally if
memory search is implemented by some kind of serial or parallel Markov process operating
on a semantic network. Under many different probabilistic dynamics, a Markov search pro-
cess would tend to find first those nodes with highest degrees (or in-degrees, for directed
networks).

In addition to providing one clear mechanism for how the history of a word’s usage could af-
fect present behavior, a bias to access words with high connectivity also has an intriguing func-
tional basis. In Google, a state-of-the-art algorithm for Web searching (Brin & Page, 1998),
sites are ranked in part based on a measure of their centrality in the WWW. The centrality of a
node reflects both its authority—the extent to which other sites point to it—as well as the prob-
ability that it will be encountered in random walks on the network. Google measures the cen-
trality of a node according to its projection onto the principal eigenvector of the normalized
Web adjacency matrix. Essentially the same computation applied to a graph of feature depend-
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encies, rather than WWW connections, has been used to assess the conceptual centrality of dif-
ferent object features (Sloman, Love, & Ahn, 1998). The (in-)degree of a node provides a sim-
pler alternative measure of centrality (because it just involves counts of the number of
incoming connections), which typically correlates highly with eigenvector measures of cen-
trality and thus authority as well. Just as a Google search orders Web sites based on their cen-
trality, so might the cognitive search processes involved in word production or lexical retrieval
be functionally biased toward accessing more central, highly connected nodes first, as a means
to direct processing toward the most authoritative and causally deep concepts that could be em-
ployed in a particular situation.

As a preliminary investigation of the behavioral significance of degree centrality, we under-
took a correlational analysis of word frequency, age of acquisition, and node degree factors in
predicting reaction times for several psycholinguistic tasks. Specifically, we looked at naming
and lexical decision in two databases—a new naming latency database by Spieler and Brand
(Brand, Rey, Peereman, & Spieler, 2001) for 796 multisyllabic words and a large lexical-deci-
sion latency database from Balota, Cortese, and Pilotti (1999) for 2,905 words. Node degrees
were logarithmically transformed to avoid the extreme skew inherent in the degree distribu-
tion. Table 5 shows the correlations between latencies in naming and lexical-decision tasks and
the three factors of degree centrality, age of acquisition, and word frequency. The results con-
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Table 5
Correlations between naming and lexical decision latencies and three potential causal factors: word frequency,
age of acquisition and degree centrality (in the word association, WordNet, and Roget’s networks)

Naming Lexical Decision

n R n R

Log( k ), word association 466 –.330* 1676 –.463*
Log( k ), WordNet 790 –.298* 2665 –.464*
Log( k ), Roget 647 –.164* 2343 –.253*
Log (word frequency) 713 –.333* 2625 –.511*
AoA (rating) 199 .378* 566 .551*
AoA (picture naming) 44 .258 137 .346*
After partialing out log (word frequency)

Log( k ), word association 433 –.194* 1634 –.258*
Log( k ), WordNet 706 –.171* 2503 –.274*
Log( k ), Roget 602 –.110* 2243 –.136*
AoA (rating) 196 .337* 546 .450*
AoA (picture naming) 39 .208 131 .239*

After partialing out AoA (picture naming)
Log( k ), word association 33 –.279 107 –.414*
Log( k ), WordNet 36 –.246 111 –.394*
Log( k ), Roget 29 –.141 105 –.195*
Log (word frequency) 34 –.280 109 –.463*

After partialing out log (word frequency) & AoA (picture naming)
Log( k ), Word Association 32 –.171 106 –.234*
Log( k ), WordNet 33 –.145 108 –.242*
Log( k ), Roget 33 –.101 104 –.104

Note. R = correlation; n = number of observations; AoA = age of acquisition.
*p < .05.



firm well-known findings that age of acquisition correlates positively with naming and lexi-
cal-decision latencies and that word frequency (using the norms of Kucera & Francis, 1967)
correlates negatively with the same latencies. In other words, high-frequency or early acquired
words are named faster and are quicker to be identified as words than low-frequency or late-ac-
quired words. We also see that centrality is negatively correlated with these latencies: Words
that are semantically more central have quicker reaction times. All of these correlations are rel-
atively weak, but most are statistically significant (those with n >100). When the effects of
word frequency or age of acquisition are partialed out of the analysis, the correlations between
centrality and reaction-time latencies become weaker but remain significant for the lexical-de-
cision task.

For the most part, these correlations are not surprising, given that we have already shown a
correlation—and, in our growth model, a causal dependence—between degree of connected-
ness and the two history factors of age of acquisition and usage frequency. However, they sug-
gest that in addition to perhaps being one mediator of learning history, degree centrality may
also exert an independent effect on reaction times. This bolsters our hypothesis that memory
search processes are dependent either functionally or mechanistically on the connectivity
structure of semantic nets.

We are not suggesting that degree centrality is the only structural locus for learning his-
tory effects, nor that the causal relations between these factors only point in the one direc-
tion captured by our growth model. In particular, our model explains why more frequent,
early acquired words are more densely connected, but it does not explain why certain words
are acquired earlier or used more frequently than other words. There could well be a causal
influence in the other direction, with age of acquisition and usage frequency dependent on
the degree of connectivity in the semantic networks of competent adult speakers in a lan-
guage community.

Our growing network model is also not the only model that attempts to capture the structural
effects of age of acquisition and frequency. In several connectionist models (Ellis & Lambon
Ralph, 2000; Smith, Cottrell, & Anderson, 2001), it has been found that the final accuracy for a
particular training pattern depends on both its frequency of presentation and its age of acquisi-
tion (manipulated by hand in Ellis & Lambon Ralph, 2000, and estimated by Smith et al., 2001,
to be the first time at which the training error drops below some threshold). The connectionist
explanations depend on distributed representations: Early learned items induce a distributed
representation that later learned items cannot easily change, and thus over time, the model
loses the ability to encode new patterns accurately. Our growing network model offers an alter-
native view in which each word or concept is represented as a distinct entity, together with ex-
plicit connections to other entities. In contrast with the distributed representations account, this
view has several distinctive features. Age-of-acquisition effects do not imply that recently
learned meanings are encoded less accurately than older ones, only that they are less richly
connected to other items in memory. If memory search processes are sensitive to connectivity,
as we conjecture, then new items may be retrieved less effectively, but for other purposes they
may be processed just as (or more) effectively or accurately than old items. Our model also
provides a clear route for how age of acquisition could influence the dynamics of search behav-
ior, via the structural feature of degree centrality that is both functionally and mechanistically
relevant for effective network search procedures, and which seems to exert an independent ef-
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fect on reaction times. It is not so clear in connectionist accounts how or why the magnitude of
a pattern’s training error should determine its accessibility or reaction time in a search process.

7. General discussion

In analyzing semantic networks, we are not endorsing traditional network models of seman-
tic structure such as Collins and Quillian (1969) or Collins and Loftus (1975). Rather, we are
analyzing one aspect of abstract semantic knowledge that could be captured in many different
models defined at a more detailed level. We define a semantic network to be an abstract rep-
resentation of one aspect of semantic knowledge—the pairwise relations between words.
Semantic networks may directly form the basis for representing semantic knowledge, as in
classic semantic net models, or they may be an abstraction computed from some other
representation.

Both our semantic network analyses and our growing network model of semantic develop-
ment are intended to capture abstract constraints on semantic representation and development
that more precise mechanistic models may need to obey. As an example, consider vector-space
models of semantic representation, such as LSA. LSA includes knowledge about the pairwise
relations between words, which can be modeled as a semantic network by associating a node
with each word and connecting two nodes if their corresponding points in LSA space are suffi-
ciently close (e.g., within some small radius epsilon). We have shown that semantic networks
constructed from LSA representations do not typically exhibit the characteristic large-scale
statistical regularities found in our real-world semantic networks. To the extent that the statisti-
cal regularities turn out to be important constraints on semantic representation, this suggests a
limitation in existing approaches to semantic representation, such as LSA, to model human
knowledge. Such limitations can be overcome in a variety of ways. For example, Griffiths and
Steyvers (2002, 2004) proposed the “topics model,” a probabilistic approach that can capture
most of the statistical regularities of semantic network structure that we have reported. By rep-
resenting words as probability distributions over topics as opposed to spatial locations in a
high-dimensional space, the topics model is able to avoid the inherent constraints associated
with spatial models (see also, Tversky & Hutchinson, 1986) that make it difficult to produce
small-world structures. Alternatively, one can model the observed statistical regularities by
models of semantic development that embody something like the process of differentiation
that drives our growing network model, or an alternative kind of “rich get richer” process.

We have not attempted to make a precise connection between our semantic network models
and neural networks in the brain. There is nothing in our growth model that necessarily re-
quires semantic concepts to be represented in a local or distributed fashion in the brain. How-
ever, our empirical findings of scale-free structure in semantic networks do place some con-
straints on how semantic networks can (or cannot) be implemented in neural hardware. Under
a simple (localist) mapping of nodes and connections in our semantic networks onto neurons
and synapses, the statistical structures we describe at the semantic level are not compatible
with the general features of neuroanatomical structure. The neural network of the worm C.
elegans has been shown to have a small-world structure (Watts & Strogatz, 1998), but it is defi-
nitely not scale-free it its connectivity. The degree distribution falls off according to a very
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clear exponential law with a single characteristic scale (Amaral et al., 2000). Likewise, the
connectivity of neurons within a cortical area may have some small-world features, due to the
existence of excitatory connections within a local two-dimensional neighborhood and long-
range inhibitory connections between neighborhoods (Kleinberg, 2000), but it is almost cer-
tainly not scale-free. There are typically only one or a few scales of connectivity in any cortical
area, with each neuron making a number of connections that is fairly similar to other neurons
of the same type (Kandel, Schwartz, & Jessell, 1991). Any direct mapping from nodes in a se-
mantic network onto single neurons or columns of neurons, and from the connections between
nodes onto the synapses between those neurons, would therefore not preserve the essential
scale-free structure of semantic relations. Thus our findings seem most compatible with rela-
tively distributed neural representations, and they caution against drawing any simplistic anal-
ogies between nodes and neurons or connections and synapses. More likely, the correspon-
dence between semantic nets and neural nets takes the form of a functional mapping,
implemented in the physiology of neural populations, rather than a structural mapping imple-
mented in their microanatomy. When the time comes for a serious study of these mind–brain
correspondences, the quantitative principles that we have presented here may provide one
source of guidance in identifying the physiological basis of semantic representations.

Our models appear to assume a localist representation for semantic concepts: Each concept
is associated with a single distinct node in the semantic network. Some theorists have argued
that semantic representations are better characterized as distributed across a network (e.g.,
O’Reilly & Munakata, 2000; Rogers & McClelland, 2004), in part based on the fact that with
aging and the onset of dementia, semantic concepts typically degrade gradually rather than in
an all-or-none fashion (Hodges, Graham, & Patterson, 1995; Warrington, 1975). However, the
notion of distributed representation is not in fact in conflict with our proposal. We have as-
sumed that the meaning of a concept is represented not by a single node in the semantic net-
work, but by the pattern of connectivity between the node associated with that concept and
nodes associated with related concepts. In terms of contemporary philosophy of mind, this the-
ory is more like a version of conceptual role semantics (Block, 1998) than conceptual atomism
(Fodor, 1998).

Gradual degradation of semantic concepts may be accounted for in our framework as the de-
cay—either sudden or gradual—of the links between nodes that constitute meanings. All of
our semantic networks have a giant connected component containing the vast majority of the
nodes in the network. We might speculate that a concept becomes inaccessible when it be-
comes disconnected from this giant connected component. This proposal would match the ob-
servation that concepts acquired earliest disappear latest (e.g., Hodgson & Ellis, 1998;
Lambon Ralph, Graham, Ellis, & Hodges, 1998), because they have the most connections and
thus would take longest to become disconnected from the giant connected component of con-
cepts in the semantic network.

8. Conclusion

We have found that several semantic networks constructed by quite different means all show
similar large-scale structural features: high sparsity, very short average path lengths, strong lo-
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cal clustering, and a power-law distribution for the number of semantic neighbors, indicating a
hublike structure for knowledge organization. The fact that we observe such similar and
nontrivial statistical regularities across three different semantic networks constructed from
very different kinds of data suggest that these abstract representations do in fact lock onto a
useful level of analysis and that the structures we have uncovered could place important con-
straints on more detailed models of semantic structure.

These statistical principles of large-scale semantic structure may be valuable beyond offer-
ing the potential to link the organization of mature semantic representations to the processes of
language development or evolution. In the most general terms, robust quantitative empirical
relations typically provide some of the strongest constraints on computational models of cog-
nition, and until now there have been few such laws for semantic structure. Any computational
model that seeks to explain how semantic structures form and what shape they ultimately take
will have to reckon with these results.

Models of semantic processing may also have to be sensitive to these structures because, in
the words of one prominent network theorist, “structure always affects function.” (Strogatz,
2001, p. 268). Since the seminal work of Collins and Quillian (1969), which explored the inter-
action between one simple kind of structure for semantic networks and its complementary pro-
cesses, researchers have thought mainly in terms of general processes such as spreading activa-
tion operating on arbitrary structures. However, the finding of small-world and scale-free
structures in semantic networks might cause us to rethink how search and retrieval could work
in these networks. We have already suggested how retrieval processes in lexical decision and
naming might be attuned to one aspect of semantic network connectivity—namely, node cen-
trality—which leads as a natural consequence to effects of frequency and age of acquisition on
reaction time. More generally, the processes involved in searching for relevant and useful
knowledge in semantic networks might be adapted to their large-scale structure in any number
of ways, and might be very different from search processes adapted to arbitrarily structured
graphs, inheritance hierarchies, or high-dimensional Euclidean vector spaces. Developing
search and retrieval algorithms that exploit the large-scale structures of semantic networks we
have described here is likely to be a project of great promise, for both cognitive science re-
search and information retrieval applications.

Notes

1. For reasons of space, we provide only heuristic definitions for some of these terms. See
Watts (1999) for a more in-depth treatment of graph-theoretic concepts in connection to
small-world networks.

2. Note that distances in an undirected graph always satisfy the three metric axioms of
minimality, symmetry, and the triangle inequality (see Tversky, 1977), but distances in
an undirected graph do not in general satisfy the latter two.

3. We implemented Dijkstra’s algorithm with Fibonacci heaps (Cormen, Leiserson, &
Rivest, 1990) as an efficient means to find the shortest paths between a given node and
all other nodes. (Matlab code for this algorithm is available from the first author.) For
very large networks, it is often computationally infeasible to calculate the shortest paths
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between all pairs of nodes. In such cases, we can estimate L and D based on the shortest
paths for a large sample of nodes (see Note 6).

4. The second property holds simply because P(k) in a random graph is a binomial distri-
bution (Bollobás, 1985), and all binomial distributions have this shape. The first trend
occurs because a lower value of C—lower overlap in the neighborhoods of neighboring
nodes—implies that, on average, more distinct nodes can be reached in two steps from
any given node. At the extreme value of C = 0, not one of the nodes that can be reached
by taking two steps from node i is also a neighbor of i, and thus the number of nodes
within a given distance of each node grows exponentially with distance. As C increases,
more of the paths radiating out from a node become redundant and more steps are re-
quired on average to connect any two nodes.

5. For WordNet, there were connections between word and meaning nodes, between word
and word nodes, and between meaning and meaning nodes; these connections were re-
arranged separately when constructing the random graphs.

6. For the word associative networks, L and D were calculated on the basis of the path
lengths between all word pairs in the large (strongly) connected component. For the
much larger networks of WordNet and Roget’s thesaurus, L and D were based on the
path lengths between all pairs of a sample of 10,000 words from the large connected
component (see Note 3).

7. Zipf (1965)plotted thenumberofmeaningsofawordversus its rankof itswordfrequency
in log–log coordinates and observed a slope b = .466. Adamic (2000) provided some sim-
ple analytic tools by which the slope b = .466 in this Zipf plot can be converted to γ = 3.15,
the slope of the corresponding probability distribution in log–log coordinates.

8. These processes of semantic development may include verbal processes, as well as
preverbal and nonverbal processes. Although the empirical data on which we evaluate
our models of semantic growth come from statistical analyses of large linguistic data-
bases, we do not mean to suggest that the mechanisms of semantic development in an
individual are necessarily driven by statistical analyses of linguistic experience (e.g.,
Landauer & Dumais, 1997). Many important processes of conceptual development are
preverbal or nonverbal, and these processes may be most likely to generate the early
stages of the network structures in our model. As such, it would be desirable to evaluate
our models of semantic growth on some form of nonverbal data, but currently the only
available data directly assessing the large-scale structure of semantic networks are the
linguistic or verbal data we consider here.

9. Both the path lengths and the clustering coefficients of the LSA networks show a de-
creasing trend as the dimensionality d is increased. It is possible that at dimensionalities
higher than 400, these statistics will come closer to the values observed for the word as-
sociation network. We were not able to investigate this possibility, as only 400 LSA di-
mensions were available to us. However, it is unlikely that increasing the dimen-
sionality would threaten our main argument, because the lack of scale-free degree
distributions is the primary feature distinguishing the LSA networks from naturally oc-
curring semantic networks and our growing network models. Based on Fig. 7, it seems
doubtful that these distributions would match significantly better at higher dimen-
sionalities (unless perhaps d was increased far beyond the typical value of 300).
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